


Lecture Notes in Computer Science 5028
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Arnold Beckmann Costas Dimitracopoulos
Benedikt Löwe (Eds.)

Logic and Theory
of Algorithms

4th Conference on Computability in Europe, CiE 2008
Athens, Greece, June 15-20, 2008
Proceedings

13



Volume Editors

Arnold Beckmann
Swansea University
Singleton Park, Swansea, SA2 8PP, United Kingdom
E-mail: a.beckmann@swansea.ac.uk

Costas Dimitracopoulos
University of Athens
University Campus, Ano Ilisia, 15771 Athens, Greece
E-mail: cdimitr@phs.uoa.gr

Benedikt Löwe
Universiteit van Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail: bloewe@science.uva.nl

Library of Congress Control Number: 2008928722

CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, G.1.0, I.2.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69405-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69405-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12278411 06/3180 5 4 3 2 1 0



Preface

CiE 2008: Logic and Theory of Algorithms
Athens, Greece, June 15–20, 2008

Computability in Europe (CiE) is an informal network of European scientists
working on computability theory, including its foundations, technical develop-
ment, and applications. Among the aims of the network is to advance our the-
oretical understanding of what can and cannot be computed, by any means
of computation. Its scientific vision is broad: computations may be performed
with discrete or continuous data by all kinds of algorithms, programs, and ma-
chines. Computations may be made by experimenting with any sort of physical
system obeying the laws of a physical theory such as Newtonian mechanics,
quantum theory, or relativity. Computations may be very general, depending
on the foundations of set theory; or very specific, using the combinatorics of
finite structures. CiE also works on subjects intimately related to computation,
especially theories of data and information, and methods for formal reasoning
about computations. The sources of new ideas and methods include practical
developments in areas such as neural networks, quantum computation, natural
computation, molecular computation, computational learning. Applications are
everywhere, especially, in algebra, analysis and geometry, or data types and pro-
gramming. Within CiE there is general recognition of the underlying relevance
of computability to physics and a broad range of other sciences, providing as it
does a basic analysis of the causal structure of dynamical systems.

This volume, Logic and Theory of Algorithms, is the proceedings of the fourth
in a series of conferences of CiE that was held at the University of Athens, June
15–20, 2008.

The first three meetings of CiE were at the University of Amsterdam in 2005,
at the University of Wales Swansea in 2006, and at the University of Siena in
2007. Their proceedings, edited in 2005 by S. Barry Cooper, Benedikt Löwe, and
Leen Torenvliet, in 2006 by Arnold Beckmann, Ulrich Berger, Benedikt Löwe,
and John V. Tucker, and in 2007 by S. Barry Cooper, Benedikt Löwe, and
Andrea Sorbi, were published as Springer Lecture Notes in Computer Science,
Volumes 3526, 3988, and 4497, respectively.



VI Preface

CiE and its conferences have changed our perceptions of computability and
its interface with other areas of knowledge. The large number of mathematicians
and computer scientists attending these conference had their view of computabil-
ity theory enlarged and transformed: they discovered that its foundations were
deeper and more mysterious, its technical development more vigorous, its appli-
cations wider and more challenging than they had known. The Athens meeting
promised to extend and enrich that process.

The annual CiE conference, based on the Computability in Europe network,
has become a major event, and is the largest international meeting focused on
computability theoretic issues. The series is coordinated by the CiE Conference
Series Steering Committee:

Arnold Beckmann (Swansea)
Paola Bonizzoni (Milan)
S. Barry Cooper (Leeds)
Benedikt Löwe (Amsterdam, Chair)
Elvira Mayordomo (Zaragoza)
Dag Normann (Oslo)
Peter van Emde Boas (Amsterdam)

We will reconvene 2009 in Heidelberg and 2010 in Ponta Delgada (Açores).

Structure and Programme of the Conference

The conference was based on invited tutorials and lectures, and a set of special
sessions on a range of subjects; there were also many contributed papers and
informal presentations. This volume contains 25 of the invited lectures and 33%
of the submitted contributed papers, all of which have been refereed. There
will be a number of post-proceedings publications, including special issues of
Theory of Computing Systems, Archive for Mathematical Logic, and Journal of
Algorithms.

Tutorials

John V. Tucker (Swansea), Applied Computability: A European Perspective
Moshe Y. Vardi (Houston TX), Logic, Automata, Games, and Algorithms

Opening Lecture

Keith Devlin (Stanford CA), The Computing Species

Invited Plenary Talks

Rosalie Iemhoff (Utrecht), Kripke Models for Constructive Set Theory
Antonina Kolokolova (St. John’s NL), Many Facets of Complexity in Logic
Johann Makowsky (Haifa), Uniform Algebraic Reducibilities Between

Parameterized Numeric Graph Invariants
Dag Normann (Oslo), 50 Years of Continuous Functionals
Prakash Panangaden (Montréal QC), Domain Theory and the Causal Structure

of Space-Time



Preface VII

Christos Papadimitriou (Berkeley CA), On Nash, Brouwer, and Other
Non-Constructive Proofs

Jǐŕı Wiedermann (Prague) and Jan van Leeuwen (Utrecht), How We Think of
Computing Today

Special Sessions

Algorithms in the History of Mathematics, organized by Jens Høyrup and
Karine Chemla
Andréa Bréard (Lille), A Summation Algorithm from 11th Century China: Pos-
sible Relations Between Structure and Argument
Marouane Ben Miled (Tunis): Preuves et Algorithmes Dans Un Contexte
Algébrique, Entre le 9e et le 12e Siècle,
Harold Edwards (New York), Kronecker’s Algorithmic Mathematics
Jens Høyrup (Roskilde), The Algorithm Concept – Tool for Historiographic In-
terpretation or Red Herring?

Formalising Mathematics and Extracting Algorithms from Proofs, or-
ganized by Henk Barendregt and Monika Seisenberger
John Harrison (Hillsboro), New (Un)Decidability Results from the Formalization
of Mathematics
Pierre Letouzey (Paris), Extraction in Coq: An Overview
Lawrence C. Paulson (Cambridge), The Relative Consistency of the Axiom of
Choice Mechanized Using Isabelle/ZF
Christophe Raffalli (Le Bourget du Lac), Krivine’s Realizability: From Storage
Operators to the Intentional Axiom of Choice

Higher-Type Recursion and Applications, organized by Ulrich Berger and
Dag Normann
Lars Kristiansen (Oslo), Recursion in Higher Types and Resource Bounded Tur-
ing machines
John Longley (Edinburgh), Interpreting Localized Computational Effects Using
Higher Type Operators
Ralph Matthes (Toulouse), Recursion on Nested Datatypes in Dependent Type
Theory
Colin Riba (Sophia Antipolis), Rewriting with Unions of Reducibility Families

Algorithmic Game Theory, organized by Elias Koutsoupias and Bernhard
von Stengel
Constantinos Daskalakis (Berkeley CA), Computing Equilibria in Large Games
We Play
Hugo Gimbert (Bordeaux), Solving Simple Stochastic Games
Rahul Savani (Warwick), A Simple P-Matrix Linear Complementarity Problem
for Discounted Games
Troels Bjerre Sørensen (Aarhus), Deterministic Graphical Games Revisited

Quantum Algorithms and Complexity, organized by Viv Kendon and Bob
Coecke



VIII Preface

Dan Browne (London), A Classical Analogue of Measurement-Based Quantum
Computation?
Jiannis K. Pachos (Leeds), Why Should Anyone Care About Computing with
Anyons?
Peter Richter (Orsay), The Quantum Complexity of Markov Chain Monte Carlo
Matthias Christandl (Cambridge), A Quantum Information-Theoretic Proof of
the Relation Between Horn’s Problem and the Littlewood-Richardson Coefficients

Biology and Computation, organized by Natasha Jonoska and Giancarlo
Mauri

Alessandra Carbone (Paris), Genome Synthesis and Genomic Functional Cores
Matteo Cavaliere (Trento), Computing by Observing
Erzsébet Csuhaj-Varjú (Budapest), P Automata: Membrane Systems as
Acceptors
Mark Daley (London ON), On the Processing Power of Protozoa

Organization and Acknowledgements

The conference CiE 2008 was organized by: Dionysis Anapolitanos (Athens),
Arnold Beckmann (Swansea), Costas Dimitracopoulos (Athens, Chair), Michael
Mytilinaios (Athens) †, Thanases Pheidas (Heraklion), Stathis Zachos (Athens
and New York NY).

The Programme Committee was chaired by Arnold Beckmann and Costas
Dimitracopoulos:

Luigia Aiello (Rome)
Thorsten Altenkirch (Nottingham)
Klaus Ambos-Spies (Heidelberg)
Giorgio Ausiello (Rome)
Arnold Beckmann (Swansea)
Lev Beklemishev (Moscow)
Paola Bonizzoni (Milan)
Stephen A. Cook (Toronto ON)
Barry Cooper (Leeds)
Costas Dimitracopoulos (Athens)
Rod Downey (Wellington)
Elias Koutsoupias (Athens)
Orna Kupferman (Jerusalem)
Sophie Laplante (Orsay)
Hannes Leitgeb (Bristol)
Benedikt Löwe (Amsterdam)

Elvira Mayordomo (Zaragoza)
Franco Montagna (Siena)
Michael Mytilinaios (Athens) †
Mogens Nielsen (Aarhus)
Isabel Oitavem (Lisbon)
Catuscia Palamidessi (Palaiseau)
Thanases Pheidas (Heraklion)
Ramanujam (Chennai)
Andrea Schalk (Manchester)
Uwe Schöning (Ulm)
Helmut Schwichtenberg (Munch)
Alan Selman (Buffalo NY)
Andrea Sorbi (Siena)
Ivan Soskov (Sofia)
Christopher Timpson (Oxford)
Stathis Zachos (Athens and

New York NY)

We are delighted to acknowledge and thank the following for their essential
financial support: Bank of Greece, Graduate Program in Logic and Algorithms
(MPLA), Hellenic Ministry of Education, John S. Latsis Foundation, National



Preface IX

and Kapodistrian University of Athens, Rizareio Foundation, The Elsevier
Foundation.

The high scientific quality of the conference was possible through the con-
scientious work of the Programme Committee, the special session organizers,
and the referees. We are grateful to all members of the Programme Committee
for their efficient evaluations and extensive debates, which established the final
programme. We also thank the following referees:

Jesus Aranda
Andreas Abel
Peter Aczel
Klaus Aehlig
Pilar Albert
Spyridon

Antonakopoulos
Luis Antunes
Toshiyasu Arai
Argimiro Arratia
Albert Atserias
David Aubin
Olivier Bournez
John Baez
Evangelos Bampas
Freiric Barral
Ulrich Berger
Riccardo Biagioli
Guillaume Bonfante
Andrey Bovykin
Vasco Brattka
Mark Braverman
Thomas Brihaye
Gerth Brodal
Dan Browne
Manuel Campagnolo
Douglas Cenzer
Arkadevn

Chattopadhyay
Panagiotis Cheilaris
Luca Chiarabini
Chi Tat Chong
Petr Cintula
Félix Costa
Paola D’Aquino
Bembé Daniel
Olivier Danvy

Bhaskar DasGupta
Constantinos

Daskalakis
Adam Day
Alberto Dennunzio
Ilias Diakonikolas
Arnaud Durand
Martin Dyer
Mirna Dzamonja
Martin Escardo
Michael Fellows
Fernando Ferreira
Jean-Christophen

Filliatre
Joe Fitzsimons
Gaëlle Fontaine
Enrico Formenti
Dimitris Fotakis
Pierluigi Frisco
Hristo Ganchev
Parmenides

Garcia Cornejo
William Gasarch
Yiannis

Giannakopoulos
Sergey Goncharov
Joel David Hamkins
Aram Harrow
Chrysafis Hartonas
Bastiaan Heeren
Christoph Heinatsch
Denis Hirschfeldt
John Hitchcock
Peter Hoyer
Simon Huber
Franz Huber
Martin Hyland

Hans Hyttel
Eyke Hüllermeier
Rosalie Iemhoff
Natasha Jonoska
Reinhard Kahle
Eirini Kaldeli
Christos Kapoutsis
Basil Karadais
Jarkko Kari
Elham Kashefi
Viv Kendon
Thomas Kent
Iordanis Kerenidis
Bakhadyr Khoussainov
Peter Koepke
George Koletsos
Konstantinos Kollias
Costas Koutras
Simon Kramer
Natalio Krasnogor
Werner Kuich
Piyush P. Kurur
Geoffrey LaForte
Michael Lampis
Troy Lee
Alberto Leporati
David Lester
Paolo Liberatore
Kamal Lodaya
Maria Lopez-Valdes
Salvador Lucas
Jack H. Lutz
Guillaume Malod
Evangelos Markakis
Euripides Markou
Giancarlo Mauri
Alexander Meduna



X Preface

Klaus Meer
Emanuela Merelli
Wolfgang Merkle
Dale Miller
Peter Bro Miltersen
Eugenio Moggi
Antonio Montalban
Malika More
Philippe Moser
Luca Motto Ros
Anders Möller
Margherita Napoli
Vincent Nesme
Phuong Nguyen
Long Nguyen
Andre Nies
Karl-Heinz Niggl
Tobias Nipkow
Christos Nomikos
Martin Ochoa
Carlos Olarte
Martin Otto
Aris Pagourtzis
Jens Palsberg
Prakash Panangaden
Katia Papakonstan

-tinopoulou
Nikos Papaspyrou
Gheorghe Paun
A. Pavan
Sylvain Perifel

Ion Petre
Mauro Piccolo
George Pierrakos
Natacha Portier
Katerina Potika
Florian Ranzi
Diana Ratiu
Kenneth Regan
Jan Reimann
Gerhard Reinelt
Martin Roetteler
Jeremie Roland
David Rydeheard
Markus Sauermann
Ruediger Schack
Stefan Schimanski
Peter Schuster
Monika Seisenberger
Domenico Senato
Sunil Easaw Simon
Reed Solomon
Ludwig Staiger
Frank Stephan
Lutz Strassburger
Aaron Stump
Kristian Støvring
Kohei Suenaga
Nik Sultana
S.P. Suresh
Deian Tabakov
Aris Tentes

Sebastiaan Terwijn
Neil Thapen
P.S. Thiagarajan
Jacobo Toran
Edmondo Trentin
Trifon Trifonov
Tarmo Uustalu
Pierre Valarcher
Frank Valencia
Peter van Emde Boas
Angelina Vidali
Nicolas Vieille
Anastasios Viglas
Giuseppe Vizzari
Paul Voda
Vladimir Vyugin
Andreas Weiermann
Pascal Weil
Philip Welch
Thomas Wilke
Joost Winter
Ronald de Wolf
Guohua Wu
Yue Yang
Alberto Zanardo
Liyu Zhang
Martin Ziegler
Albert Ziegler
Vittorio Amos Ziparo

We thank Andrej Voronkov for his EasyChair system which facilitated the
work of the Programme Committee and the editors considerably.

April 2008 Arnold Beckmann
Costas Dimitracopoulos

Benedikt Löwe



Michael Mytilinaios (1948–2007)

We are saddened to report that Michael Mytilinaios, one of the members of the
Programme Committee of the conference Computability in Europe 2008, died on
March 12, 2007. In this obituary, we present aspects of his research and teaching
in memory of Professor Mytilinaios. It has been prepared with the valuable help
of our colleagues John C. Cavouras (Athens), Panos Katerinis (Athens), and
Theodore A. Slaman (Berkeley CA).

1 Research

Michael Mytilinaios received his doctorate in 1985 from the University of
Chicago, where he worked with Theodore Slaman and William Tait. Mytili-
naios had a deep and abiding respect for mathematics, more as an intellectual
discipline than as a technical medium. His metamathematical inclinations were
well reflected in his research topics.

Though he enjoyed problem solving, see [8] for the solution of a problem of
Downey and [7] for the solution of a problem of Brown and Simpson, Mytilinaios
wrote primarily on foundational aspects of recursion theory. Following earlier un-
published work of Stephen Simpson, Mytilinaios in his Ph.D. thesis [5] and later
with collaborators Marcia Groszek and Slaman [3, 4, 6] studied the correlation
between the combinatorial levels of the priority method with the hierarchy of
subsystems of Peano Arithmetic as developed by Paris and Kirby [9]. Fixing the
base theory P− + IΣ0, the Kirby and Paris schemes BΣn, bounding for Σn for-
mulas, and IΣn, induction for Σn formulas, stratify first order Peano Arithmetic
with proper implications IΣn+1 =⇒ BΣn+1 =⇒ IΣn.



XII Preface

Considerable expertise was available for the analysis of priority methods in
weak systems. In α-recursion theory, priority methods had been implemented
in Lα, a Σ1-admissible initial segment of L. The contexts were similar to the
extent that being Σ1-admissible is analogous to satisfying Σ1-induction and the
analogy led to early results. Later results depended more on properties of models
of arithmetic, such as definable cuts and standard systems.

By a variation on the Sacks-Simpson method used to solve Post’s problem
in Lα, Simpson had shown that IΣ1 is sufficient to prove that the original
Friedberg-Muchnik construction does produce a pair of recursively enumerable
sets of incomparable Turing degree. Mytilinaios’s thesis analyzes the next level
of the priority method, finite injury constructions with no a priori bound on
the actions of individual strategies, as exemplified by the Sacks Splitting Theo-
rem. As originally devised, such arguments make explicit use of IΣ2. Mytilinaios
adapted the Shore blocking method from α-recursion theory to prove the sur-
prising theorem that the Splitting Theorem is provable in IΣ1.

Looking further to infinite injury, the paradigm example is the construction
of a high recursively enumerable set. Mytilinaios and Slaman showed that the
existence of a recursively enumerable set whose Turing degree is neither low
nor complete cannot be proven from BΣ2 [6], and showed that IΣ2 is sufficient
to prove the existence of a high recursively enumerable set [3]. Subsequently,
Chong and Yang [2] showed that the existence of a high recursively enumerable
set is equivalent to IΣ2 over the base theory of BΣ2. Looking even higher,
Mytilinaios and Slaman showed that for each n, the existence of an incomplete
recursively enumerable set that is neither lown nor highn−1, while true, cannot
be established in P−+BΣn+1. Consequently, no bounded fragment of first order
arithmetic establishes the facts that the highn and lown jump hierarchies are
proper on the recursively enumerable degrees.

The cross-referencing of priority methods with fragments of arithmetic at-
tracted substantial attention among recursion theorists. Among the other no-
table contributors are Chong Chi Tat, Joseph Mourad, Richard Shore, Yang
Yue, and Hugh Woodin. See [1] for further information.

The foundational study initiated by Simpson and Mytilinaios is one of the
central chapters in the story of the recursively enumerable sets and their Turing
degrees.

2 Teaching and Organization

Michael Mytilinaios joined the Department of Informatics of the Athens Univer-
sity of Economics and Business in 1991, serving it until his death in 2007. During
this period he taught the following undergraduate courses in the Department:
logic, computability and complexity; discrete mathematics, special topics in dis-
crete mathematics, linear algebra. Michael also taught the following postgraduate
courses: applied cryptography, in his department; computability, in co-operation
with Yiannis N. Moschovakis, in the Graduate Program in Logic and Algorithms
of the University of Athens (MPLA); and epistemology and teaching of mathe-
matics, in the Graduate Program in Teaching and Methodology of Mathematics



Preface XIII

of the University of Athens. Michael was an active participant in the weekly
MPLA Seminar until his death. He wrote lecture notes on Logic, Computability
and Complexity, and Discrete Mathematics.

Michael was a member of the organizing committee of the second PLS (Pan-
hellenic Logic Symposium) and LC 2005 (Logic Colloquium 2005) and a member
of the program committee of the second to fifth PLS.

Throughout the period he served at the Department of Informatics, his col-
leagues considered him as the best teacher in the department because of his
patience, his devotion to teaching, his high moral values, his willingness to help
students, and the clarity of his lectures.

His early death was a terrible loss not only to his students and his colleagues,
but also to the entire university community.

References

1. Chong, C.T., Yang, Y.: Recursion theory on weak fragments of Peano arithmetic: a
study of definable cuts. In: Proceedings of the Sixth Asian Logic Conference (Beijing,
1996), pp. 47–65. World Sci. Publ., River Edge (1998)

2. Chong, C.T., Yang, Y.: Σ2 induction and infinite injury priority argument. I. Max-
imal sets and the jump operator. J. Symbolic Logic 63(3), 797–814 (1998)

3. Groszek, M., Mytilinaios, M.: Σ2-induction and the construction of a high degree.
In: Recursion theory week (Oberwolfach, 1989). Lecture Notes in Math., vol. 1432,
pp. 205–221. Springer, Berlin (1990)

4. Groszek, M.J., Mytilinaios, M.E., Slaman, T.A.: The Sacks density theorem and
Σ2-bounding. J. Symbolic Logic 61(2), 450–467 (1996)

5. Mytilinaios, M.E.: Priority Arguments and Models of Arithmetic. PhD thesis, The
University of Chicago (1985)

6. Mytilinaios, M.E., Slaman, T.A.: Σ2-collection and the infinite injury priority
method. J. Symbolic Logic 53(1), 212–221 (1988)

7. Mytilinaios, M.E., Slaman, T.A.: On a question of Brown and Simpson. In: Com-
putability, enumerability, unsolvability. London Math. Soc. Lecture Note Ser.,
vol. 224, pp. 205–218. Cambridge Univ. Press, Cambridge (1996)

8. Mytilinaios, M.E., Slaman, T.A.: Differences between resource bounded degree
structures. Notre Dame J. Formal Logic 44(1), 1–12 (2004)

9. Paris, J.B., Kirby, L.A.S.: Σn-collection schemas in arithmetic. In: Logic Colloquium
1977 (Proc. Conf., Wroc�law, 1977). Stud. Logic Foundations Math., vol. 96, pp. 199–
209. North-Holland, Amsterdam (1978)



Table of Contents

Deterministic Graphical Games Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Daniel Andersson, Kristoffer Arnsfelt Hansen,
Peter Bro Miltersen, and Troels Bjerre Sørensen

Program Schemes with Deep Pushdown Storage . . . . . . . . . . . . . . . . . . . . . 11
Argimiro Arratia and Iain A. Stewart

Herbrand Theorems and Skolemization for Prenex Fuzzy Logics . . . . . . . . 22
Matthias Baaz and George Metcalfe

Decidability of Hybrid Logic with Local Common Knowledge Based on
Linear Temporal Logic LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Sergey Babenyshev and Vladimir Rybakov

Pure Iteration and Periodicity: A Note on Some Small Sub-recursive
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Mathias Barra

Programming Experimental Procedures for Newtonian Kinematic
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

E.J. Beggs and J.V. Tucker

Linear, Polynomial or Exponential? Complexity Inference in Polynomial
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen

A Summation Algorithm from 11th Century China: Possible Relations
between Structure and Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Andrea Bréard

Sequential Automatic Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Michael Brough, Bakhadyr Khoussainov, and Peter Nelson

The Role of Classical Computation in Measurement-Based Quantum
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Dan Browne and Janet Anders

The Algebraic Counterpart of the Wagner Hierarchy . . . . . . . . . . . . . . . . . . 100
Jérémie Cabessa and Jacques Duparc

Computing by Observing: A Brief Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Matteo Cavaliere

A Quantum Information-Theoretic Proof of the Relation between
Horn’s Problem and the Littlewood-Richardson Coefficients . . . . . . . . . . . 120

Matthias Christandl



XVI Table of Contents

Pell Equations and Weak Regularity Principles . . . . . . . . . . . . . . . . . . . . . . 129
Charalampos Cornaros

Computable Categoricity of Graphs with Finite Components . . . . . . . . . . 139
Barbara F. Csima, Bakhadyr Khoussainov, and Jiamou Liu

P Automata: Membrane Systems as Acceptors . . . . . . . . . . . . . . . . . . . . . . . 149
Erzsébet Csuhaj-Varjú

On the Processing Power of Protozoa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Mark Daley

Computing Equilibria in Large Games We Play . . . . . . . . . . . . . . . . . . . . . . 154
Constantinos Daskalakis

A Week-End Off: The First Extensive Number-Theoretical Computation
on the ENIAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Liesbeth De Mol and Maarten Bullynck

Phase Transitions for Weakly Increasing Sequences . . . . . . . . . . . . . . . . . . . 168
Michiel De Smet and Andreas Weiermann

Succinct NP Proofs from an Extractability Assumption . . . . . . . . . . . . . . . 175
Giovanni Di Crescenzo and Helger Lipmaa

Describing the Wadge Hierarchy for the Alternation Free Fragment of
μ-Calculus (I): The Levels Below ω1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Jacques Duparc and Alessandro Facchini

Subrecursive Complexity of Identifying the Ramsey Structure of
Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Willem L. Fouché

Solving Simple Stochastic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Hugo Gimbert and Florian Horn

The Shrinking Property for NP and coNP . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Christian Glaßer, Christian Reitwießner, and Victor Selivanov

On the Hardness of Truthful Online Auctions with Multidimensional
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Rica Gonen

Effective Dimensions and Relative Frequencies . . . . . . . . . . . . . . . . . . . . . . . 231
Xiaoyang Gu and Jack H. Lutz

Reachability in Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Emmanuel Hainry

Hybrid Functional Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Mircea-Dan Hernest and Paulo Oliva



Table of Contents XVII

The Algorithm Concept – Tool for Historiographic Interpretation or
Red Herring? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Jens Høyrup

Adversarial Scheduling Analysis of Game-Theoretic Models of Norm
Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Gabriel Istrate, Madhav V. Marathe, and S.S. Ravi

A Simple P-Matrix Linear Complementarity Problem for Discounted
Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Marcin Jurdziński and Rahul Savani

Implementing Spi Calculus Using Nominal Techniques . . . . . . . . . . . . . . . . 294
Temesghen Kahsai and Marino Miculan

An Enhanced Theory of Infinite Time Register Machines . . . . . . . . . . . . . . 306
Peter Koepke and Russell Miller

Many Facets of Complexity in Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Antonina Kolokolova

On the Computational Power of Enhanced Mobile Membranes . . . . . . . . . 326
Shankara Narayanan Krishna and Gabriel Ciobanu

Recursion in Higher Types and Resource Bounded Turing Machines . . . . 336
Lars Kristiansen

Computability and Complexity in Self-assembly . . . . . . . . . . . . . . . . . . . . . . 349
James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and
Scott M. Summers

Extraction in Coq: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Pierre Letouzey

Joining to High Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Jiang Liu and Guohua Wu

Factoring Out Intuitionistic Theorems: Continuity Principles and the
Uniform Continuity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Iris Loeb

Interpreting Localized Computational Effects Using Operators of
Higher Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

John Longley

Uniform Algebraic Reducibilities between Parameterized Numeric
Graph Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

J.A. Makowsky



XVIII Table of Contents

Updatable Timed Automata with Additive and Diagonal Constraints . . . 407
Lakshmi Manasa, Shankara Narayanan Krishna, and Kumar Nagaraj

First-Order Model Checking Problems Parameterized by the Model . . . . 417
Barnaby Martin

Domain Theory and the Causal Structure of Space-Time . . . . . . . . . . . . . . 428
Keye Martin and Prakash Panangaden

Recursion on Nested Datatypes in Dependent Type Theory . . . . . . . . . . . 431
Ralph Matthes

Perfect Local Computability and Computable Simulations . . . . . . . . . . . . . 447
Russell Miller and Dustin Mulcahey

Complete Determinacy and Subsystems of Second Order Arithmetic . . . . 457
Takako Nemoto

Internal Density Theorems for Hierarchies of Continuous Functionals . . . 467
Dag Normann

Two-by-Two Substitution Systems and the Undecidability of the
Domino Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Nicolas Ollinger

The Relative Consistency of the Axiom of Choice—Mechanized Using
Isabelle/ZF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Lawrence C. Paulson

Upper Semilattices in Many-One Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Sergei Podzorov

Union of Reducibility Candidates for Orthogonal Constructor
Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Colin Riba

The Quantum Complexity of Markov Chain Monte Carlo . . . . . . . . . . . . . 511
Peter C. Richter

Topological Dynamics of 2D Cellular Automata . . . . . . . . . . . . . . . . . . . . . . 523
Mathieu Sablik and Guillaume Theyssier

Complexity of Aperiodicity for Topological Properties of Regular
ω-Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Victor L. Selivanov and Klaus W. Wagner

ω-Degree Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Alexandra A. Soskova

Cupping Classes of Σ0
2 Enumeration Degrees . . . . . . . . . . . . . . . . . . . . . . . . 554

Mariya Ivanova Soskova



Table of Contents XIX

Principal Typings for Explicit Substitutions Calculi . . . . . . . . . . . . . . . . . . 567
Daniel Lima Ventura, Mauricio Ayala-Rincón, and
Fairouz Kamareddine

How We Think of Computing Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Jǐŕı Wiedermann and Jan van Leeuwen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595



Deterministic Graphical Games Revisited�

Daniel Andersson, Kristoffer Arnsfelt Hansen,
Peter Bro Miltersen, and Troels Bjerre Sørensen

University of Aarhus, Datalogisk Institut, DK-8200 Aarhus N, Denmark
{koda,arnsfelt,bromille,trold}@daimi.au.dk

Abstract. We revisit the deterministic graphical games of Washburn.
A deterministic graphical game can be described as a simple stochastic
game (a notion due to Anne Condon), except that we allow arbitrary
real payoffs but disallow moves of chance. We study the complexity
of solving deterministic graphical games and obtain an almost-linear
time comparison-based algorithm for computing an equilibrium of such a
game. The existence of a linear time comparison-based algorithm remains
an open problem.

1 Introduction

Understanding rational behavior in infinite duration games has been an impor-
tant theme in pure as well as computational game theory for several decades. A
number of central problems remain unsolved. In pure game theory, the existence
of near-equilibria in general-sum two-player stochastic games were established
in a celebrated result by Vieille [14,15], but the existence of near-equilibria for
the three-player case remains an important and elusive open problem [2]. In
computational game theory, Condon [4] delineated the efficient computation of
positional equilibria in simple stochastic games as an important task. While
Condon showed this task to be doable in NP ∩ coNP, to this day, the best
deterministic algorithms are not known to be of subexponential complexity. To
the computer science community, the problem of computing positional equilib-
ria in simple stochastic games is motivated by its hardness for finding equilibria
in many other natural classes of games [17], which again implies hardness for
tasks such as model checking the μ-calculus [5], which is relevant for the formal
verification of computerized systems.

1.1 Simple Stochastic Games

A simple stochastic game [4] is given by a graph G = (V,E). The vertices in V
are the positions of the game. Each vertex belongs either to player Max, to player
Min, or to Chance. There is a distinguished starting position v0. Furthermore,
there are a number of distinguished terminal positions or just terminals, each

� Research supported by Center for Algorithmic Game Theory, funded by The Carls-
berg Foundation.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 D. Andersson et al.

labeled with a payoff from Min to Max.1 All positions except the terminal ones
have outgoing arcs. The game is played by initially placing a token on v0, letting
the token move along a uniformly randomly chosen outgoing arc when it is in a
position belonging to Chance and letting each of the players decide along which
outgoing arc to move the token when it is in a position belonging to him. If a
terminal is reached, then Min pays Max its payoff and the game ends. Infinite
play yields payoff 0. A positional strategy for a player is a selection of one outgoing
arc for each of his positions. He plays according to the strategy if he moves along
these arcs whenever he is to move. It is known (see [4]) that each position p in
a simple stochastic game can be assigned a value Val(p) so that:

1. Max has a positional strategy that, regardless of what strategy Min adopts,
ensures an expected payoff of at least Val(p) if the game starts in p.

2. Min has a positional strategy that, regardless of what strategy Max adopts,
ensures that the expected payoff is at most Val(p) if the game starts in p.

The value of the game itself is the value of v0. Condon considered the complexity
of computing this value. It is still open if this can be done in polynomial time.
In the present paper, we shall look at some easier problems. For those, we want
to make some distinctions which are inconsequential when considering whether
the problems are polynomial time solvable or not, but important for the more
precise (almost linear) time bounds that we will be interested in in this paper.

– A weak solution is Val(v0) and a positional strategy for each player satisfying
the conditions in items 1 and 2 above for p = v0.

– A strong solution is the list of values of all positions in the game and a po-
sitional strategy for each player that for all positions p, ensures an expected
payoff of at least/most Val(p) if the game starts in p.

In game theory terminology, weak solutions to a game are Nash equilibria of the
game while strong solutions are subgame perfect equilibria. Figure 1 illustrates
that the distinction is not inconsequential. In the weak solution to the left, Max

Min

Max0

0 1

v0

Min

Max0

0 1

v0

Fig. 1. The left solution is weak, the right is strong

1 In Condon’s original paper, there were only two terminals, with the payoffs 0 and 1.
The relaxation to arbitrary payoffs that we adopt here is fairly standard.



Deterministic Graphical Games Revisited 3

(if he gets to move) is content to achieve payoff 0, the value of the game, even
though he could achieve payoff 1. Note that the game in Figure 1 is acyclic. In
contrast to the general case, it is of course well known that a strong solution
to an acyclic game can be found in linear time by straightforward dynamic
programming (known as backwards induction in the game theory community).
We shall say that we weakly (resp. strongly) solve a given game when we provide
a weak (resp. strong) solution to the game. Note that when talking about strong
solutions, the starting position is irrelevant and does not have to be specified.

1.2 Deterministic Graphical Games

Condon observed that for the case of a simple stochastic game with no Chance
positions and only 0/1 payoffs, the game can be strongly solved in linear time. In-
terestingly, Condon’s algorithm has been discovered and described independently
by the artificial intelligence community where it is known under the name of ret-
rograde analysis [13]. It is used routinely in practice for finding optimal strategies
for combinatorial games that are small enough for the game graph to be repre-
sented in (internal or external) memory and where dealing with the possibility
of cycling is a non-trivial aspect of the optimal strategies. The best known ex-
ample is the construction of tables for chess endgames [8]. Condon’s algorithm
(and retrograde analysis) being linear time depends crucially on the fact that
the games considered are win/lose games (or, as is usually the case in the AI
literature, win/lose/draw games), i.e., that terminal payoffs are either 0 or 1 (or
possibly also −1, or in some AI examples even a small range of integers, e.g.,
[12]). In this paper we consider the algorithmic problem arising when arbitrary
real payoffs are allowed. That is, we consider a class of games similar to but
incomparable to Condon’s simple stochastic games: We disallow chance vertices,
but allow arbitrary real payoffs. The resulting class were named deterministic
graphical2 games by Washburn [16].

Some simple examples of deterministic graphical games are given in Figure 2.
In (a), the unique strong solution is for Min to choose right and for Max to choose
left. Thus, the outcome is infinite play. In (b), the unique strong solution is for
Min to choose right and for Max to choose right. The values of both vertices are
1, but we observe that it is not a sufficient criterion for correct play to choose
a vertex with at least as good a value as your current vertex. In particular,

Min Max
1 -1

Min Max
1

(a) (b)

Fig. 2. (a) Infinite play equilibrium. (b) All values are 1, but one choice is suboptimal.

2 There is no relation to the more recent concept of “graphical games” — a succinct
representation for multi-player games [9].



4 D. Andersson et al.

according to this criterion, Max could choose left, but this would lead to infinite
play and a payoff of 0, which is a suboptimal outcome for Max.

Washburn [16] gives an algorithm for computing a strong solution to a deter-
ministic graphical game, but its running time is cubic in the size of the game.
We observe below that if a sorted list of the payoffs (with pointers to the cor-
responding terminals of the game) is given in advance, optimal strategies can
again be found in linear time without further processing of the payoffs. From
this it follows that a deterministic graphical game with n payoffs and m arcs
in the graph can be strongly solved in time O(n log n + m) by a comparison-
based algorithm. The main question we attempt to approach in this paper is the
following:

Main Question. Can a deterministic graphical game be (weakly or strongly)
solved in linear time by a comparison-based algorithm?

We believe this to be an interesting question, both in the context of game solving
(deterministic graphical games being a very simple yet non-trivial natural variant
of the general problem) and in the context of the study of comparison-based
algorithms and comparison complexity. This paper provides neither a positive
nor a negative answer to the question, but we obtain a number of partial results,
described in the next subsection.

1.3 Our Results

Throughout this section we consider deterministic graphical games with n de-
noting the number of terminals (i.e., number of payoffs) and m denoting the
total size (i.e., number of arcs) of the graph defining the game. We can assume
m ≥ n, as terminals without incoming arcs are irrelevant.

Strategy Recovery in Linear Time. The example of Figure 2 (b) shows
that it is not completely trivial to obtain a strong solution from a list of values
of the vertices. We show that this task can be done in linear time, i.e. time
O(m). Thus, when constructing algorithms for obtaining a strong solution, one
can concentrate on the task of computing the values Val(p) for all p. Similarly,
we show that given the value of just the starting position, a weak solution to the
game can be computed in linear time.

The Number of Comparisons. When considering comparison-based algo-
rithms, it is natural to study the number of comparisons used separately from
the running time of the algorithm (assuming a standard random access machine).
By an easy reduction from sorting, we show that there is no comparison-based
algorithm that strongly solves a given game using only O(n) comparisons. In
fact, Ω(n logn) comparisons are necessary. In contrast, Mike Paterson (personal
communication) has observed that a deterministic graphical game can be weakly
solved using O(n) comparisons and O(m logn) time. With his kind permission,
his algorithm is included in this paper. This also means that for the case of
weak solutions, our main open problem cannot be solved in the negative using



Deterministic Graphical Games Revisited 5

current lower-bound techniques, as it is not the number of comparisons that is
the bottleneck. Our lower bound uses a game with m = Θ(n log n) arcs. Thus,
the following interesting open question concerning only the comparison complex-
ity remains: Can a deterministic graphical game be strongly solved using O(m)
comparisons? If resolved in the negative, it will resolve our main open problem
for the case of strong solutions.

Almost-Linear Time Algorithm for Weak Solutions. As stated above,
Mike Paterson has observed that a deterministic graphical game can be weakly
solved using O(n) comparisons and O(m log n) time. We refine his algorithm
and obtain an algorithm that weakly solves a game using O(n) comparisons
and only O(m log logn) time. Also, we obtain an algorithm that weakly solves
a game in time O(m + m(log∗m − log∗ m

n )) but uses a superlinear number of
comparisons. For the case of strongly solving a game, we have no better bounds
than those derived from the simple algorithm described in Section 1.2, i.e.,O(m+
n logn) time andO(n log n) comparisons. Note that the bound O(m+m(log∗m−
log∗ m

n )) is linear in m whenever m ≥ n log log . . . logn for a constant number of
’log’s. Hence it is at least as good a bound as O(m+ n logn), for any setting of
the parameters m,n.

2 Preliminaries

Definition 1. A deterministic graphical game (DGG) is a digraph with ver-
tices partitioned into sets of non-terminals VMin and VMax, which are game posi-
tions where player Min and Max, respectively, chooses the next move (arc), and
terminals T , where the game ends and Min pays Max the amount specified by
p : T → R. ��
For simplicity, we will assume that terminals have distinct payoffs, i.e., that p is
injective. We can easily simulate this by artificially distinguishing terminals with
equal payoffs in some arbitrary (but consistent) fashion. We will also assume that
m ≥ n, since terminals without incoming arcs are irrelevant.

Definition 2. We denote by ValG(v) the value of the game G when the vertex
v is used as the initial position and infinite play is interpreted as a zero payoff.
This will also be called “the value of v (in G)”. ��
Remark 1. That such a value indeed exists will follow from Proposition 1. We
shall later see how to construct optimal strategies from vertex values.

Definition 3. To merge a non-terminal v with a terminal t is to remove all
outgoing arcs of v, reconnect all its incoming arcs to t, and then remove v. ��
The definitions of a strong and a weak solution are as stated in the introduction.
The following algorithm is a generalization of Condon’s linear time algorithm [4]
for solving deterministic graphical games with payoffs in {0, 1}. That algorithm
is known as retrograde analysis in the AI community [13], and we shall adopt
this name also for this more general version.



6 D. Andersson et al.

Proposition 1. Given a DGG and a permutation that orders its terminals,
we can find a strong solution to the game in linear time and using no further
comparisons of payoffs.

Proof. If all payoffs are 0, then all values are 0 and every strategy is optimal.
Suppose that the minimum payoff p(t) is negative. Any incoming arc to t

from a Max-vertex that is not the only outgoing arc from that vertex is clearly
suboptimal and can be discarded. Each other incoming arc is an optimal choice
for its source vertex, which can therefore be merged with t. Symmetric reasoning
applies when the maximum payoff is positive. ��
This immediately yields the sorting method for strongly solving DGGs: First
sort the payoffs, and then apply Proposition 1.

Corollary 1. A DGG with m arcs and n terminals can be strongly solved in
O(m+ n logn) time. ��
Definition 4. To merge a terminal s with another terminal t is to reconnect all
incoming arcs of s to t and then remove s. Two terminals are adjacent if their
payoffs have the same sign and no other terminal has a payoff in between. ��
The following lemma states the intuitive fact that when we merge two adja-
cent terminals, the only non-terminals affected are those with the corresponding
values, and they acquire the same (merged) value.

Lemma 1. If G′ is obtained from the DGG G by merging a terminal s with an
adjacent terminal t, then for each non-terminal v, we have

ValG′(v) =
{

ValG(v) if ValG(v) �= ValG(s),
ValG′(t) if ValG(v) = ValG(s). (1)

Proof. Consider all DGGs with a fixed structure (i.e., underlying graph) but
with varying payoffs. Since a strong solution can be computed by a comparison-
based algorithm (Proposition 1), the value of any particular position v can be
described by a min/max formula over the payoffs. The claim of the lemma can
be seen to be true by a simple induction in the size of the relevant formula. ��
By repeatedly merging adjacent terminals, we “coarsen” the game. Figure 3
shows an example of this. The partitioning method we shall use to construct
coarse games in this paper also yields sorted lists of their payoffs. Hence, we
shall be able to apply retrograde analysis to solve them in linear time.

Corollary 2. The signs of the values of all vertices in a given DGG can be
determined in linear time.

Proof. Merge all terminals with negative payoffs into one, do likewise for those
with positive payoffs, and then solve the resulting coarse “win/lose/draw” game
by retrograde analysis. ��



Deterministic Graphical Games Revisited 7

-1 2 5

-4 3

-1 2 5

-4 3

Fig. 3. Coarsening by merging {−4, −1} and {2, 3, 5}

Clearly, arcs between vertices with different values cannot be part of a strong
solution to a game. From this, the following lemma is immediate.

Lemma 2. In a DGG, removing an arc between two vertices with different val-
ues does not affect the value of any vertex. ��
Remark 2. Corollary 2, Lemma 2, and symmetry together allow us to restrict
our attention to games where all vertices have positive values, as will be done in
subsequent sections.

Proposition 2. Given the value of the initial position of a DGG, a weak so-
lution can be found in linear time. If the values of all positions are known, a
strong solution can be found in linear time.

Proof. In the first case, let y be the value of initial position v0. We partition pay-
offs in at most five intervals: (−∞,min(y, 0)), {min(y, 0)}, (min(y, 0),max(y, 0)),
{max(y, 0)} and (max(y, 0),∞). We merge all terminals in each of the intervals,
obtaining a game with at most five terminals. A strong solution for the resulting
coarse game is found in linear time by retrograde analysis. The pair of strategies
obtained is then a weak solution to the original game, by Lemma 1.

In the second case, by Lemma 2, we can first discard all arcs between vertices
of different values. This disintegrates the game into smaller games where all
vertices have the same value. We find a strong solution to each of these games in
linear time using retrograde analysis. Combining these solutions in the obvious
way yields a strong solution to the original game, by Lemma 2. ��

3 Solving Deterministic Graphical Games

3.1 Strongly

For solving DGGs in the strong sense, we currently know no asymptotically faster
method than completely sorting the payoffs. Also, the number of comparisons
this method performs is, when we consider bounds only depending on the num-
ber of terminals n, optimal. Any sorting network [10] can be implemented by an



8 D. Andersson et al.

x1

x2

x3

x4

x1

x2

x3

x4

Fig. 4. Implementing a sorting network by a deterministic graphical game

acyclic DGG, by simulating each comparator by a Max-vertex and a Min-vertex.
Figure 4 shows an example of this. Thus, we have the following tight bound.

Proposition 3. Strongly solving a DGG with n terminals requires Θ(n log n)
comparisons in the worst case. ��
Implementing the asymptotically optimal AKS-network [1] results in a game
with Θ(n log n) vertices and arcs. Thus, it is still consistent with our current
knowledge that a game can be strongly solved using O(m) comparisons.

3.2 Weakly

The algorithms we propose for weakly solving DGGs all combine coarsening of
the set of payoffs with retrograde analysis. By splitting the work between these
two operations in different ways, we get different time/comparison trade-offs. At
one extreme is the sorting method. At the other, we partition the payoffs around
their median (which can be done in linear time by Blum et al. [3]), use retrograde
analysis to solve the coarse game obtained by merging the terminals in each half,
and then discard the irrelevant half of the terminals (the one not containing the
value of the starting vertex) and all vertices with the corresponding values. This
method, which is due to Mike Paterson, uses the optimal O(n) comparisons, but
requires Θ(log n) iterations, each with a worst case running time of Θ(m).

O(n) Comparisons and O(m log log n) Time. To improve the running time
of Paterson’s algorithm, we stop and sort the remaining terminals as soon as this
can be done in O(n) time. The number of comparisons is still O(n). As noted in
Section 2, we may assume that all vertices have positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position v0,
do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals around their median payoff.
2. Solve the coarse game obtained by merging the terminals in each half.
3. Remove all vertices that do not have values in the half containing ValG(v0).
4. Undo step 1 for the half of v0.

When ni logni ≤ n, stop and solve the remaining game by the sorting method.



Deterministic Graphical Games Revisited 9

Analysis. Steps 1–4 can be performed in O(m) time and O(ni) comparisons.
The number of iterations is O(log n − log f(n)), where f(n) is the inverse of
n 
→ n logn, and since this equals O(log logn) we have the following.

Theorem 1. A DGG with m arcs and n terminals can be weakly solved in
O(m log logn) time and O(n) comparisons. ��

Almost-Linear Time. We can balance the partitioning and retrograde analysis
to achieve an almost linear running time, by a technique similar to the one used
in [7] and later generalized in [11].3 Again, we assume that all vertices have
positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position v0,
do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals into groups of size at most ni/2m/ni .
2. Solve the coarse game obtained by merging the terminals in each group.
3. Remove all vertices having values outside the group of ValG(v0).
4. Undo step 1 for the group of v0.

When ni/2m/ni < 1, stop and solve the remaining game by the sorting method.

Analysis. All steps can be performed in O(m) time. For the first step we can do
a “partial perfect quicksort”, where we always partition around the median and
stop at level �m/ni�+ 1.

To bound the number of iterations, we note that ni satisfies the recurrence

ni+1 ≤ ni/2m/ni , (2)

which by induction gives
ni ≤ n

bbb. . .b

}

i

(3)

where b = 2m/n. Thus, the number of iterations is O(log∗
b n), where log∗

b denotes
the number of times we need to apply the base b logarithm function to get below
1. This is easily seen to be the same as O(1 + log∗m − log∗ m

n ). We have now
established the following.

Theorem 2. A DGG with m arcs and n terminals can be weakly solved in
O(m+m(log∗m− log∗ m

n )) time. ��

Remark 3. When m = Ω(n log(k) n) for some constant k, this bound is O(m).

Acknowledgements. We are indebted to Mike Paterson for his contributions
to this work. We would also like to thank Uri Zwick and Gerth Brodal for helpful
discussions.
3 Note, however, that while the technique is similar, the problem of solving determin-

istic graphical games does not seem to fit into the framework of [11].



10 D. Andersson et al.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: Proceed-
ings of the 15th Annual ACM Symposium on the Theory of Computing, pp. 1–9
(1983)

2. Aumann, R.J.: Presidential address at the First International Congress of the Game
Theory Society. Games and Economic Behavior 45, 2–14 (2003)

3. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Linear time bounds
for median computations. In: Proceedings of the 4th Annual ACM Symposium on
the Theory of Computing, pp. 119–124 (1972)

4. Condon, A.: The complexity of stochastic games. Information and Computation 96,
203–224 (1992)

5. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the µ-calculus and
its fragments. Theor. Comput. Sci. 258(1-2), 491–522 (2001)

6. Everett, H.: Recursive games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions
to the Theory of Games. Annals of Mathematical Studies, vol. III(39), Princeton
University Press, Princeton (1957)

7. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.
J. Algorithms 9, 411–417 (1988)

8. Heinz, E.A.: Scalable Search in Computer Chess: Algorithmic Enhancements and
Experiments at High Search Depths. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1999)

9. Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 253–260
(2001)

10. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Sorting and Searching,
vol. 3. Addison-Wesley, Reading (1997)

11. Punnen, A.P.: A fast algorithm for a class of bottleneck problems. Computing 56,
397–401 (1996)

12. Romein, J., Bal, H.: Solving the game of awari using parallel retrograde analysis.
IEEE Computer 36(10), 26–33 (2003)

13. Thompson, K.: Retrograde analysis of certain endgames. Journal of the Interna-
tional Computer Chess Association 9(3), 131–139 (1986)

14. Vieille, N.: Two-player stochastic games I: A reduction. Israel Journal of Mathe-
matics 119, 55–91 (2000)

15. Vieille, N.: Two-player stochastic games II: The case of recursive games. Israel
Journal of Mathematics 119, 93–126 (2000)

16. Washburn, A.R.: Deterministic graphical games. Journal of Mathematical Analysis
and Applications 153, 84–96 (1990)

17. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158(1–2), 343–359 (1996)



Program Schemes with Deep Pushdown Storage

Argimiro Arratia1,� and Iain A. Stewart2

1 Dpto. de Matemática Aplicada, Facultad de Ciencias, Universidad de Valladolid,
Valladolid 47005, Spain
arratia@mac.uva.es

2 Department of Computer Science, Durham University, Science Labs, South Road,
Durham DH1 3LE, U.K.

i.a.stewart@durham.ac.uk

Abstract. Inspired by recent work of Meduna on deep pushdown au-
tomata, we consider the computational power of a class of basic program
schemes, NPSDSs, based around assignments, while-loops and non-
deterministic guessing but with access to a deep pushdown stack which,
apart from having the usual push and pop instructions, also has deep-
push instructions which allow elements to be pushed to stack locations
deep within the stack. We syntactically define sub-classes of NPSDSs by
restricting the occurrences of pops, pushes and deep-pushes and capture
the complexity classes NP and PSPACE. Furthermore, we show that all
problems accepted by program schemes of NPSDSs are in EXPTIME.

1 Introduction

In automata theory, there is a variety of machine models, both restricting and
enhancing pushdown automata. However, rarely is there a model based on mo-
difications of pushdown automata capturing a class of languages lying between
the classes of the context-free and the context-sensitive languages. In an attempt
to remedy this situation, Meduna [10] recently introduced deep pushdown au-
tomata and showed that these models coincide with Kasai’s state grammars [9],
and thus give rise to an infinite hierarchy of languages lying between the classes
of the context-free and the context-sensitive languages. Meduna’s deep push-
down automata pop and push items from and to their stack in the standard
way; however, they also have the facility to insert (but not read) strings at some
position within the stack.

Inspired by Meduna’s machine model, we consider in this paper the formula-
tion of program schemes with access to a deep pushdown stack. Program schemes
work on arbitrary finite structures (rather than just strings) and are more com-
putational in flavour than are formulae of logics studied in finite model theory
and descriptive complexity, yet they remain amenable to logical manipulation.
The concept of a program scheme originates from the 1970’s with work of, for
example, Constable and Gries, Friedman, and Hewitt and Paterson [3,6,11], and
� Supported by grants Ramón y Cajal (MEC+FEDER-FSE); MOISES (TIN2005-

08832-C03-02) and SINGACOM (MTM2004-00958), MEC–Spain.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 11–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



12 A. Arratia and I.A. Stewart

complexity-theoretic considerations of such program schemes were subsequently
studied by, for example, Harel and Peleg, Jones and Muchnik, and Tiuryn and
Urzyczyn [7,8,17].

As mentioned above, in this paper it is our intention to consider the computa-
tional power of basic program schemes when augmented with a deep pushdown
stack (program schemes with standard stacks have been considered in [2,15]).
A deep pushdown stack is such that the usual pops and pushes are available as
well as an additional instruction which allows elements to be written to loca-
tions deep in the stack but only so that the depth at which such a location lies
(from the top of the stack) is bounded by some polynomial in the size of the
input structure; that is, deep-pushes cannot be to locations too deep within the
stack. Note that we only have deep-pushes, not deep-pops; for if we had both
then we would have, essentially, access to a stack the top (polynomial) portion
of which could be used as an array (program schemes with arrays have been
considered in [14,16]). Our goal is to classify the computational power of basic
program schemes with deep pushdown stacks in comparison with the standard
complexity classes of computational complexity.

The results of [2] show that any problem in P can be accepted by some pro-
gram scheme from our class of program schemes with access to a deep pushdown
stack, which we call NPSDSs. It turns out that we can (syntactically) define
sub-classes of the class of program schemes NPSDSs, obtained by restricting
how the occurrences of pops, pushes and deep-pushes are structured, captur-
ing the complexity classes NP and PSPACE. Furthermore, we show that all
problems accepted by program schemes of NPSDSs are in EXPTIME.

Let us end this introduction by remarking that there do exist programming
languages with facilities for the manipulation of elements deep within a stack.
One such is the programming language Push [12], specifically defined for use in
genetic and evolutionary computational systems, where the instructions YANK
and SHOVE allow deep access to stack elements, by means of integer indices.

Due to space limitations we omit the proofs of our results and other technical
details. The complete paper is available in [1].

2 Basic Definitions

Throughout, a signature τ is a finite tuple of relation and constant symbols.
The binary relation symbol succ (which never appears in any signature) is
only ever interpreted as a successor relation, that is, as a relation of the form:
{(u0, u1), (u1, u2), . . . , (un−2, un−1) : ui �= uj, for i �= j}, on some domain of size
n, and 0 (resp. max) is only ever interpreted as the minimal (resp. maximal)
element u0 (resp. un−1) of the successor relation succ.

In [2], a class of program schemes based around the usage of a stack was
defined. A program scheme ρ ∈ NPSSs involves a finite set {x1, x2, . . . , xk} of
variables , for some k ≥ 1, and is over a signature τ . It consists of a finite sequence
of instructions where each instruction is one of the following:



Program Schemes with Deep Pushdown Storage 13

– an assignment instruction of the form xi := y, where i ∈ {1, 2, . . . , k} and
where y is a variable from {x1, x2, . . . , xk}, a constant symbol of τ or one
of the special constant symbols 0 and max (which do not appear in any
signature);

– a guess instruction of the form guess xi, where i ∈ {1, 2, . . . , k};
– a while instruction of the form while ϕ do α1; α2; . . .; αq; od, where
ϕ is a quantifier-free formula over τ ∪〈succ, 0,max〉 whose free variables are
from {x1, x2, . . . , xk} and where each of α1, α2, . . . , αq is another instruc-
tion of one of the forms given here (note that there may be nested while
instructions);

– a push instruction of the form push xi, where i ∈ {1, 2, . . . , k};
– a pop instruction of the form xi := pop, where i ∈ {1, 2, . . . , k};
– an accept (resp. a reject) instruction accept (resp. reject).

A program scheme ρ ∈ NPSSs over τ takes a τ -structure A as input. The
program scheme ρ computes on A in the obvious way except that:

– the binary relation succ is taken to be any successor relation on |A|, and 0
(resp.max) is the minimal (resp. maximal) element of this successor relation;

– initially, every variable takes the value 0;
– the pop and push instructions provide access to a stack which is initially

empty;
– execution of the instruction guess xi non-deterministically assigns an ele-

ment of |A| to the variable xi.

An input τ -structure A, together with a chosen successor relation succ, is ac-
cepted by ρ if there is at least one computation of ρ on input A (and with
regard to the chosen successor relation) leading to an accept instruction (if ever
a pop of an empty stack is attempted in some computation then that com-
putation is deemed rejecting). However, we only consider program schemes ρ
of NPSSs that are successor-invariant, where successor-invariant means that
every input structure is such that it is either accepted no matter which succes-
sor relation is chosen or rejected no matter which successor relation is chosen.
Such successor-invariant program schemes accept classes of structures closed un-
der isomorphisms, i.e., problems. Henceforth, we assume that all our program
schemes are successor-invariant, and we equate (a class of) program schemes
with the (class of) problems they accept.

We extend our class of program schemes NPSSs to the class of program
schemes NPSDSs by allowing deep-push instructions:

– a deep-push instruction is of the form dpush(y,z), where y, the index ,
is a tuple of variables from {x1, x2, . . . , xk} and constant symbols from τ ∪
〈0,max〉 and where z is a variable from {x1, x2, . . . , xk} or a constant symbol
from τ ∪ 〈0,max〉.

Suppose that ρ is some program scheme with deep-push instructions and
that A is input to ρ, with associated successor relation succ (and constants 0



14 A. Arratia and I.A. Stewart

and max). Suppose that dpush(y,z) is a deep-push instruction appearing in ρ,
where y is an m-tuple. The m-tuples of |A|m are ordered lexicographically as

(0, 0, . . . , 0), (0, 0, . . . , u1), (0, 0, . . . , u2), . . . , (max,max, . . . ,max),

where 0, u1, u2, . . . ,max is the linear order encoded within the successor relation
succ. Associate these m-tuples with the integers 0, 1, . . . , nm − 1, respectively.
Denote the integer associated with the tuple u as �u, and denote the tuple
of values associated with the integer i ∈ {0, 1, . . . , nm − 1} as i�. When the
instruction dpush(y,z) is executed, the variables of y each hold a value from
|A|; so, �y ∈ {0, 1, . . . , nm − 1}. The instruction dpush(y,z) pushes the value
of z to the stack location �y (the offset) from the top of the stack, with the top
of the stack being the location 0 from the top of the stack, the next location
down being the location 1 from the top of the stack and so on; in particular, the
deep-push overwrites the value in the stack location �y with the value of z. Thus,
the instruction has access to the top nm locations of the stack for pushing but
not for popping. Only pops of the top element of the stack are allowed (in the
usual way). If ever a deep-push attempts to push a value to some location below
the bottom location of the stack then that particular computation is deemed
rejecting. As usual, we only ever work with successor-invariant program schemes
of NPSDSs.

Let us introduce some syntactic sugar. First, we employ the usual if-then-else
instructions directly, as such instructions can easily be constructed using while
instructions. Second, in describing our program schemes we use a convenient
shorthand in relation to the offsets and indices in deep-push instructions. Ac-
cording to our syntax, the offset of a deep-push instruction is given via a tuple of
variables, the index, with the offset value calculated according to the successor
relation accompanying an input structure. Rather than include routine ‘house-
keeping’ code, we allow ourselves to describe offset values in an integer-style.
For example, suppose that we wished to use an offset of 2n− 2 in a deep-push
instruction (where n is the size of the input structure). Strictly speaking, we
should use a pair of variables, (x1, x2), and a portion of code to implement this.
However, we abbreviate this code with the instruction dpush((2n - 2)�,y). In
general, if i is any positive integer then we write i� to denote a tuple of variables
(of the required length) encoding the offset of value i. All of the integer offsets ap-
pearing in our program schemes are such that they can easily be computed with
an appropriate portion of code. Thus, for example, the instruction dpush(((n
- �count) + �y)�,y) is shorthand for a portion of code which builds values for
a tuple of 2 variables which encodes an integer equal to n minus the integer
currently encoded by the current value of the variable count plus the integer en-
coded by the current value of the variable y. We also use the above shorthand in
assignments, e.g., (count, y) := (�(count, y) + 1)�. Furthermore, we abuse our
notation by writing, for example, count := 2n� or while �x < 2n−1 do, where
what we should really write is (count1, count2) := 2n� and while �(x1, x2) <
2n− 1. (As can be seen, we often use names for variables different to x1, x2, . . .)



Program Schemes with Deep Pushdown Storage 15

Example 1. Consider the following program scheme ρ of NPSDSs over the sig-
nature τ = 〈E,C,D〉, where E is a binary relation symbol and C and D are
constant symbols (so, an input structure can be considered as a digraph with
two specified vertices):

1 guess w; ∗∗ push some 0’s onto the stack ∗∗
2 while w = 0 do
3 push 0;
4 guess w;
5 od;
6 count := 0; ∗∗ count counts the number of guessed ∗∗
7 dpush(count,C); ∗∗ vertices in a path making sure that ∗∗
8 dpush((n + �C)�,max); ∗∗ n are guessed and registered ∗∗
9 while count �= max do
10 count := (�count + 1)�;
11 guess x;
12 dpush(count,x);
13 dpush((n + �x)�,max);
14 od;
15 count := 0; ∗∗ count counts the number of vertices ∗∗
16 x := pop; ∗∗ popped when checking the validity ∗∗
17 while count �= max do ∗∗ of the guessed path ∗∗
18 count := (�count + 1)�;
19 y := pop;
20 if ¬E(x, y) then reject; fi;
21 x := y;
22 od;
23 if x �= D then reject; fi;
24 count := 0; ∗∗ count counts the number of vertex ∗∗
25 w := pop; ∗∗ registrations checked so far ∗∗
26 if w �= max then reject; fi;
27 while count �= max do
28 count := (�count + 1)�;
29 w := pop;
30 if w �= max then reject; fi;
31 od;
32 accept;

Essentially, on an input digraph of size n, ρ begins by building a stack of 0s and
then guesses a path of n vertices, starting with vertex C, and stores this path in
the top n locations in the stack. When a vertex u is guessed, this is registered by
deep-pushing max to the stack location with offset n + �u. After this guessing
phase, the path is popped from the stack and checked as to whether it is a valid
path (ending in D). If so then the registrations are then checked to confirm that
all vertices appear once on the path. Hence, an input structure is accepted by ρ
iff C �= D and there is a Hamiltonian path from vertex C to vertex D. 	




16 A. Arratia and I.A. Stewart

3 Our Results

3.1 Restricted Program Schemes

It turns out that restricting the values pushed by push and deep-push instruc-
tions to 0 andmax does not limit the problems accepted by our program schemes;
we call such program schemes boolean program schemes. Let us denote the class
of program schemes where push instructions must be of the form push 0 or
push max and where deep-push instructions must be of the form dpush(y,0)
or dpush(y,max) by NPSDSbs.

Proposition 1. Any problem accepted by a program scheme of NPSDSs can be
accepted by a program scheme of NPSDSbs.

We also restrict the syntax of program schemes of NPSDSs (and NPSDSbs) by
limiting the usage of pops, pushes and deep-pushes in phases of a program
scheme. A batch of instructions is a well-formed sequence of instructions so that
if one of these instructions is a while-do instruction (resp. if instruction) then
the corresponding while-od instruction (resp. fi instruction) must also appear in
the batch. Let ρ be a program scheme of NPSDSs. If ρ can be written (as a
concatenation of instructions) as a batch of instructions ρ0, followed by a batch
of instructions ρ1, and so on, finally ending with a batch of instructions ρk, then
we write ρ = (ρ0, ρ1, . . . , ρk). The allowed usage of pops, pushes and deep-pushes
in any batch of instructions is signalled as follows:

– if pops are allowed (resp. disallowed) then we signal this with o (resp. o);
– if pushes are allowed (resp. disallowed) then we signal this with u (resp. u);
– if deep-pushes are allowed (resp. disallowed) then we signal this with d (resp.
d).

Thus, if pops and pushes are allowed in some batch of instructions ρi, but not
deep-pushes, then we write ρi ∈ NPSDSs(oud). We adapt our notation to situ-
ations where a program scheme is the concatenation of a sequence of batches of
instructions by detailing the allowed usage of pops, pushes and deep-pushes in
each batch by a sequence of parameters. So, for example, if ρ = (ρ0, ρ1, ρ2) where
ρ0 ∈ NPSDSs(oud), ρ1 ∈ NPSDSs(oud) and ρ2 ∈ NPSDSs(oud), then we write
ρ ∈ NPSDSs(oud, oud, oud). The above applies equally to program schemes of
NPSDSbs.

The proof of Proposition 1 is such that it does not alter the interleaving of
pops, pushes and deep-pushes in the simulating program scheme. So, for example,
the problem accepted by some program scheme of NPSDSs(oud, oud, oud) can
be accepted by some program scheme of NPSDSbs(oud, oud, oud).

3.2 Capturing NP

We can syntactically capture the complexity class NP with a sub-class of pro-
gram schemes of NPSDSs.



Program Schemes with Deep Pushdown Storage 17

Proposition 2. Every program scheme ρ = (ρ0, ρ1, ρ2) in NPSDSs(oud, oud,
oud) accepts a problem in NP.

Denote by NPSDS+b
s the sub-class of program schemes of NPSDSbs where any

instruction involving a deep-push must be of the form dpush(y,max); that is,
only the value max can be deep-pushed to a stack location. We can actually use
our program scheme for the problem HP in Example 1, in tandem with results
due to Dahlhaus [5] and Stewart [13], to show that the class of program schemes
NPSDS+b

s (oud, oud, oud) actually contains NP.

Proposition 3. For every problem Ω in NP, there exists a program scheme of
NPSDS+b

s (oud, oud, oud) accepting Ω.

Propositions 2 and 3 immediately yield the following corollary.

Corollary 1. NPSDS+b
s (oud, oud, oud) = NPSDSs(oud, oud, oud) = NP.

3.3 Beyond NP

Let us demonstrate the power of program schemes of NPSDSs and outline a
program scheme accepting the complement of the problem in Example 1.

Example 2. Let τ = 〈E,C,D〉, with E a relation symbol of arity 2 and C and
D constant symbols. The problem co-HP is defined as

{A : A is a τ -structure and there is not a Hamiltonian path in the digraph
with edges given by the relation EA from vertex CA to vertex DA}.

There exists a program scheme ρ of NPSDSs accepting co-HP.
We outline what the program scheme ρ that accepts co-HP does. The program

scheme ρ begins by simply non-deterministically building a ‘sufficiently tall’ stack
of 0’s. The top n elements of the stack (the ‘top batch’) are regarded as the
current potential Hamiltonian path of vertices in the input digraph; initially, of
course, this path is 0, 0, . . . , 0. The next n elements of the stack (the ‘middle
batch’) are regarded as work-space that will enable us to verify that there are no
repeated vertices in the current path. The next n elements of the stack (the ‘lower
batch’) will be such that they will contain the lexicographically-next potential
Hamiltonian path.

The top element (of the top batch) is popped from the stack and, using
a deep-push, the name of this vertex, u, say, is registered in location �u of
the middle batch by writing max (note that the top batch of elements now
consists of n − 1 elements). A check is also made to verify that u is, in fact,
the constant C. We iteratively pop elements from the stack and verify that the
current path is indeed a path in our input digraph, registering these elements,
as above, as we proceed. Also, alongside our checking of the current potential
Hamiltonian path, we build the lexicographically-next path in the lower batch of
stack elements. Essentially, as we pop the vertices of the current path from the



18 A. Arratia and I.A. Stewart

top batch of the stack, we look for the location place that holds an element that
is not equal to max but where every location in the top batch lower than this
location place holds an element equal to max; the element in this location place
is to be incremented by 1 and all elements in the top-batch at lower locations
are to be set to 0 to get the lexicographically-next potential Hamiltonian path.
This is done, using deep-pushes, so that the lexicographically-next path appears
in the lower batch. Having popped all the vertices of the current path from the
stack, we verify that the last element popped was D and we use our registrations
to verify that the path is indeed Hamiltonian. If not then we proceed as above
except that what was the lower batch is now the top batch and we are working
with the lexicographically-next potential Hamiltonian path, as our current path.
We continue until all potential Hamiltonian paths have been checked or until we
find a Hamiltonian path. (For the detailed program see [1].) 	


3.4 Capturing PSPACE

Having demonstrated the power of program schemes of NPSDSs, we now turn
to capturing the complexity class PSPACE. The technique used in Example 2
is used in the proofs of subsequent results.

Proposition 4. Any polynomial-space Turing machine can be simulated by a
program scheme of NPSDSs(oud, oud) so that the stack of the program scheme
encodes the evolution of the work-tape of the Turing machine. Thus, PSPACE
⊆ NPSDSs(oud, oud).

In fact, more can be said. The proof of Proposition 4 is such that the program
scheme ρ constructed is a program scheme of NPSDS+b

s (oud, oud).

Corollary 2. Any polynomial-space Turing machine can be simulated by a pro-
gram scheme of NPSDS+b

s (oud, oud) so that the stack of the program scheme
encodes the evolution of the work-tape of the Turing machine. Thus, PSPACE
⊆ NPSDS+b

s (oud, oud).

Proposition 5. Every program scheme ρ in NPSDS+b
s (uod, oud) accepts a prob-

lem in PSPACE.

Corollary 3. NPSDS+b
s (oud, oud) = NPSDSs(uod, oud) = PSPACE.

3.5 Beyond PSPACE

Hitherto, we have been focussing on specific restrictions of NPSDSs. We now
examine the computational complexity of problems accepted by arbitrary pro-
gram schemes of NPSDSs. Our basic technique in the proof of Proposition 6 is
inspired by that used in [2] to show that basic program schemes with an or-
dinary stack only accept problems in P, which in turn was inspired by Cook’s
construction involving pushdown automata in [4]. We require some definitions
before we present our results.



Program Schemes with Deep Pushdown Storage 19

Definition 1. Let ρ be a program scheme of NPSDSs, where all deep-pushes
occur with an index of at most k, and let A be an input structure of size n.
An extended ID (α, s) of ρ on input A is an ID α together with a tuple s of
between 0 and nk elements of |A|. A pair of extended IDs, ((α, s), (β, t)), is
called realizable if there is a computation of ρ on A starting in configuration
[α, s] and ending in configuration [β, t], where |s| = |t| and the stack associated
with any interim configuration has height at least |s|.
Definition 2. Let ((α, s), (β, t)) and ((α′, s′), (β′, t′)) be two pairs of extended
IDs. These pairs yield the pair of extended IDs ((α, s), (β′′, t′′)) if one of the
following two rules can be applied.

(a) The instruction associated with β is a push, and the execution of this in-
struction transforms the configuration [β, t] into the configuration:

- [α′, s′], if |t| < nk;
- [α′, (u0, s′)], if |t| = nk (in which case t is a prefix of (u0, s′)).

The instruction associated with β′ is a pop, and the execution of this in-
struction transforms the configuration [β′, t′] or [β′, (u0, t′)] (depending upon
whether |t| < nk or |t| = nk, respectively, above) to the configuration [β′′, t′′].

(b) (β, t) = (α′, s′) and either (β′′, t′′) = (β′, t′) or the instruction associated
with β′ is neither a pop nor a push and execution of this instruction trans-
forms the configuration [β′, t′] to the configuration [β′′, t′′].

We refer to rules (a) and (b) as the yield rules.

Proposition 6. Let ρ be some program scheme of NPSDSs and let A be some
input structure. Any pair of realizable extended IDs of ρ on input A can be ob-
tained from the set Y = {((α, s), (α, s)) : (α, s) is an extended ID of ρ on input
A} by iteratively applying the yield rules.

The complexity class EXPTIME consists of those problems solvable by a de-
terministic algorithm running in time O(2p(n)), for some polynomial p(n). Using
Proposition 6 in tandem with the well-known result that the path-system prob-
lem can be solved in polynomial-time, we obtain the following.

Corollary 4. Any problem accepted by a program scheme of NPSDSs is in EX-
PTIME.

4 Conclusions

In this paper, we have initiated the study of a high-level model of computation
in which there is access to a deep pushdown stack, and we have managed to cap-
ture the complexity classes NP and PSPACE by restricting our model whilst
showing that an arbitrary program scheme accepts a problem in EXPTIME.
Whilst we have shown that there is a considerable increase in computational
power obtained by replacing stacks with deep pushdown stacks in a basic class



20 A. Arratia and I.A. Stewart

of program schemes (assuming P �= PSPACE!), we have as yet been unable
to ascertain exactly the computational complexity of the problems accepted by
program schemes of NPSDSs. At the moment, all we know is that PSPACE ⊆
NPSDSs ⊆ EXPTIME.

Looking at Example 2 where we show that the complement of the Hamiltonian
path problem is accepted by a program scheme of NPSDSs, we can see no obvious
restriction of the general class of program schemes so that we capture the com-
plexity class co-NP (the complement of NP). Note that our program scheme in
Example 2 is clearly in NPSDSs(oud, oud) yet by Corollary 3, NPSDSs(oud, oud)
captures PSPACE. It would be interesting to capture co-NP, and more gener-
ally the classes of the Polynomial Hierarchy, by restricting the program schemes
of NPSDSs.

References

1. Arratia-Quesada, A., Stewart, I.A.: On the power of deep pushdown stacks,
http://www.dur.ac.uk/i.a.stewart/Abstracts/DeepPushdownStacks.htm

2. Arratia-Quesada, A.A., Chauhan, S.R., Stewart, I.A.: Hierarchies in classes of pro-
gram schemes. Journal of Logic and Computation 9, 915–957 (1999)

3. Constable, R., Gries, D.: On classes of program schemata. SIAM Journal of Com-
puting 1, 66–118 (1972)

4. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the Association for Computing Machinery 18, 4–18 (1971)

5. Dahlhaus, E.: Reduction to NP-complete problems by interpretations. In: Börger,
E., Hasenjaeger, G., Rödding, D. (eds.) Proc. of Logic and Machines: Decision Prob-
lems and Complexity. LNCS, vol. 171, pp. 357–365. Springer, Heidelberg (1984)

6. Friedman, H.: Algorithmic procedures, generalized Turing algorithms and elemen-
tary recursion theory. In: Gandy, R.O., Yates, C.M.E. (eds.) Logic Colloquium, pp.
361–390. North-Holland, Amsterdam (1971)

7. Harel, D., Peleg, D.: On static logics, dynamic logics, and complexity classes. In-
formation and Control 60, 86–102 (1984)

8. Jones, N.D., Muchnik, S.S.: Even simple programs are hard to analyze. Journal of
Association for Computing Machinery 24, 338–350 (1977)

9. Kasai, T.: An hierarchy between context-free and context-sensitive languages. Jour-
nal of Computer and System Sciences 4, 492–508 (1970)

10. Meduna, A.: Deep pushdown automata. Acta Informatica 42, 541–552 (2006)
11. Paterson, M., Hewitt, N.: Comparative schematology. In: Record of Project MAC

Conf. on Concurrent Syst. and Parallel Comput., pp. 119–128. ACM Press, New
York (1970)

12. Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution of
control. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proc. of Genetic and Evolutionary
Computation Conference, pp. 1689–1696. ACM Press, New York (2005)

13. Stewart, I.A.: Using the Hamiltonian path operator to capture NP. Journal of
Computer and System Sciences 45, 127–151 (1992)

14. Stewart, I.A.: Program schemes, arrays, Lindström quantifiers and zero-one laws.
Theoretical Computer Science 275, 283–310 (2002)

http://www.dur.ac.uk/i.a.stewart/Abstracts/DeepPushdownStacks.htm


Program Schemes with Deep Pushdown Storage 21

15. Stewart, I.A.: Using program schemes to logically capture polynomial-time on cer-
tain classes of structures. London Mathematical Society Journal of Computation
and Mathematics 6, 40–67 (2003)

16. Stewart, I.A.: Logical and complexity-theoretic aspects of models of computation
with restricted access to arrays. In: Cooper, S.B., Kent, T.F., Löwe, B., Sorbi, A.
(eds.) Proc. of Computation and Logic in the Real World, Third Conference on
Computability in Europe (CiE 2007), pp. 324–331 (2007)

17. Tiuryn, J., Urzyczyn, P.: Some relationships between logics of programs and com-
plexity theory. Theoretical Computer Science 60, 83–108 (1988)



Herbrand Theorems and Skolemization
for Prenex Fuzzy Logics�

Matthias Baaz1 and George Metcalfe2,��

1 Institute of Discrete Mathematics and Geometry, Technical University Vienna,
Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

baaz@logic.at
2 Department of Mathematics, Vanderbilt University
1326 Stevenson Center, Nashville TN 37240, USA
george.metcalfe@vanderbilt.edu

Abstract. Approximate Herbrand theorems are established for first-order fuzzy
logics based on continuous t-norms, and used to provide proof-theoretic proofs
of Skolemization for their Prenex fragments. Decidability and complexity results
for particular fragments are obtained as consequences.

Keywords: Herbrand Theorem, Skolemization, Fuzzy Logics.

1 Introduction

Herbrand’s theorem and Skolemization are fundamental tools in the proof theory of
first-order Classical Logic, forming the theoretical basis for automated reasoning meth-
ods such as Resolution. Extending these tools to non-classical logics is an important but
challenging task, often requiring considerable ingenuity. For example, in Intuitionistic
Logic, the most general forms of Herbrand’s theorem and Skolemization fail but may
be rescued either by restricting to fragments or extending the language (see e.g. [3]).

In this paper, we investigate these issues for fuzzy logics, the broader purpose being
to provide a basis for applications such as fuzzy logic programming [15] and fuzzy de-
scription logics [14,8]. Fuzzy logics, featured prominently in [6], are defined on the
real unit interval [0, 1] with conjunction and implication connectives interpreted by
left-continuous t-norms and their residua, and quantifiers ∀ and ∃, by suprema and
infima. Among logics based on continuous t-norms, Łukasiewicz Logic, Gödel Logic,
and Product Logic are considered fundamental since any continuous t-norm is an ordi-
nal sum of the corresponding three t-norms [11]. Also important in this context is Basic
Logic [6], characterized by validity for all continuous t-norms.

Herbrand’s theorem and Skolemization were established for the Prenex fragment of
first-order Gödel Logic in [5,1]. The proof-theoretic approach of [5] was also extended
to obtain similar results for the logic of left-continuous t-norms (Monoidal t-Norm
Logic) in [2]. For other logics based on continuous t-norms, the situation is more com-
plicated, however. This is related to the fact that first-order Gödel Logic is the only

� Research Supported by FWF Project P17503-N12.
�� Corresponding author.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 22–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Herbrand Theorems and Skolemization for Prenex Fuzzy Logics 23

recursively axiomatizable member of the family; first-order Łukasiewicz Logic and
Product Logic being

∏
2-complete and non-arithmetical respectively, and the complex-

ity of the other members lying somewhere between (we refer to [13,10,7] for details).
In the case of Łukasiewicz Logic, although Herbrand’s theorem fails even for exis-

tential formulas, an “approximate Herbrand theorem” may be obtained instead [12,4].
Essentially, for a valid existential formula, there exist Herbrand disjunctions for suc-
cessive approximations to validity: for any r < 1 a disjunction exists that always takes
a value greater than r. This result is used in [4] to define Gentzen-style proof systems
for the logic and to give a proof-theoretic proof of Skolemization. The proof-theoretic
treatment allows any system of functions to be considered as Skolem functions obeying
constraints (such as commutativity), giving greater flexibility for replacing functions in
formulas with quantified terms.

Here we extend the techniques for Gödel Logic [1] and Łukasiewicz Logic [4] to the
Prenex fragments of other fuzzy logics based on continuous t-norms. More concretely,
we show first that Gödel Logic is the only such logic admitting a Herbrand theorem
for its Prenex fragment. We then show that a wide class of logics admit an approximate
Herbrand theorem for their Prenex fragments, and use these results – as for Łukasiewicz
Logic – to obtain proof-theoretic proofs of Skolemization. As consequences, we obtain∏

2-membership for the Prenex fragments of these logics, and decidability for the ∀∃-
fragments. Since Łukasiewicz Logic (alone among fuzzy logics) admits a full quota of
quantifier shifts and hence an equivalent Prenex form for all formulas, these last two
corollaries extend also to the whole logic [4].

2 Fuzzy Logics

Let us begin by recalling definitions and pertinent features of the logics that we are
interested in, referring the reader to [6] for further details and motivation. A continuous
t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] satisfying
1 ∗ x = x for all x ∈ [0, 1] that is continuous in the usual sense. Its residuum is the
unique function→∗: [0, 1]2 → [0, 1] satisfying x ≤ y →∗ z iff x∗y ≤ z. The functions
min and max can be expressed in terms of ∗ and→∗; i.e. min(x, y) = x ∗ (x →∗ y)
and max(x, y) = min((x→∗ y)→∗ y, (y →∗ x)→∗ x).

The most important examples of continuous t-norms and their residua are displayed
in Table 1. These t-norms play a special role: any continuous t-norm is locally iso-
morphic to one of these three. More precisely, let ([ai, bi])i∈I be a countable family of
non-overlapping proper subintervals of [0, 1] (i.e. ai < bi and (ai, bi) ∩ (aj , bj) = ∅
for all i, j ∈ I where i 
= j); let (∗i)i∈I be a family of t-norms; and let (fi)i∈I be
a family of order-isomorphisms from [ai, bi] onto [0, 1]. Then the generalized ordinal
sum

∑
i∈I([ai, bi], ∗i, fi) is the unique function ∗ : [0, 1]2 → [0, 1] defined by:

u ∗ v =
{
f−1
k (fk(u) ∗k fk(v)) if u, v ∈ [ak, bk]

min(u, v) otherwise

The Łukasiewicz and Product t-norms are generalized ordinal sums of just one t-norm,
while the Gödel t-norm is the ordinal sum of the empty family. More generally:



24 M. Baaz and G. Metcalfe

Table 1. Fundamental t-norms and their residua

Name t-Norm Residuum

Łukasiewicz x ∗Ł y = max(0, x + y − 1) x →Ł y = min(1, 1 − x + y)

Gödel x ∗G y = min(x, y) x →G y =

�
1 if x ≤ y
y otherwise

Product x ∗P y = x · y x →P y =

�
1 if x ≤ y
y/x otherwise

Theorem 1 ([11]). Each continuous t-norm is the generalized ordinal sum of (isomor-
phic) copies of the Łukasiewicz and Product t-norms.

For a continuous t-norm ∗ with residuum→∗, the logic L(∗) is based on a usual first-
order language with countable sets of predicate symbols, (object) constants, function
symbols (with positive arity), and variables; quantifiers ∀ and ∃; binary connectives �
and→; and a (logical) constant⊥, where:

¬A =def A→ ⊥ A ∧B =def A� (A→ B)
� =def ¬⊥ A ∨B =def ((A→ B)→ B) ∧ ((B → A)→ A)

Terms t, s and formulasA,B are built inductively from the elements of this language in
the usual manner, adopting standard notions of subformulas, scope, and free and bound
variables. A sequence of terms t1, . . . , tn is often written t̄, denoting a formula A with
variables among x̄ by A(x̄), and A with each xi replaced by ti for i = 1 . . . n by A(t̄).
Function-free, quantifier-free, one-variable, and propositional formulas are those built
using no function symbols, no quantifiers, just one variable, and no quantifiers or vari-
ables, respectively. We write (Qx̄)A(x̄) for a formula (Q1x1) . . . (Qnxn)A(x1, . . . , xn)
where Qi ∈ {∀, ∃} for i = 1 . . . n, and recall that a Prenex formula is of the form
(Qx̄)P (x̄) where P is quantifier-free.

L(∗)-interpretations I = (D, vI) consist of a non-empty set D and a valuation
function vI that maps constants and object variables to elements of D; n-ary func-
tion symbols to functions from Dn into D; and n-ary predicate symbols to functions
from Dn into [0, 1]. As usual, vI is extended to all terms inductively by the condition
vI(f(t1, . . . , tn)) = vI(f)(vI(t1), . . . , vI(tn)) for any n-ary function symbol f and
terms t1, . . . , tn. For an n-ary predicate symbol p and terms t1, . . . , tn:

vI(p(t1, . . . , tn)) = vI(p)(vI(t1), . . . , vI(tn))

For a variable x and element d ∈ D, let vI [x ← d] be the valuation obtained from vI
by changing vI(x) to d. Then vI is extended to all formulas by vI(⊥) = 0 and:

vI(A�B) = vI(A) ∗ vI(B)
vI(A→ B) = vI(A)→∗ vI(B)

vI((∀x)A(x)) = inf{vI [x← d](A(x)) : d ∈ D}
vI((∃x)A(x)) = sup{vI [x← d](A(x)) : d ∈ D}



Herbrand Theorems and Skolemization for Prenex Fuzzy Logics 25

where for the defined connectives ∧ and ∨, we get:

vI(A ∧B) = min(vI(A), vI(B)) vI(A ∨B) = max(vI(A), vI(B))

A is L(∗)-valid, written |=L(∗) A, if vI(A) = 1 for all L(∗)-interpretations I.
It will also be crucial in this paper to consider the following notions of “approximate

validity” for � ∈ {>,≥} and r ∈ [0, 1]:

|=�r
L(∗) A if vI(A) � r for all L(∗)-interpretations I.

For convenience, we will adopt the following terminology:

– we call every L(∗) based on a continuous t-norm ∗, a fuzzy logic.
– we will speak of the Łukasiewicz or Product components of [0, 1] for a fuzzy logic

L(∗) meaning the intervals where ∗ behaves like these t-norms.
– we call any component [a, 1], the top component for ∗, and if ∗ has a top Łukasiewicz

or Product component, we call L(∗) an Ł-fuzzy logic or P-fuzzy logic, respectively.
– if ∗ acts as min on some [a, 1] for a < 1 then L(∗) is called a G-fuzzy logic.

The particular logics based on the fundamental t-norms are known as Łukasiewicz Logic
Ł, Gödel Logic G, and Product Logic P. Finally, we note that Basic Logic BL may be
characterized as the logic based on all continuous t-norms; i.e. |=BL A iff |=L(∗) A for
each continuous t-norm ∗.1

3 Herbrand Theorems

We first recall some basic notions. For a formulaA, let C(A) andF(A) be the constants
and function symbols occurring in A, respectively, adding a constant if the former is
empty. For c ∈ C(A) and unary function symbol f ∈ F(A), we let f0(c) = c and
fk+1(c) = f(fk(c)) for k ∈ N. The Herbrand universe U(A) of A is the set of ground
terms built using C(A) and F(A); i.e. U(A) =

⋃∞
n=0 Un(A) where:

U0(A) = C(A)

Un+1(A) = Un(A) ∪ {f(t1, . . . , tk) : t1, . . . , tk∈Un(A) and f ∈F(A) with arity k}

Letting P(A) be the predicate symbols of A, the Herbrand base B(A) is defined as:

B(A) = {p(t1, . . . , tk) : t1, . . . , tk ∈ U(A) and p ∈ P(A) with arity k}

Note that as in Classical Logic, formulas (∃x̄)P (x̄) where P is quantifier-free are valid
for a fuzzy logic iff they are valid over the Herbrand universe U(P ). Hence in such
cases, valuations vI for an interpretation I can (and will, throughout this paper) be
identified with a member of [0, 1]B(P ).

For Gödel Logic, the following existential Herbrand theorem has been established:

1 Note that in the literature (e.g. [6]), fuzzy logics are often introduced via axiomatic systems,
while here we rather take the semantic perspective as primary.



26 M. Baaz and G. Metcalfe

Theorem 2 ([5,1]). |=G (∃x̄)P (x̄) where P is quantifier-free iff:

|=G

n∨
i=1

P (t̄i) for some t̄1, . . . , t̄n ∈ U(P )

The idea for the harder left-to-right direction in [1] is to build an infinite tree induc-
tively by considering at level l all possible linear orderings of the first l members of
an enumeration of B(P ) (noting that in G only the order of the truth values matters).
Suppose that at some level l, for every linear ordering, all G-valuations vI satisfying
that ordering give a value 1 to P (t̄) for some t̄ ∈ U(P ). Then the disjunction of these
P (t̄) (one for each ordering) must be G-valid. On the other hand, if there is no such
level, then using König’s lemma there exists an infinite branch: this can be used to find
an interpretation contradicting the validity of (∃x̄)P (x̄).

However, this proof does not work in general for fuzzy logics; indeed:

Proposition 1. The only fuzzy logic having the existential Herbrand Theorem is G.

Proof. Consider the following formula:

F = (∃x)[((p(x)→ (p(f(x)) ∨ q))→ q)→ q]

We first claim that |=L F for any fuzzy logic L. Consider vI ∈ [0, 1]B(F ) and c ∈ U(F ).
If vI(p(fk(c))) ≤ vI(p(fk+1(c))) or vI(p(fk(c))) ≤ vI(q) for any k ∈ N, then easily
vI(F ) = 1. Hence we can assume that:

vI(q) < . . . < vI(p(fk(c))) < . . . < vI(p(f(c))) < vI(p(c))

Suppose that vI(p(fk+1(c))) is not in the same component as vI(q) for some k ∈ N.
Then vI(p(fk(c)) → (p(fk+1(c)) ∨ q)) is not in the same component as vI(q) so
vI((((p(fk(c)) → (p(fk+1(c)) ∨ q)) → q) → q) = vI(q → q) = 1. Assume then
that vI(q) and vI(p(fk+1(c))) for all k ∈ N are in the same component. Using the
interpretation of→ in Product and Łukasiewicz components to shift quantifiers:

vI(F ) ≥ vI((∃x)(p(x) → p(f(x))))
≥ vI((∃x)(∀y)(p(x) → p(y)))
= vI((∀x)(p(x)) → (∀y)(p(y)))
= 1

But now if the existential Herbrand theorem holds for L, then for some n:

|=L

n∨
i=1

[((p(f i−1(c))→ (p(f i(c)) ∨ q))→ q)→ q]

If L has at least one component [a, b], i.e. it is not Gödel Logic, then we can let v(q) = a′

for some a′ > a and vI(p(f i(c))) = b− i(b− a′)/n for i = 1 . . . n, giving:

vI(p(f i−1(c))) > vI(p(f i(c))) for i = 1 . . . n

It follows that vI(
∨n
i=1[((p(f

i−1(c)) → (p(f i(c)) ∨ q)) → q) → q]) < 1. But this is
a contradiction, so the existential Herbrand theorem fails. ��



Herbrand Theorems and Skolemization for Prenex Fuzzy Logics 27

4 Approximate Herbrand Theorems

Although the Herbrand theorem fails in all but Gödel Logic of our fuzzy logics, in
many cases we can obtain an approximate version. Rather than find a valid Herbrand
disjunction for a valid existential formula, we find Herbrand disjunctions that are ap-
proximately valid to a degree arbitrarily close to 1. To be more precise, consider the
following result for Łukasiewicz Logic:

Theorem 3 ([12,4]). |=Ł (∃x̄)P (x̄) where P is quantifier-free iff for all r < 1:

|=>r
Ł

n∨
i=1

P (t̄i) for some t̄1, . . . , t̄n ∈ U(P )

Let us just sketch the topological proof for the trickier left-to-right direction, referring
to [16] for terminology. First we observe that the set of valuations [0, 1]B(P ) is compact
with respect to the product topology, using the Tychonoff theorem in the case that B(P )
is countably infinite. Fix r < 1. Then we note that since the connectives of Łukasiewcz
Logic are all continuous, for each t̄ ∈ U(P ), valuations vI such that vI(P (t̄)) ≤ r form
a closed subset of [0, 1]B(P ). But if |=Ł (∃x̄)P (x̄), then the intersection of all these sets
must be empty. So by the finite intersection property for compact spaces, there is a finite
intersection that is empty; i.e. t̄1, . . . , t̄n ∈ U(P ) such that |=>r

Ł

∨n
i=1 P (t̄i).

This approach generalizes to other logics with connectives interpreted by contin-
uous functions on a compact space. However, Łukasiewicz Logic is the only fuzzy
logic with this property: the residuum of any t-norm that is not order-isomorphic to
the Łukasiewicz t-norm is not continuous. Instead we combine this approach with the
strategy outlined above for Gödel Logic. Let us say that a quantifier-free formula P (x̄)
for a fuzzy logic L is L-continuous on a compact set V ⊆ [0, 1]B(P ) if for all t̄ ∈ U(P )
the function H : V → [0, 1] defined by H(vI) = vI(P (t̄)) is continuous on V with
respect to the product topology.

Lemma 1. Let L be a fuzzy logic and letP (x̄) be a quantifier-free formula L-continuous
on a compact subset V of [0, 1]B(P ) where |=L (∃x̄)P (x̄). Then for all r ∈ [0, 1], there
exist t̄1, . . . , t̄n ∈ U(P ) such that vI(

∨n
i=1 P (t̄i)) > r for all vI ∈ V .

Proof. For each t̄ ∈ U(P ), let:

S(t̄) = {vI ∈ V : vI(P (t̄)) ≤ r} and S = {S(t̄) : t̄ ∈ U(P )}
Each S(t̄) is a closed subset of V by the L-continuity of P (x̄). If |=L (∃x̄)P (x̄), then
there is no vI ∈ V such that vI(P (t̄)) ≤ r for all t̄ ∈ U(P ), so the intersection of S
must be empty. Hence by the finite intersection property for compact spaces, there exist
S(t̄1), . . . , S(t̄n) with an empty intersection. I.e. for every vI ∈ V , vI(P (t̄i)) > r for
some i ∈ {1, . . . , n}. So vI(

∨n
i=1 P (t̄i)) > r for all vI ∈ V . ��

Theorem 4. Let L be an Ł-fuzzy logic and let P (x̄) be a quantifier-free formula. Then
|=L (∃x̄)P (x̄) iff for all r < 1:

|=>r
L

n∨
i=1

P (t̄i) for some t̄1, . . . , t̄n ∈ U(P )



28 M. Baaz and G. Metcalfe

Proof. If |=>r
L

∨n
i=1 P (t̄i) for all r < 1, then |=>r

L (∃x̄)P (x̄) for all r < 1, so clearly
|=L (∃x̄)P (x̄). For the other direction, let A1, A2, . . . be an enumeration of the sub-
formulas of P (t̄) for all t̄ ∈ U(P ). We also enumerate the components of L as [a, 1],
[a1, b1], [a2, b2], . . . where a < 1, each ai < bi, and (since L is Ł-fuzzy) [a, 1] is a
Łukasiewicz component. Fix a < r < 1.

We construct a tree T labelled with constraints on vI ∈ [0, 1]B(P ). Each node of T
at level l is labelled with a constraint K on the formulasA1, . . . , Al that:

(i) places each Ai between, before, after, or into one of the first l components;
(ii) linearly orders or identifies as equal the Ais not placed in [a, 1] by (i).

We say that vI satisfies K at level l if vI(Ai) obeys the restrictions of K (i.e. being
in the right order and appropriate components, etc.) for i = 1 . . . l. A constraint K ′

extends K if every vI satisfying K ′ also satisfies K .
The tree T is constructed inductively as follows:

(1) The root of T is at level 0 and labelled with the empty constraint.
(2) Let w be a node at level l labelled with a constraint K . Suppose that there exist

t̄1, . . . , t̄n ∈ Ul(P ) such that vI(
∨n
i=1 P (t̄i)) > r for all vI satisfying K . Then w

is a leaf node of T . Otherwise, for each level l + 1 constraint K ′ extending K , a
successor node w′ labelled with K ′ is appended to w at level l+ 1.

Notice that the nodes at any given level l of T partition [0, 1]B(P ) into distinct chunks.
Moreover, for every vI ∈ [0, 1]B(P ), there is a branch of T such that vI satisfies the
constraints at every node of the branch. Two cases arise:

(a) T is finite. Let w1, . . . , wn be the leaf nodes of T , where vI(
∨mj

i=1 P (t̄ij)) > r
for all vI satisfying the constraint at wj for j = 1 . . . n. Then since the union
of vI ∈ [0, 1]B(P ) satisfying one of these constraints is the whole of [0, 1]B(P ),
|=>r

L

∨i=1...mj

j=1...n P (t̄ij) as required.

(b) T is infinite. Then by König’s lemma, T has an infinite branch. We identify a con-
straintK as the union of all the constraints on the branch. Let V be the members of
[0, 1]B(P ) satisfying this extended constraint and take some v0 ∈ V . We consider
the set V0 = {v ∈ V : for all A, either v(A) = v0(A) or v0(A) ∈ [a, 1]}. That is,
we fix the values of the formulas constrained to be in components other than [a, 1],
noting that the particular values of these formulas (with respect to the constraint
K) does not affect the values of formulas in [a, 1]. Clearly V0 is a compact subset
of [0, 1]B(P ). Moreover, the interpretations of the connectives are continuous func-
tions when restricted to V0, since [a, 1] is a Łukasiewicz component. Hence P (x̄)
is L-continuous on V0. But then by Lemma 1, there exist t̄1, . . . , t̄n ∈ U(P ) such
that vI(

∨n
i=1 P (t̄i)) > r for all vI ∈ V0, and hence also (by an easy induction) for

all vI ∈ V . But this contradicts the construction of the tree. ��
This approximate Herbrand theorem has a nice corollary. Let F = (∀x̄)(∃ȳ)P (x̄, ȳ)
where P (x̄, ȳ) is both quantifier-free and function-free. Then |=L F iff |=L (∃ȳ)P (c̄, ȳ)



Herbrand Theorems and Skolemization for Prenex Fuzzy Logics 29

for some new constants c̄. Let C be the (finite) set of constants occurring in (∃ȳ)P (c̄, ȳ),
adding one if the set is empty. Using the previous theorem:

|=L F iff for all r<1, |=>r
L

n∨
i=1

P (c̄, t̄i) for some t̄1 . . . t̄n ∈ C iff |=L

∨
ā∈C

P (c̄, ā)

But checking validity in a propositional fuzzy logic is decidable, so we have established
the following:

Corollary 1. The function-free ∀∃-fragment of any Ł-fuzzy logic is decidable.

A natural question to ask at this point is whether the approximate Herbrand theorem
holds for all fuzzy logics. The answer is no. For fuzzy logics based on a t-norm ∗ with
a top Product component or an interval [a, 1] where a < 1 and ∗ acts like min (P-fuzzy
logic or G-fuzzy logic), assignments to values close to 1 can be “shifted downwards”.

Proposition 2. The approximate Herbrand theorem fails for any P-fuzzy logic or G-
fuzzy logic except G.

Proof. Let L be any P-fuzzy logic or G-fuzzy logic except G, with top component
[a, 1] in the former case and the t-norm acting like min on [a, 1] in the latter case.
Fix some r ∈ (a, 1). By Proposition 1, the usual Herbrand theorem fails. So we have
|=L (∃x̄)P (x̄) and for any F =

∨n
i=1 P (t̄i) with t̄1, . . . , t̄n ∈ U(P ), vI(F ) < 1

for some L-interpretation I. But now we can define a new L-interpretation I′ by scaling
downwards values of atoms in (a, 1] such that for any propositional formulaG involving
only atoms from F , either vI′(G) < r or vI′(G) = 1, and vI′(G) = 1 iff vI(G) = 1.
So in particular, vI′(F ) ≤ r. ��

5 Skolemization

We now use the approximate Herbrand theorem in a rather neat way: to provide a proof-
theoretic proof of Skolemization for the Prenex fragments of a wide range of fuzzy log-
ics. Note that while for Classical Logic, the usual process involves removing existential
quantifiers and preserving satisfiability, here we follow common terminology for fuzzy
logics (see e.g. [1]) and remove universal quantifiers, hoping rather to preserve validity.

Let A be a Prenex formula and assume harmlessly that the ith occurrence of ∀ is
labelled ∀i and that no function symbol fi of any arity occurs in A. Then the Skolem
form AS of A is defined by induction as follows:

(1) If A is of the form (∃x̄)P (x̄) where P is quantifier-free, then AS is (∃x̄)P (x̄).
(2) If A is of the form (∃x̄)(∀iy)B(x̄, y), then AS is ((∃x̄)B(x̄, fi(x̄)))S .

Our aim is to prove that |=L A iff |=L A
S . The key step in establishing the more dif-

ficult right-to-left direction of this equivalence, is to show that if a Herbrand disjunction
for AS is approximately valid, then A is valid to the same degree. We first recall the
following lemma from [4], which gives an algorithmic procedure for obtaining A from
any Herbrand disjunction of AS using simple rules acting on multisets of formulas. We



30 M. Baaz and G. Metcalfe

denote an arbitrary multiset of formulas by Γ , the multiset sum of Γ1 and Γ2 by Γ1�Γ2,
and use square bracket notation [ : ] for multiset construction:

Lemma 2 ([4]). Let (∃x̄)PF (x̄) be the Skolem form of (Qȳ)P (ȳ). Then [(Qȳ)P (ȳ)] is
derivable from any finite non-empty sub-multiset of [PF (t̄) : t̄ ∈ U(PF )] using:

Γ � [(∀x)A(x)]
Γ � [A(t)]

Γ � [(∃x)A(x)]
Γ � [A(s)]

Γ � [A]
Γ � [A,A]

Γ � [A]
Γ

where in the leftmost rule, t is any ground term not occurring in Γ or A.

But now notice that for any fuzzy logic, if we interpret a multiset as a disjunction of
its members, then each of these rules is sound with respect to non-strict approximate
validity. That is, for a rule with premise [A1, . . . , An] and conclusion [B1, . . . , Bm],
|=≥r

L A1 ∨ . . . ∨An implies |=≥r
L B1 ∨ . . . ∨Bm. Hence by a simple induction on the

height of a derivation using these rules:

Proposition 3. Let (∃x̄)PF (x̄) be the Skolem form of (Qȳ)P (ȳ). Then for any fuzzy
logic L and r ∈ [0, 1]:

if |=≥r
L

n∨
i=1

PF (t̄i) for some t̄1, . . . , t̄n ∈ U(PF ), then |=≥r
L (Qȳ)P (ȳ)

We can now establish Skolemization for the Prenex formulas of logics by combining
this last result with the approximate Herbrand theorem.

Theorem 5. Let (Qȳ)P (ȳ) be a Prenex formula with Skolem form (∃x̄)PF (x̄). Then
for any Ł-fuzzy logic L:

|=L (Qȳ)P (ȳ) iff |=L (∃x̄)PF (x̄)

Proof. The left-to-right direction follows easily using standard quantifier properties of
L. For the right-to-left-direction, suppose that |=L (∃x̄)PF (x̄). If L is an Ł-fuzzy logic,
then by Theorem 4, for all r < 1, |=>r

L

∨n
i=1 P

F (t̄i) for some t̄1, . . . , t̄n ∈ U(PF ). By
Proposition 3, for all r < 1, |=≥r

L (Qȳ)P (ȳ). Hence |=L (Qȳ)P (ȳ) as required. ��
Skolemization also allows us to extend the approximate Herbrand theorem to the whole
Prenex fragment of Ł-fuzzy logics: we just use Theorem 5 to find an appropriate exis-
tential formula, and apply Theorem 4.

Corollary 2. Let L be an Ł-fuzzy logic and let (Qȳ)P (ȳ) be a Prenex formula with
Skolem form (∃x̄)PF (x̄). Then |=L (Qȳ)P (ȳ) iff (∃x̄)PF (x̄) iff for all r < 1:

|=>r
L

n∨
i=1

PF (t̄i) for some t̄1, . . . , t̄n ∈ U(PF )

Moreover, since the problem of determining the approximate validity of a disjunction
of propositional formulas is decidable (see e.g. [9]), we obtain the following result.

Corollary 3. The Prenex fragment of any Ł-fuzzy logic is in
∏

2.



Herbrand Theorems and Skolemization for Prenex Fuzzy Logics 31

References

1. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for prenex Gödel logic and
its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001.
LNCS (LNAI), vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

2. Baaz, M., Ciabattoni, A., Montagna, F.: Analytic calculi for monoidal t-norm based logic.
Fundamenta Informaticae 59(4), 315–332 (2004)

3. Baaz, M., Iemhoff, R.: The skolemization of existential quantifiers in intuitionistic logic.
Annals of Pure and Applied Logic 142(1-3), 269–295 (2006)

4. Baaz, M., Metcalfe, G.: Herbrand’s theorem, skolemization, and proof systems for
Łukasiewicz logic (submitted),
http://www.math.vanderbilt.edu/people/metcalfe/publications

5. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In:
Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer,
Heidelberg (2000)

6. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
7. Hájek, P.: Arithmetical complexity of fuzzy logic – a survey. Soft Computing 9, 935–941

(2005)
8. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1),

1–15 (2005)
9. Hanikova, Z.: A note on the complexity of tautologies of individual t-algebras. Neural Net-

work World 12(5), 453–460 (2002)
10. Montagna, F.: Three complexity problems in quantified fuzzy logic. Studia Logica 68(1),

143–152 (2001)
11. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with

boundary. Annals of Mathematics 65, 117–143 (1957)
12. Novák, V.: On the Hilbert-Ackermann theorem in fuzzy logic. Acta Mathematica et Infor-

matica Universitatis Ostraviensis 4, 57–74 (1996)
13. Ragaz, M.E.: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik.

PhD thesis, ETH Zürich (1981)
14. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence

Research 14, 137–166 (2001)
15. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)
16. Willard, S.: General Topology. Dover (2004)

http://www.math.vanderbilt.edu/people/metcalfe/publications


Decidability of Hybrid Logic

with Local Common Knowledge
Based on Linear Temporal Logic LTL

Sergey Babenyshev and Vladimir Rybakov

Manchester Metropolitan University, Manchester, U.K.
Siberian Federal University, Krasnoyarsk, Russia

sergei.babyonyshev@gmail.com, V.Rybakov@mmu.ac.uk

Abstract. Our paper1 considers a hybrid LTLACK between the multi-
agent logic with the local common knowledge operation and an extended
version of the linear temporal logic LT L. The logic is based on the se-
mantics of Kripe/Hintikka models with potentially infinite runs and the
time points represented by clusters of states with agents’ accessibility
relations. We study the satisfiability problem for LTLACK and related
decidability problem. The key result is an algorithm which recognizes
theorems of LTLACK (so we show that LTLACK is decidable), which, as
a consequence, also solves the satisfiability problem. Technique is based
on verification of validity for special normal reduced forms of rules in
models of double exponential in the size of rules.

Keywords: linear temporal logic, multi-agent logics,hybrid logics, re-
lational Kripke-Hintikka models, decidability algorithms, satisfiability.

1 Introduction

Hybrid logics nowadays is an active area of research in non-classical Mathemat-
ical Logic, Computer Science (CS) and Artificial Intelligence (AI) [1]. They are
usually introduced by combination (fusion) of several non-classical logics. We
choose as a background logic for our research the linear temporal logic LTL.
Temporal logics and, in particular, LTL, is currently the most widely used spec-
ification formalism for reactive systems. They were first suggested to be used
for specifying properties of programs in late 1970’s (cf. Pnueli [2]). The most
used temporal framework is the linear-time propositional temporal logic LTL,
which has been studied from various viewpoints (cf. e.g. Manna and Pnueli [3,4],
Clark E. et al. [5]). Temporal logics have numerous applications to safety, live-
ness and fairness, to various problems arising in computing. Model checking
for LTL formed a noticeable trend in applications of logic in Computer Sci-
ence, which uses, in particular, applications of automata theory (cf. Vardi [6,7]).

1 This research is supported by Engineering and Physical Sciences Research Council
(EPSRC), U.K., grant EP/F014406/1.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 32–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Decidability of Hybrid Logic with Local Common Knowledge 33

Temporal logics themselves can be considered as special cases of hybrid log-
ics, e.g. as a bimodal logic with some additional laws imposed on interaction of
modalities to emulate the flow of time. The mathematical theory dedicated to
study of various aspects of interaction of temporal operations (e.g. axiomatiza-
tions of temporal logics) and to construction of effective semantic theory based
on Kripke/Hintikka-like models and temporal Boolean algebras, formed a highly
technical branch in non-classical logics (cf. e.g. van Benthem [8,9], Goldblatt [10],
Gabbay and Hodkinson [11], Hodkinson [12]).

Another component of our hybrid logic is a multi-agent knowledge logic. The
multi-agent logics is another active area in AI and Knowledge Representation
(cf. Bordini et al. [13], Dix et al. [14], Hoek et al. [15], Fisher [16], Hendler [17],
Kacprzak [18], Wooldridge [19]). An agent is an autonomous entity that acts in
a world, by interacting with its environment and with other agents. Multi-Agent
Systems — systems that may include many such entities — are becoming more
and more popular in Computer Science and Artificial Intelligence. This is be-
cause, firstly, they offer a convenient metaphor for modeling the reality around us
as a world inhabited by such autonomous, active, possibly intelligent elements,
secondly, they can be used as a methodology that enables design and implemen-
tation of large systems in a really modular way. In a sense, multi-agent logics
came from a particular application of multi-modal logics to reasoning about
knowledge (cf. Fagin et al. [20, 21], Halpern and Shore [22]), where modal-like
operations Ki (responsible for knowledge of individual agents) were embedded in
the language of propositional logic. These operations are intended to model ef-
fects and properties of agents’ knowledge in changing environment, If we consider
a hybrid with multi-agent logic, an immediate question is which logic should be
used as the background logic. There were many approaches, but, if the logic used
as the basis is too expressive — the undecidability phenomenon can occur (cf.
Kacprzak [18] with reduction of the decidability to the domino problem). If the
basic logic is just the boolean logic, and the agents are autonomous, decidability
for the standard systems usually can be obtained by standard techniques, e.g.
filtration, (cf. [20, 21]).

In this paper we attempt to implement a multi-agent knowledge logic with
local common-knowledge operator based on the linear temporal logic LTL. The
result is a multi-agent logic LTLACK. We address the problems of satisfiability
and decidability of LTLACK. Our paper proposes an algorithm which recognizes
theorems of LTLACK (so we show that LTLACK is decidable). This algorithm
works in three steps. First, it reduces a formula in the language of LTLACK to an
inference rule, then the rule to a special normal reduced form, and then it checks
validity of the reduced form in special finite models of size efficiently bounded
on the size of the original formula. Also we discuss some possible variations of
LTLACK where the proposed technique might work.

2 Preliminaries, Definitions, Notation

Our hybrid logic is based on an extension of the linear temporal logic LTL. The
language of LTL augments the one of Boolean logic by specifically temporal



34 S. Babenyshev and V. Rybakov

(modal-like) operations Until and Next. Our logic also employs the agents’
knowledge operations and local common-knowledge operation. To justify the
choice of the language we start with introducing of semantic objects upon which
our logic will be based. These are the following Kripe/Hintikka-like models with
linear discrete time.

The frame NC := 〈⋃i∈N C(i), R,R1, . . . Rm, Next〉 is a tuple, where N is
the set of natural numbers, C(i), i ∈ N are some pairwise disjoint nonempty
sets, R,R1, . . . , Rm are binary relations, emulating agents’ accessibility. For all
elements a and b from

⋃
i∈N C(i)

aRb ⇐⇒ [a ∈ C(i) and b ∈ C(j) and i < j] or [a, b ∈ C(i) for some i];

any Rj is a reflexive, transitive and symmetric relation (i.e an equivalence rela-
tion), and

∀a, b ∈
⋃

i∈N

C(i), aRjb =⇒ [a, b ∈ C(i) for some i];

a Next b ⇐⇒ ∃i[a ∈ C(i) & b ∈ C(i + 1)].

As usual for LTL, these frames are intended to model the reasoning (or com-
putation) in discrete time, so each i ∈ N (any natural number i) is the time
index for a cluster of states arising at a step in current computation.

Any C(i) is a set of all possible states in the time point i, and the relation R
models discrete current of time. Relations Rj are intended to model knowledge-
accessibility relations of agents in any cluster of states C(i) at the time point
i. Thus any Rj is supposed to be S5-like relation, i.e an equivalence relation.
The reasoning (computation) is supposed to be concurrent for all agents — after
a step, a new cluster of possible states appears, and the agents will be given
new access rules to the information in the new time cluster of states. The Next
relation is the standard one — it describes all states available in the next time
point cluster.

To model logical laws of reasoning (computation) represented by structures
NC we propose the following language extending the language of the standard
LTL. It uses the language of Boolean logic, the operations N (next), U (until))
and the new operations Uw (weak until) and Us (strong until), the unary agents’
knowledge operations Kj , 1 ≤ j ≤ m and an additional unary operation CK
for local common knowledge. Formation rules for formulas are as usual. The
intended meaning of the operations is as follows.

Kjϕ means: the agent j knows ϕ at the current state of a time cluster;

CKϕ means that ϕ is of local common knowledge at the current state of a
time cluster, or that all agents should know ϕ;

Nϕ has meaning: ϕ holds in the all states of next time cluster ;

ϕUψ can be read: ϕ holds until ψ becomes true;

ϕUwψ has meaning: ϕ weakly holds until ψ becomes true;

ϕUsψ has meaning: ϕ strongly holds until ψ becomes true;



Decidability of Hybrid Logic with Local Common Knowledge 35

For any collection of propositional letters Prop and any frame NC , a valuation
in NC is a mapping which assigns truth values to elements of Prop in NC .
Thus, for any p ∈ Prop, V (p) ⊆ ⋃

i∈N C(i). We will call 〈NC , V 〉 a model (a
Kripke/Hinikka model). For any such model M, a valuation can be extended
from propositions of Prop to arbitrary formulas as follows (for a ∈ NC , we write
(NC , a) V ϕ to say that the formula ϕ is true at a in NC w.r.t. V )

∀p ∈ Prop, (M, a) V p ⇐⇒ a ∈ V (p);

(M, a) V ϕ ∧ ψ ⇐⇒ (M, a) V ϕ ∧ (M, a) V ψ;

(M, a) V ¬ϕ ⇐⇒ not[(M, a) V ϕ];

(M, a) V Kjϕ ⇐⇒ ∀b[(a Rj b)⇒(M, b) V ϕ]

(so Kjϕ says that ϕ holds at all states accessible for the agent j);

(M, a) V CKϕ ⇐⇒ ∃i[a ∈ C(i) & ∀b ∈ C(i) : (M, b) V ϕ].

Thus ϕ is of local common knowledge for agents in the time cluster C(i)
iff ϕ holds in all states of C(i). It is easy to accept that this is a reasonable
understanding of local common knowledge: the local common knowledge is a
fact, which is valid at all possible states of the current time point. Thus, in our
formalism, CK plays role of the local universal modality.

(M, a) V Nϕ ⇔∀b[(a Next b)⇒(M, b) V ϕ];

(M, a) V ϕUψ ⇔∃b[(aRb) ∧ ((M, b) V ψ)∧

∀c[(aRcRb)&¬(bRc)⇒(M, c) V ϕ]];

(M, a) V ϕUwψ ⇔∃b[(aRb) ∧ ((M, b) V ψ) ∧ ∀c[(aRcRb)&¬(bRc)&

&(c ∈ C(i)) =⇒ ∃d ∈ C(i)(M, d) V ϕ]];

(M, a) V ϕUsψ ⇔∃b[(aRb) ∧ b ∈ C(i) ∧ ∀c ∈ C(i)((M, c) V ψ)∧

∀c[(aRcRb)&¬(bRc)⇒(M, c) V ϕ]];

Definition 1. For a Kripke structureM := 〈NC , V 〉 and a formula ϕ , we say
that (i) ϕ is satisfiable in M (denotation M Satϕ) if there is a state b of
M (b ∈ NC) where ϕ is true: (M, b) V ϕ. (ii) ϕ is valid in M (denotation
M ϕ) if, for any b of M (b ∈ NC), the formula ϕ is true at b (M, b) V ϕ).

Definition 2. For a Kripke frame NC and a formula ϕ, we say that ϕ is satis-
fiable in NC (denotation NC Satϕ) if there is a valuation V in the frame NC

such that 〈NC , V 〉 Satϕ. ϕ is valid in NC (i.e. NC ϕ) if not(NC Sat¬ϕ).



36 S. Babenyshev and V. Rybakov

Definition 3. The logic LTLACK is the set of all formulas which are valid in
all frames NC .

Thus, the logic LTLACK is defined semantically, and in this paper we do not
consider axiomatic systems for LTLACK. A formula ϕ is said to be a theorem of
LTLACK if ϕ ∈ LTLACK. A formula ϕ in the language of LTLACK is satisfiable
iff there is a valuation V in the Kripke frame NC which makes ϕ satisfiable:
〈NC , V 〉 Satϕ. Obviously that a formula ϕ is satisfiable iff ¬ϕ is not a theorem
of LTLACK: ¬ϕ ∈ LTLACK, and vise versa, ϕ is a theorem of LTLACK (ϕ ∈
LTLACK) if ¬ϕ is not satisfiable.

The computation of truth values of the operation U works in frames NC in
the standard way, but the operation Uw drastically differs from the standard U.
It is sufficient for ϕ to be true only at a certain state of all time clusters before ψ
will become true at a state. And the strong until – ϕUsψ – means that there is
a time point i, where the formula ψ is true at all states in the time cluster C(i),
and ϕ holds in all states of all time points j preceding i. Using operations U
and N we can define all standard temporal and modal operations. For instance,
modal operations may be trivially defined: (i) �ϕ ≡ trueUϕ ∈ LTLACK;
(ii) �ϕ ≡ ¬(trueU¬ϕ) ∈ LTLACK;. The standard temporal operation Fϕ (ϕ
holds eventually, which, in terms of modal logic, means ϕ is possible (denotation
�ϕ)), can be described as trueUϕ. The temporal operation G, where Gϕ means
ϕ holds henceforth, can be defined as ¬F¬ϕ.

The suggested temporal operations together with knowledge operations and
common knowledge add more expressive power to the language. For instance,
the formula �¬K1¬ϕ says that, for any future time cluster and for any state
a of this cluster the knowledge ϕ is discoverable for agent 1, i.e., the agent has
access to a state b where ϕ holds.

The new temporal operations Us and Uw bring new unique features to the
language. For instance the formula �wϕ := ¬(�Us¬ϕ) codes the weak necessity:
it says that in any time cluster C(i) there is a state where ϕ is true. The formula
¬(ϕUw�ϕ) ∧ ��ϕ says that, since a time point i, ϕ holds in all states, but
before i ϕ is false in a state of any time cluster. The formula

ϕUwCKψ,

says that ϕ is true in at least one state of any future time cluster from the current
one, till up the formula ψ will be true at all states of some future time cluster.

Such properties are hard or impossible to express in terms of the standard
modal or temporal operations. Therefore the logic seems to be interesting and we
devote the rest of the paper to finding an efficient algorithm to check satisfiability
in LTLACK and to the proof of decidability of LTLACK.

3 Decidability Algorithm for LTLACK

The basic instrument we will use to show decidability is implicit modeling
of the universal modality (just not-nested first-order universal quantifier at



Decidability of Hybrid Logic with Local Common Knowledge 37

Kripke/Hintikka frames) by means of converting formulas to inference rules.
Our approach is based on our techniques to handle inference rules (cf. [23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33]). Here we extend our previous research for Logic
of Discovery in Uncertain Situations presented in [33] and research at a hybrid
of LTL and knowledge logic without interaction for agents (autonomous ones)
reported recently at the workshop on Hybrid Logics (2007, Dublin). Recall, a
(sequential) (inference) rule is an expression

r :=
ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)

ψ(x1, . . . , xn)
,

where ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn) and ψ(x1, . . . , xn) are some formulas
constructed out of letters x1, . . . , xn. Letters x1, . . . , xn are variables of r, we use
notation xi ∈ V ar(r) to say xi is a variable of r.

Definition 4. A rule r is said to be valid in a Kripke model 〈NC , V 〉 with the
valuation V (we will use notation NC V r) if [∀a ((NC , a) V

∧
1≤i≤m ϕi)]⇒

∀a ((NC , a) V ψ). Otherwise we say r is refuted in NC , or refuted in NC by
V , and write NC �� V r. A rule r is valid in a frame NC (notation NC r) if,
for any valuation V of V ar(r), NC V r

For any formula ϕ we can transform it in the rule x → x/ϕ and employ the
technique of reduced normal forms for inference rules as follows. First, it is
trivial that

Lemma 1. A formula ϕ is a theorem of LTLACK iff the rule (x→ x/ϕ) is valid
in any frame NC .

A rule r is said to have the reduced normal form if r = εc/x1 where

εc :=
∨

1≤j≤m

(
∧

1≤i≤n

[xt(j,i,0)
i ∧ (Nxi)t(j,i,1) ∧

∧

1≤k≤m,k �=i

(xiUxk)t(j,i,k,0)∧

∧

1≤k≤m,k �=i

(xiUwxk)t(j,i,k,1) ∧
∧

1≤k≤m,k �=i

(xiUsxk)t(j,i,k,2)∧

∧

1≤s≤m

(¬Ks¬xi)t(j,i,s,3) ∧CKxt(j,i,2)
i ]),

and all xs are certain letters (variables), t(j, i, z), t(j, i, k, z) ∈ {0, 1} and, for any
formula α above, α0 := α, α1 := ¬α.

Definition 5. Given a rule rnf in the reduced normal form, rnf is said to be a
normal reduced form for a rule r iff, for any frame NC , NC r ⇔ NC rnf .

Similar to Lemma 3.1.3 and Theorem 3.1.11 from [26], it follows

Theorem 1. There exists an algorithm running in (single) exponential time,
which, for any given rule r, constructs its normal reduced form rnf.



38 S. Babenyshev and V. Rybakov

Decidability of LTLACK will follow (Lemma 1) if we will find an algorithm rec-
ognizing rules in the reduced normal form which are valid in all frames NC . The
first necessary observation is

Lemma 2. A rule rnf in the reduced normal form is refuted in a frame NC if
and only if rnf can be refuted in a frame of kind NC with time clusters of size
linear from rnf.

Key instrument for description of our algorithm is the following special bent
finite Kripke models. For any frame NC and any natural numbers k,m, where
m > k > 1, the frame NC(k,m) has the structure:

NC(k,m) := 〈
⋃

1≤i≤m

C(i), R,R1, . . . Rn, Next〉,

where R is the accessibility relation from NC extended by pairs (x, y), where
x ∈ C(i), y ∈ C(j)) and i, j ∈ [n,m], so xRy holds for all such pairs. Any
relation Rj is simply transferred from NC , and Next is the relation from NC

extended by ∀a ∈ C(m)∀b ∈ C(k)(a Next b = true).
If we are given with a valuation V of letters from a formula ϕ in NC(k,m),

the truth values of ϕ can be defined at elements of NC(k,m) by the rules similar
to the ones for frames NC above (actually just in accordance with standard
computation of truth values for time operations and knowledge modalities). We
display these modified rules below:

(NC(k,m), a) V ϕUψ ⇔∃b[(aRb) ∧ (NC(k,m), b) V ψ)∧

∀c[(aRcRb)&¬(bRc) ⇒ (NC(k,m),c) V ϕ]],

(NC(k,m), a) V ϕUwψ ⇔∃b[(aRb) ∧ ((NC(k,m), b) V ψ)∧

∀c[(aRcRb)&¬(bRc) & (c ∈ C(i)) ⇒ ∃d ∈ C(i)(NC(k,m), d) V ϕ]],

(NC(k,m), a) V ϕUsψ ⇔∃b[(aRb) ∧ b ∈ C(i) ∧ ∀c ∈ C(i)

((NC(k,m), c) V ψ) ∧ ∀c[(aRcRb)&¬(bRc) =⇒ (NC(k,m),c) V ϕ]].

Based on Lemma 2 as the basis, we obtain the key lemma:

Lemma 3. A rule rnf in the reduced normal form is refuted in a frame NC if
and only if rnf can be refuted in a frame NC(k,m), where the size of the frame
NC(n,m) is double exponential in rnf.

From Theorem 1, Lemma 1 and Lemma 3 we immediately derive

Theorem 2. The logic LTLACK is decidable. The algorithm for testing a for-
mula to be a theorem in LTLACK consists in verification of validity of rules in
reduced normal form in frames NC(n,m) of size double-exponential in the size
of reduced normal forms.



Decidability of Hybrid Logic with Local Common Knowledge 39

Using developed technique we may approach other hybrid logics based on LTL.
One of those is the variant of LTLACK, where we consider the new operation Nw

– weak next with interpretation

(M, a) V Nwϕ ⇐⇒ ∃b[(aNext b) =⇒ (M, b) V ϕ],

and the logic with this new operation again will be decidable. Also, for example,
we can consider a new operation Nextw on frames NC as a restriction of Next,
formally

∀a, b ∈
⋃

i∈N

C(i), aNextw b =⇒ [∃i ∈ N : a ∈ C(i) and b ∈ C(i+ 1)];

∀a ∈
⋃

i∈N

C(i)[a ∈ C(i) =⇒ ∃b ∈ C(i + 1) : (aNextw b)

& ∀c ∈ C(i)∀d ∈ C(i+ 1)((cNextw d) ⇐⇒ (aNextw d))].

Our method of proving satisfiability and decidability for LTLACK works for this
case again. In addition some restrictions on agents’ accessibility relations Ri may
be considered, say, by introduction a hierarchy between Ri’s. This hierarchy may
be an arbitrary desirable one (of kind Ri ⊆ Rj for supervision). Our method
deals with these logics as well and allows to prove their decidability.

4 Conclusion, Future Work

We suggest a method to prove decidability of the hybrid logic LTLACK and some
similar logics. These instruments are flexible and may work for other various
non-classical logics originated in the area of pure Mathematical Logic, AI or CS.
There are many open venues for the future research on logic LTLACK and its
variants. The issues of axiomatization and complexity are some of them. Logics
obtained from LTLACK by introducing operations Since and Previous based on
C(i) with i ∈ Z or i ∈ N may be also interesting.

References

1. Blackburn, P., Marx, M.: Constructive interpolation in hybrid logic. Journal of
Symbolic Logic 68(2), 463–480 (2003)

2. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th Annual Symp.
on Foundations of Computer Science, pp. 46–57. IEEE, Los Alamitos (1977)

3. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

5. Clarke, E., Grumberg, O., Hamaguchi, K.P.: Another look at LTL model checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818. Springer, Heidelberg (1994)



40 S. Babenyshev and V. Rybakov

6. Daniele, M., Giunchiglia, F., Vardi, M.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633.
Springer, Heidelberg (1999)

7. Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Proceed-
ings of the Banff Workshop on Knowledge Acquisition, Banff 1994 (1994)

8. van Benthem, J.: The Logic of Time. Kluwer, Dordrecht (1991)
9. van Benthem, J., Bergstra, J.: Logic of transition systems. Journal of Logic, Lan-

guage and Information 3(4), 247–283 (1994)
10. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes 7 (1992)
11. Gabbay, D., Hodkinson, I.: An axiomatisation of the temporal logic with until

and since over the real numbers. Journal of Logic and Computation 1(2), 229–260
(1990)

12. Hodkinson, I.: Temporal Logic. In: Temporal Logic and Automata, ch. II, vol. 2,
pp. 30–72. Clarendon Press, Oxford (2000)

13. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model checking rational
agents. IEEE Intelligent Systems 19, 46–52 (2004)

14. Dix, J., Fisher, M., Levesque, H., Sterling, L.: Editorial. Annals of Mathematics
and Artificial Intelligence 41(2–4), 131–133 (2004)

15. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Logic Jour-
nal of the IGPL 11(2), 133–157 (2003)

16. Fisher, M.: Temporal development methods for agent-based systems. Journal of
Autonomous Agents and Multi-Agent Systems 10(1), 41–66 (2005)

17. Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37
(2001)

18. Kacprzak, M.: Undecidability of a multi-agent logic. Fundamenta Informati-
cae 45(2–3), 213–220 (2003)

19. Wooldridge, M., Weiss, G., Ciancarini, P. (eds.): AOSE 2001. LNCS, vol. 2222.
Springer, Heidelberg (2002)

20. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

21. Fagin, R., Geanakoplos, J., Halpern, J., Vardi, M.: The hierarchical approach to
modeling knowledge and common knowledge. International Journal of Game The-
ory 28(3), 331–365 (1999)

22. Halpern, J., Shore, R.: Reasoning about common knowledge with infinitely many
agents. Information and Computation 191(1), 1–40 (2004)

23. Rybakov, V.: A criterion for admissibility of rules in the modal system S4 and the
intuitionistic logic. Algebra and Logic 23(5), 369–384 (1984)

24. Rybakov, V.: Rules of inference with parameters for intuitionistic logic. Journal of
Symbolic Logic 57(3), 912–923 (1992)

25. Rybakov, V.: Hereditarily structurally complete modal logics. Journal of Symbolic
Logic 60(1), 266–288 (1995)

26. Rybakov, V.: Admissible Logical Inference Rules. Studies in Logic and the Foun-
dations of Mathematics, vol. 136. Elsevier Sci. Publ., North-Holland (1997)

27. Rybakov, V., Kiyatkin, V., Oner, T.: On finite model property for admissible rules.
Mathematical Logic Quarterly 45(4), 505–520 (1999)

28. Rybakov, V.: Construction of an explicit basis for rules admissible in modal system
s4. Mathematical Logic Quarterly 47(4), 441–451 (2001)

29. Rybakov, V.: Logical consecutions in intransitive temporal linear logic of finite
intervals. Journal of Logic and Computation 15(5), 633–657 (2005)



Decidability of Hybrid Logic with Local Common Knowledge 41

30. Rybakov, V.: Logical consecutions in discrete linear temporal logic. Journal of
Symbolic Logic 70(4), 1137–1149 (2005)

31. Rybakov, V.: Linear Temporal Logic with Until and Before on Integer Numbers,
Deciding Algorithms. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006.
LNCS, vol. 3967, pp. 322–334. Springer, Heidelberg (2006)

32. Rybakov, V.: Until-since temporal logic based on parallel time with common past.
In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 486–497.
Springer, Heidelberg (2007)

33. Rybakov, V.: Logic of discovery in uncertain situations — deciding algorithms.
In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI),
vol. 4693, pp. 950–958. Springer, Heidelberg (2007)



Pure Iteration and Periodicity

A Note on Some Small Sub-recursive Classes

Mathias Barra

Dept. of Mathematics, University of Oslo, P.B. 1053, Blindern, 0316 Oslo, Norway
georgba@math.uio.no

http://folk.uio.no/georgba

Abstract. We define a hierarchy IT =
�

n IT n of small sub-recursive
classes, based on the schema of pure iteration. IT is compared with a
similar hierarchy, based on primitive recursion, for which a collapse is
equivalent to a collapse of the small Grzegorczyk-classes. Our hierarchy
does collapse, and the induced relational class is shown to have a highly
periodic structure; indeed a unary predicate is decidable in IT iff it is
definable in Presburger Arithmetic. The concluding discussion contrasts
our findings to those of Kuty�lowski [12].

1 Introduction and Notation

Introduction: Over the last decade, several researchers have investigated the
consequences of banning successor-like functions from various computational
frameworks. Examples include Jones [5,6]; Kristiansen and Voda [9] (functionals
of higher types) and [10] (imperative programming languages); Kristiansen and
Barra [8] (idc.’s and λ-calculus) and Kristiansen [7] and Barra [1] (idc.’s).

This approach—banning all growth—has proved successful in the past, and
has repeatedly yielded surprising and enlightening results. This paper emerge
from a broad and general study of very small inductively defined classes of func-
tions.

In 1953, A. Grzegorczyk published the seminal paper Some classes of recursive
functions [4]; an important source of inspiration to a great number of researchers.
Several questions were raised, some of which have been answered, some of which
remain open to date. Most notorious is perhaps the problem of the statuses of

the inclusions E0
�

?⊆ E1
�

?⊆ E2
� (see definitions below).

In 1987, Kuty�lowski presented various partial results on the above chain in
Small Grzegorczyk classes [12], a paper which deals with function classes based
on variations over the schema of bounded iteration.

The paper at hand is the result of a first attempt to combine the work of
Kuty�lowski,with the successor-free approach. The results presented here does
not represent a final product. However, in addition to being interesting in their
own right—by shedding light on the intrinsic nature of pure iteration contrasted
to primitive recursion—perhaps they may provide a point of origin for a viable
route to the answer to the above mentioned problem.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 42–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Pure Iteration and Periodicity 43

Notation: Unless otherwise specified, a function means a function f : INk → IN
The arity of f , denoted ar(f), is then k. The notation f (n)(x) has the usual
meaning: f (0)(x) def= x and f (n+1)(x) def= f(f (n)(x)). P is the predecessor function:
P(x) def= max(0, x − 1); S is the successor function: S(x) def= x + 1; and C is the
case function: C(x, y, z) def= x if z = 0 and y else. I is the set of projections :
Iki (�x) def= xi; N is the set of all constant functions c(x) def= c.

An inductively defined class of functions (idc.), is generated from a set X
whose elements are called the initial, primitive or basic functions, as the least
class containing X and closed under the schemata, functionals or operations of
some set op of functionals. We write [X ; op] for this class1. Familiarity with
the schema composition, denoted comp, is assumed. We write h ◦ �g for the
composition of functions �g into the function h.

A k-ary predicate is a subset R ⊆ INk. Predicates are interchangeably called
relations. A set of predicates which is closed under finite intersections and com-
plements, is called boolean or an algebra.

A partition of INk is a finite collection of predicates P = {Pi}i≤n, satisfying
(i)

⋃
i Pi = INk, and (ii) i �= j ⇔ Pi∩Pj = ∅ is called The algebra generated by

P is the smallest algebra containing P. It can easily be shown that the algebra
generated by P is the set of all unions of sets from P, and that the algebra is
finite.

When R = f−1(0), the function f is referred to as a characteristic function
of R, and is denoted χR. Note that χR is not unique.

Let F be a set of functions. F� denotes the set of relations of F , viz. those
subsets R ⊆ INk with χR ∈ F for some χR. Formally

Fk� =
{
f−1(0) ⊆ INk|f ∈ Fk

}
and F� =

⋃

k∈IN

Fk� ,

where Fk denotes the k-ary functions of F .
Whenever a symbol occurs under an arrow, e.g. �x, we usually do not point

out the length of the list—by convention it shall be k for variables and � for
functions unless otherwise specified.

2 Background and Motivation

The standard schema of �-fold simultaneous primitive recursion, denoted pr�

defines � functions �f from functions �h and �g when

fi(�x, y) =
{
gi(�x) , if y = 0
hi(�x, y − 1, �f(�x, y − 1)) , if y > 0

,

for 1 ≤ i ≤ �. A less studied schema is that of �-fold simultaneous (pure) iteration,
denoted it�, where functions �f are defined from functions �h and �g by

fi(�x, y) =
{
gi(�x) , if y = 0
hi(�x, �f(�x, y − 1)) , if y > 0

.

1 This notation is adopted from Clote [2], where an idc. is called a function algebra.



44 M. Barra

for 1 ≤ i ≤ �. We omit the superscript when the iteration or recursion is 1-fold.
We refer to the � in it� as the iteration width.

It is well-known that in most contexts it1 is equivalent to pr� for arbitrary
� ∈ IN. More precisely

[I ∪ {0, S,P} ; comp, it1
]

=
[I ∪N ∪ {S} ; comp, pr�

]
.

Quite a lot of coding is required, and proofs are technical. For this, and more on
these schemata consult e.g. Rose [13].

For the schemata of bounded �-fold simultaneous primitive recursion (bpr�)
and bounded simultaneous �-fold pure iteration (bit�) one requires an additional
function b(�x, y), such that fi(�x, y) ≤ b(�x, y) for all �x, y and i. To the authors
best knowledge, bpr was introduced under the name of limited primitive re-
cursion by Grzegorczyk in [4], where the schema was used to define his famous
hierarchy E def=

⋃
n En. A modern rendering of the original definitions, would be

e.g. En def= [I ∪ N ∪ {S, An} ; comp,bpr], where the function An is the nth Ack-
ermann branch. If we let PR denote the set of all primitive recursive functions,
one of the main results of [4] is that E = PR. While it is known that the hi-
erarchy of functions is strict at all levels, and that the hierarchy of relational
classes En� is strict from n = 2 and upwards, the problem of whether any of the
inclusions E0

� ⊆ E1
� ⊆ E2

� are proper or not remains open to date.
In 1987 Kuty�lowski experimented with variations over bounded iteration

classes, and published his results in Small Grzegorczyk classes [12]. More pre-
cisely, Kuty�lowski defined classes In def= [I ∪ N ∪ {P, An,max} ; comp,bit], viz.
In is essentially2 En with bit substituted for bpr. That In = En for n ≥ 2 is

fairly straightforward. However, for n = 0, 1, a solution of In
?⊆ En or I1

�

?⊆ I2
�

are as hard as for the problem of E0
�

?⊆ E1
�

?⊆ E2
� , and so the equivalence of bit

and bpr is an open problem in this context.
Some interdependencies are nicely summarised in [12]. Of particular interest

to us, are Theorems D and F from [12], which establishes that I0
� = I1

� ; and that
I0
� = E0

� ⇔ E0
� = E2

� respectively.
Consider the classes Ln def=

[I ∪ N ; comp, prn+1
]
. In Kristiansen and Barra

[8] the hierarchy L def=
⋃
n Ln is defined. It follows from earlier results in Kris-

tiansen [7] that L� = E2
� , and more recently Kristiansen and Voda [11] estab-

lished L0
� = E0

� . Furthermore, the hierarchy L collapses iff E0
� = E2

� (see [8]).
Hence the following diagram: L0

� = E0
� ⊆ E1

� ⊆ E2
� = L�. Note that Ln contains

no increasing functions, and that the recursive schema is unbounded.
The paper at hand emerges from a desire to investigate the intersection of the

two approaches: both omitting the increasing functions, and replacing prn with
itn.

3 The Hierarchy IT

Definition 1. For n ∈ IN, IT n def=
[I ∪ N ; comp, itn+1

]
; IT def=

⋃
n∈IN IT n.

2 The appearance of ‘max’ is inessential, and can be added also to En without altering
the induced relational class.



Pure Iteration and Periodicity 45

The next lemma is rather obvious, and we skip the proof.

Lemma 1. A function is nonincreasing if, for some c ∈ IN we have f(�x) ≤
max(�x, c) for all �x ∈ INk. We have that all f ∈ IT n are nonincreasing. �
We next define a family of very simple and regular partitions, which will be
useful for describing the relational classes induced by the IT n.

Henceforth, let 0 < μ ∈ IN. For 0 ≤ m < μ let m+ μIN have the usual mean-
ing, i.e. ‘the equivalence class of m under congruence modulo μ’. The standard
notation x ≡μ y def⇔ |x− y| ∈ μIN will also be used. It is well-known that viewed
as a relation on IN, ‘≡μ’ defines an equivalence relation, and that equivalences
induce partitions. Hence the following definition.

Definition 2. Let M(μ, 0) def= {m+ μIN|0 ≤ m < μ} be the partition of IN in-
duced by ‘≡μ’. For a ∈ IN, let M(μ, a) denote the partition obtained from M(μ, 0)
by placing each of the number 0 through a− 1 in their own equivalence class as
singletons3, and let x ≡μ,a x′ have the obvious meaning.

Let ‘≡kμ,a’ be the coordinate-wise extension of ‘≡μ,a’ to an equivalence on INk,
i.e. �x ≡kμ,a �x′ def⇔ ∀i (xi ≡μ,a x′i), and let M

k(μ, a) denote the corresponding
partition4.

Set Mk def=
{
M
k(μ, a)|μ, a ∈ IN

}
and finally

Mk
� =

⋃

μ,a∈IN

A
k(μ, a) and M� =

⋃

k∈IN

Mk
� ,

where A
k(μ, a) is the smallest algebra containing M

k(μ, a).

So a predicate P ∈Mk
� is a union of M

k(μ, a)-classes for some μ, a. We suppress
μ and a when convenient.

If we set5 M(μ, a) � M(μ′, a′) def⇔ μ|μ′ ∧ a ≤ a′, it is easy to see that ‘�’
defines a partial order on M. When M � M

′, we say that M
′ is a refinement

of M. Hence, for any pair of partitions there is a least common refinement,
given by M(μ1, a1),M(μ2, a2) � M(lcm(μ1, μ2),max(a1, a2)), and which itself is
an element of M.

Definition 3. Let M
k = {M1, . . . ,M�}. A function f is an M

k-case, if there
exist f1, . . . , f� ∈ I ∪ N such that

f(�x) =

⎧
⎪⎨

⎪⎩

f1(�x) , �x ∈ M1

...
...

f�(�x) , �x ∈M�

3 Thus e.g. M(3, 2)
def
= {{0} , {1} , 3IN \ {0} , (1 + 3IN) \ {1} , (2 + 3IN)}. Note that

M(1, a) is the partition consisting of the singletons {n}, for n < a, and
{a, a + 1, a + 2, . . .}, and M(1, 0) = {IN}.

4 Hence M
k(μ, a) consists of all ‘boxes’ M1 × · · · × Mk where each Mi ∈ M(μ, a).

5 ‘n|m’ means ‘n divides m’, and ‘lcm’ denotes ‘the least common multiple’.



46 M. Barra

An M-case, is an M
k-case for some M

k ∈ Mk. Let M denote the set of all
M-cases, and let Mk denote the k-ary functions in M.

Informally, an M
k(μ, a)-case is arbitrary on {0, . . . , a− 1}k, and then ‘class-

wise’, or ‘case-wise’, a projection or a constant on each of the finitely many
equivalence classes. We write [�x]μ,a, for the equivalence class of �x under ≡kμ,a
(omitting the subscript when convenient). Henceforth, when f is an M-case, a
subscripted f is tacitly assumed to be an element of I ∪ N , and we also write
f(�x) = f[�x](�x) = fM (�x) when [�x] = M ∈ M

k. Yet another formulation is that6

f is an M-case iff f �M∈ I ∪ N for each M ∈ M.
The proposition below is easy to prove.

Proposition 1. (i) If f is an M-case, and M �M
′, then f is an M

′-case; (ii)
If {Mi}i≤� ∈ Mk, and f(�x, �y) = fi(�x, �y) ⇔ �x ∈ Mi, then f is an M-case;
(iii) For all predicates P ∈M�, there is some M-case f such that P = f−1(0).
Conversely, if f is an M-case, then f−1(0) ∈M�; Hence (iv) M� = M�. �
Our main results are all derived from the theorem below.

Theorem 1. IT 0 = IT =M .

That is, the hierarchy IT n collapses, and its functions are exactly the M-cases.
We begin by establishing some basic facts about IT 0. It is straightforward to

show that characteristic functions for the intersection P∩P ′ and the complement
of P are easily defined by composition from C, I ∪ N , χP and χP ′ . Observing
that C ∈ IT 0—since it is definable by iterating h = I32 on g = I21—we conclude
that IT 0

� is an algebra. Furthermore, given any finite partition P = {Pi}i≤n of
INk, once we have access to C and {χPi}i≤n, we can easily construct a P-case, by
nested compositions. That is, when {χPi}i≤n ⊆ IT 0

�, then any P-case belongs
to IT 0.

Thus, a proof the inclusion M ⊆ IT 0 is reduced to proving that all M(μ, a)
belong to IT 0

�.

Lemma 2. 2IN, 1 + 2IN ∈ IT 0
� .

Proof. Since IT 0
� is an algebra, it is sufficient to show that 2IN ∈ IT 0

�. Consider

the function f(x) =
{

0 , x = 0
C(1, 0, f(x− 1)) , x > 0 .

By induction on n, we show that f(2n) = 0 and f(2n+1) = 1. For the induction
start, by definition f(0) = 0, and thus f(1) = C(1, 0, f(0)) = 1.

Case (n+1): Since 2(n+ 1)− 1 = 2n+ 1, we obtain

f(2(n+ 1)) def= C(1, 0, f(2n+ 1)) IH= C(1, 0, 1) def= 0 , (†)

Clearly f(2(n+ 1) + 1) = C(1, 0, f(2(n+ 1)) †= C(1, 0, 0) = 1, so f = χ2IN. �
6 f �M denotes the restriction of f to M .



Pure Iteration and Periodicity 47

Viewed as a binary predicate, ‘≡μ’ is the set {(x, y)| |x− y| ∈ μIN}. (So ‘≡1’ is
all of IN2, and ‘≡0’ is ‘equality’. Recall the restriction μ > 0.) A reformulation
of Lemma 2 is thus that the unary predicates ‘x ≡2 0’ and ‘x ≡2 1’ both belong
to IT 0

�. Below the idea of the last proof is iterated for the general result.

Lemma 3. For all μ, the binary predicate ‘x ≡μ y’ is in IT 0
�.

Proof. The proof is by induction on μ ≥ 2; the case μ = 1 is trivial. Lemma 2
effects induction start, since x ≡2 y ⇔ C(χ2IN(y), χ1+2IN(y), χ2IN(x)) = 0.

Case μ + 1: By the i.h. the partition M(μ, 0) is in IT 0
�: for m < μ we have

χ(m+μIN)(x) = χ≡μ(x,m). Thus M(μ, 1) also belongs to IT 0
�, since we have

x ∈ μIN \ {0} ⇔ C(1, χμIN(x), x) = 0 and χ{0}(x) = C(0, 1, x). Next, consider
the M(μ, 1)-case

f(x) =
{
μ , x ∈ {0}
m− 1 , x ∈ m+ μIN \ {0} for 1 ≤ m ≤ μ .

Note that (i) f �{0,...,μ} is the permutation (μ 0 1 · · · (μ − 1)). Moreover, for
all n ∈ IN and m ∈ {0, . . . , μ}, we have that (ii) f (n(μ+1))(m) = m; and (iii)
f (m)(m) = 0. Hence, if y ≡μ+1 m

′ and 0 ≤ m,m′ < μ+ 1, then

f (n(μ+1)+m′)(m) = f (n(μ+1))
(
f (m′)(m)

) (ii)= f (m′)(m) = 0 (i)&(iii)⇔ m = m′ .

Thus, the function f (y)(m) is a characteristic function for m + (μ + 1)IN. This
function is clearly definable in IT 0 from f , constant functions and it1. Since
IT 0

� is boolean, and since x ≡μ+1 y ⇔
∨μ
m=0 (x ≡μ+1 m ∧ y ≡μ+1 m), we are

done. �
Corollary 1. For all n ∈ IN, the predicate ‘x = n’ is in ∈ IT 0

�.

Proof. For n = 0 the proof is contained in the proof of Lemma 3. Secondly,

for n > 0, we have that the M(n + 1, 0)-case h(x) =
{
n+ 1 , if x ≡n+1 0
m+ 1 , if x ≡n+1 m

is

in IT 0. Consider the function f(x) def= h(x)(1). Since 0 < n implies 1 �≡n+1 0,
we obtain 0 ≤ x < n ⇒ h(x)(1) = x + 1 > 0 and h(n)(1) = 0. By definition
h(0) = h(n+ 1) = n+ 1 > 0. But then f(x) = 0 iff x = n, viz. f = χ{n}. �

Proposition 2. M⊆ IT 0 .

Proof. Combining Lemma 3, Corollary 1, and an appeal to the boolean struc-
ture of IT 0

� yields ∀μ, a ∈ IN
(
M(μ, a) ⊆ IT 0

�

)
. Hence, any M-case is definable

in IT 0. The proposition now follows from Proposition 1 (iii). �
It is trivial that IT 0 ⊆ IT ; thus the inclusion IT ⊆ M would complete a full
proof of Theorem 1. Since the basic functions I ∪ N of IT n obviously belong
to M, we have reduced our task to proving closure of M under comp and itn.



48 M. Barra

Lemma 4. M is closed under composition.

Proof. Consider h ∈ M�, and g1, . . . , g� ∈ Mk. Because f ∈ Mk means that
for some M, f is a case on the coordinate-wise extension of M to M

k, we can
find M(μh, ah) and M(μj , aj) for 1 ≤ j ≤ � corresponding to h and the gj ’s
respectively, and for which we may find a common refinement M. Hence we may
consider the gj’s M

k-cases, and h an M
�-case. It is easy to show that �x ≡k �x′ ⇒

�g(�x) ≡� �g(�x′), when �g are M
k-cases. Formally ∀M ∈ M

k∃M ′ ∈ M
� (g(M) ⊆M ′).

But then, where h �M ′= hM ′ ∈ I ∪ N , and gj �M= gjM ∈ I ∪ N , we have
f �M= hM ′ ◦ �gM ∈ I ∪ N since I ∪ N is closed under composition. Since f is
an M-case, precisely when its restriction to each M-class belongs to I ∪ N , the
conclusion of the lemma now follows. �
Remark 1. Note the property of M-functions which enters the proof: when �g
are M

k-cases, they preserve equivalence: �x ≡k �x′ ⇒ �g(�x) ≡� �g(�x′).
Lemma 5. M is closed under simultaneous pure iteration.

Proof. Let � be arbitrary, and let h1, . . . , h� ∈ Mk+�, g1, . . . , g� ∈ Mk. As
before—considering a least common refinement if necessary—assume w.l.o.g.
that the hj ’s are M

k+�(μ, a)-cases, and the gj ’s are M
k(μ, a)-cases. Moreover,

let C equal the value of the largest constant function corresponding to some gji
or hji , and note that because separating off more singletons does not necessitate
the introduction of any new constant functions, there is no loss of generality in
assuming a > C.

It is sufficient to show that for arbitrary M ∈ M
k(μ, a), we have that each

f j �M×IN is a case on the (k + 1)st coordinate, viz. that there is M(μM , aM ) ∈M
such that f �M×IN (�x, y) = f[y]μM ,aM

(�x, y).
If this can be shown, each f j will be an P

k+1-case for any common refinement
P ∈M of M(μ, a) and the finitely many M(μM , aM )’s.

Thus let M ∈ M(μ, a) be arbitrary. Write f jy(�x) for f j(�x, y), and �fy for
f1
y , . . . f

�
y . It is easy to show that f j(�x, y) ≤ max(�x,C). Hence, for fixed �z ∈ M ,

the sequence of �-tuples
{
�fy

}

y∈IN
is contained in {0, . . . ,max(�z, C)}�. By the

pigeon hole principle there are indices aM and bM such that C < aM < bM
and such that �faM (�z) = �fbM (�z). If we let these indices be minimal and set
μM = bM − aM , this observation translates to:

�fy(�z) =

{
�fy(�z) , if y < aM
�faM+m(�z) , if aM ≤ y ∈ m+ μM IN and 0 ≤ m < μM

.

So far we have that f restricted to {�z}×IN is an M(μM , aM )-case on the (k + 1)st

variable.
Secondly, for arbitrary �x ∈ INk, and by exploiting the fact that M-cases pre-

serve M in the sense of Remark 1, it is straightforward to show by induction
on y that the sequence of M

�(μ, a)-classes [�f0(�x)]M� , [�f1(�x)]M� , [�f2(�x)]M� , . . . is
uniquely determined by the M

k(μ, a)-class of �x.



Pure Iteration and Periodicity 49

Let �z, �z′ ∈ M . Define a map φ�z�z′ : IN → IN, by φ(x) =
{
x , x �∈ {�z}
z′i , x = zi

. Below,

we simply write φ for φ�z�z′ , and φ(�x) for φ(x1), . . . , φ(x�). Obviously φ(�z) = �z′.

We next show by induction on y that
{
φ
(
�fy(�z)

)}

y∈IN
=

{
�fy(�z′)

}

y∈IN
.

Induction start: We have

f j0 (�z) = gjM (�z) =
{
zi , if g

j
M = Iki

c , if gjM = c
⇒ φ(f j0 (�z)) =

{
φ(zi) = z′i , if g

j
M = Iki

φ(c) †= c , if gjM = c
.

The equality marked (†) is justified thus: Since a > C ≥ c, we infer that the
M(μ, a)-class of such c is in fact {c}. Hence, if c ∈ {�z}, say c = zi, then z′i = zi,
and so φ(c) = c. If c �∈ {�z}, then φ(c) = c by definition.

Induction step: Recall that the M
�(μ, a)-class of �fy(�z) and �fy(�z′) coincide, and

set My = M × [�fy(�z)]M�(μ,a). Then

f jy+1(�z)=hj(�z, �fy(�z))=hjMy
(�z, �fy(�z)) =

⎧
⎪⎨

⎪⎩

zi , if hjMy
= Ik+�i and 1 ≤ i ≤ k

f iy(�z) , if hjMy
= Ik+�k+i and 1 ≤ i ≤ �

c , if hjMy
= c

For f jy+1(�z′), simply add primes to the z’s above. By invoking the i.h. for the
case of hjMy

= Ik+�k+i , the conclusion follows by the same argument employed in
the induction start.

Since f(�z, y) is an M(μM , aM )-case restricted to {�z} × IN, and since we have
indeed shown that for �z′ ∈M, if f(�z, y) = zi, then f(�z′, y) = z′i, and similarly, if
f(�z, y) = c then f(�z′, y) = c, we are done. �
Proposition 3. IT ⊆M . �
Theorem 2. IT 0

� = IT � =M� = M� . �
Theorem 2 is a direct corollary to Theorem 1, the proof of which is completed
by Proposition 3.

We now have a complete characterisation of the induced relational class in
terms of very simple and regular finite partitions of IN. Before the concluding
discussion, we include a result which relates IT � to Presburger Arithmetic.

3.1 A Note on Presburger Arithmetic and IT �

Let PrA be the 1st-order language {0, S,+, <,=} with the intended structure
NA

def= (IN, 0, S,+, <)—the natural numbers with the usual order, successor and
addition. Many readers will recognize PrA as the language of Presburger Arith-
metic, see e.g. Enderton [3, pp. 188–193]. Let PrA� denote the predicates defin-
able by a PrA-formula.

Consider the following [3, p. 192, Theorem 32F]: A set of natural numbers
D belongs to PrA� iff it is eventually periodic, where eventually periodic means



50 M. Barra

that for some μ, a ∈ IN we have n > a ⇒ (n ∈ D ⇔ n+ μ ∈ D). Since this
is exactly what it means for D to be in M, if we let PrAu

� and IT u
� denote the

unary predicates of the respective classes, we immediately see that PrAu
� and

IT u
� coincide.

However, this result does not hold for higher arities, since we have the following
corollary to Theorem 1:

Corollary 2. χ<, χ= �∈ IT
Proof. If χ< ∈ IT =M, then it is an M(μ, a)-case for some μ, a ∈ IN. Clearly
a ≡μ a + μ. Hence, we have 1 = χ<(a, a) = χ<(a, a + μ) = 0; a contradiction.
Similarly, 0 = χ=(a, a) = χ=(a, a+ μ) = 1. �
As both ‘equals ’ and ‘less than’ are primitive to PrA�, we obtain:

Theorem 3. (i) IT u
� = PrAu

�; (ii) IT � � PrA� . �

4 Discussion and Directions for Further Research

Consider the assertion: ‘iteration is inherently weak and periodic’. What we
have shown beyond doubt is that iteration is weak and periodic when work-
ing alone. Secondly we have shown with Theorem 1 that iteration width, or
simultaneity—in the very weak context of this paper—does not add any com-
putational strength. Contrasted to the recursion-based hierarchy L, which does
not collapse unless E0

� = E2
� , we see that in other weak contexts simultaneity

may in fact be stronger.
Recall that I0 is essentially IT 0 with predecessor and successor. In what

follows we omit the explicit mention of I ∪N and comp. Let PIT def= [{P} ; it],
and so we have

IT � � PIT �
?⊆ I0

�
Kut= I1

�

?⊆ E0
� .

Note that iteration width is restricted to 1, and that if two-fold iteration over
P is allowed, one obtains at least one-fold primitive recursion. The first, proper
containment follows from e.g. χ= ∈ PIT .

The schema of bounded minimalisation, denoted bmin, defines a function f
from functions g1, g2 by f(�x, y) = μz≤y [g1(�x, z) = g2(�x, z)]. Clearly, if an idc.
F includes bmin, the resulting F� will be closed under bounded quantification.
Even though bmin and bit are hard to compare directly, the following fact is
quite enticing. It is shown in Barra [1] that [{P} ; bmin]� = [{P, S} ; bmin]�, and
that [{ ·−} ; bmin]� = [{+} ; bmin]� = PrA�. That is, there is no loss of predicates
by simply removing S in the above context. A natural open question is thus how
close PIT and I0 are?

We feel that some evidence has been mounted in support of the opening
statement of this section. In a context such as Kuty�lowski’s I2, bounded iteration
is equivalent to that of bounded primitive recursion. But what about I0? By
Kuty�lowski [12], we also know that equality between E0

� and E2
� relies on I0

� , and
hence I1

� , being equal to E0
� .



Pure Iteration and Periodicity 51

In light of the paper at hand, is there a chance that the equality I0
� = I1

� is
due—not to the ability of iteration to ‘raise I0

� up to the level of I1
� ’—but rather

a case of iteration being so weak as to ‘lower I1
� to the level of I0

� ’?
Since the characteristic function of e.g. the primes is obviously non-periodic,

and belongs to E0, at some stage between IT 0 and I0, one must be able to escape
the periodicity inherent in iteration. Can one exploit the periodic behavior of
functions defined by pure iteration in order to prove I0

� �= E0
�? Or—perhaps

via a successful attempt at escaping periodicity—can one obtain the strength of
recursion? whence I0

� = E0
� would follow. Since both possibilities would provide

a solution to many long standing conundrums of sub-recursion theory, further
investigations should be well worth the effort.

References

1. Barra, M.: A characterisation of the relations definable in Presburger Arithmetic.
In: Proceedings of TAMC 2008. LNCS, vol. 4978, pp. 258–269. Springer, Heidelberg
(2008)

2. Clote, P.: Computation Models and Function Algebra. In: Handbook of Com-
putability Theory. Elsevier, Amsterdam (1996)

3. Enderton, H.B.: A mathematical introduction to logic. Academic Press, Inc., San
Diego (1972)

4. Grzegorczyk, A.: Some classes of recursive functions, in Rozprawy Matematyczne,
No. IV, Warszawa (1953)

5. Jones, N.D.: LOGSPACE and PTIME characterized by programming languages.
In: Theoretical Computer Science, vol. 228, pp. 151–174 (1999)

6. Jones, N.D.: The expressive power of higher-order types or, life without CONS. J.
Functional Programming 11, 55–94 (2001)

7. Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and
LINSPACE. Computational Complexity 14(1), 72–88 (2005)

8. Kristiansen, L., Barra, M.: The small Grzegorczyk classes and the typed λ-calculus.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
252–262. Springer, Heidelberg (2005)

9. Kristiansen, L., Voda, P.J.: The surprising power of restricted programs and
Gödel’s functionals. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS,
vol. 2803, pp. 345–358. Springer, Heidelberg (2003)

10. Kristiansen, L., Voda, P.J.: Complexity classes and fragments of C. Information
Processing Letters 88, 213–218 (2003)

11. Kristiansen, L., Voda, P.J.: The Structure of Detour Degrees. In: Proceedings of
TAMC 2008. LNCS, vol. 4978, pp. 148–159. Springer, Heidelberg (2008)

12. Kuty�lowski, M.: Small Grzegorczyk classes. J. London Math. Soc (2) 36, 193–210
(1987)

13. Rose, H.E.: Subrecursion. Functions and hierarchies. Clarendon Press, Oxford
(1984)



Programming Experimental Procedures for

Newtonian Kinematic Machines

E.J. Beggs and J.V. Tucker

School of Physical Sciences,
Swansea University,

Singleton Park,
Swansea, SA2 8PP,

United Kingdom

Abstract. By experimental computation we mean the idea of computing
a function by experimenting with some physical equipment. To analyse
the functions computable by experiment, we are developing a methodol-
ogy that chooses a precise specification of a physical theory T and derives
precise descriptions of the procedures and equipment the theory allows.
As a case study, we choose a fragment T of Newtonian kinematics and
describe a language EP (T ), and some of its extensions, for expressing
experimental procedures allowed by T . The languages for experimental
procedures are similar to imperative programming languages that express
algorithmic procedures. We show that EP (T ) can define all functions on
the rational numbers that are definable by algorithms.

1 Introduction

Imagine using a physical system to perform calculations. To calculate a partial
function f : X → Y we assemble some equipment and follow an experimental
procedure in which

(i) input data x ∈ X are used to determine initial conditions of the physical
system;

(ii) the system operates for a finite or infinite time; and
(iii) the system’s behaviour is observed, measurements are taken, and output

data y ∈ Y are obtained at certain times.

We say that the partial function y = f(x) is calculated by experimental com-
putation. We can expect to compute functions on continuous data, such as the
set R of real numbers, as well as functions on discrete data, such as on the set N

of natural numbers. The practice of experimental computation is general and old.
To design and understand experimental computation we need physical the-

ories to specify equipment and model its behaviour. To perform a calculation,
we choose a physical theory T , which contains laws about physical properties
of physical objects, and rules and operations for configuring and manipulating
them. We assemble a piece of equipment and formulate a procedure using the

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 52–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Programming Experimental Procedures for Newtonian Kinematic Machines 53

rules and basic operations of T . In general, the basic actions allowed by T can be
scheduled in infinitely many ways to form procedures to operate any equipment
governed by T . Thus, the physical theory T can be used to specify an infinite set
of equipment and an infinite set of experimental procedures.

What can be computed by experimental procedures applied to given equipment?
An experimental procedure is similar to an algorithmic procedure, especially

those inspired by idealised machines. Algorithmic procedures are analysed and
used by coding them as programs, using different types of programming lan-
guages.

In this paper, we introduce and explore the question

How can we use a programming language to formalise experimental proce-
dures?

We fix a small fragment T of Newtonian Kinematics and partially formalise a
programming language EP (T ) to specify the class of all experimental procedures
based on T . The language EP (T ) is based upon simple kinematic principles but,
as we will show, can express significant and intriguing experimental procedures.
The purpose of the language EP (T ) is to formalise the “programming” of equip-
ment satisfying the specification T . In particular, the functions computed by a
given piece of equipment can be studied using all possible experimental proce-
dures in EP (T ). In describing the language EP (T ) we will, of necessity, focus
on syntax and take liberties with semantics. The idea of deriving a programming
language for a physical theory is general. The languages are imperative in style.

We will suggest ways of extending EP (T ) with new constructs, defined both
physically and mathematically. Finally, we consider the data types used for mea-
surement and we show that

Theorem 1. A function computable by an algorithm on the rational numbers
Q is computable by an experimental procedure in EP (T ) for the free motion of
particles in 1-dimension, using integer measurements only.

That computers can be implemented using Newtonian kinematics has been ob-
served, e.g., by using a billiard ball model by Fredkin and Toffoli [10].

The structure of the paper is this. In Section 2 we introduce the language
EP (T ), describing its syntax and semantics and giving examples of its proce-
dures. In Section 3 we look at some extensions of language. In Section 4 we show
how while programs on the data type of rational numbers can be translated
into procedures of EP (T ). Finally, in Section 5 we discuss some new directions.

This paper belongs to the series Beggs and Tucker [2], [3], [4], [5], which contain a
survey of problems, explanations of experimental computation and the methodol-
ogy, and many related results. Technically, only elementary Newtonian mechanics
is needed to follow our arguments here. However, some knowledege of the following
is necessary: classical computability theory, especially its conceptual foundations
(e.g., Odifreddi [12], Griffor [9], Stoltenberg-Hansen and Tucker [14], [15]); its ex-
tension to continuous data (e.g., Pour-El and Richards [13], Stoltenberg-Hansen
and Tucker [16], Tucker and Zucker [18], [19], Weihrauch [20]), and the different
approaches to understanding the physical basis of computation.



54 E.J. Beggs and J.V. Tucker

We wish to thank José Félix Costa, Peter Mosses and our anonymous referees
for comments on this paper.

2 Experimental Procedures and Languages

2.1 Experimental Procedures and Pseudocode

Consider a simple example. Imagine a kinematic machine M which decides the
membership of a set A ⊆ N. Suppose it does this by the following experimental
procedure:

“Given some number n ∈ N the operator of M chooses a particle P (n) and
position X(n) and projects the particle with a velocity V (n). Then the operator
waits for a time T (n) and if the particle returns before this time then declares
that n ∈ A and otherwise that n /∈ A.”

Procedures of this kind are a “design pattern” that might be called project and
wait. They can be applied to a number of kinematic systems, since the equip-
ment is not specified; see the bagatelle machines, marble runs, etc. in Beggs and
Tucker [2], [3], [4], [5]. We can express the experimental procedure in the follow-
ing experimental pseudocode:

exp-pseudocode Project and wait;
place particle mass M(n) radius R(n) at point X(n);
start clock t;
project particle at X(n) with velocity V (n);
wait T (n) units and do nothing;
if particle in tray then return “n ∈ A” else return “n /∈ A”
end Marble run.

To analyse such a procedure, a first step is to express the experimental procedure
precisely. To turn the pseudocode into code, we must clarify the

(a) individual actions, including parameters defining the mass and size of
particles and velocities;

(b) accuracy of measurements;
(c) sequencing of actions that define the procedure.

Specifically, let T be a fragment of Newtonian kinematics based on particles mov-
ing in a space, possibly containing objects and a force field, and, in particular,
allowing the following primitive experimental actions:

(i) place a particle in space;
(ii) project a particle in space;
(iii) observe a particle in space;
(iv) measure time on a clock; and

We will model each type of action by instructions and sequence them using
simple control constructs, such as iteration: in this way we determine languages
for programming Newtonian kinematic machines. We will define a language by
outlining its syntax and exploring its semantics with the help of examples.



Programming Experimental Procedures for Newtonian Kinematic Machines 55

2.2 A Simple Language EP (T ) for Experimental Procedures

We will define a simple language EP (T ) for expressing experimental procedures
for simple Newtonian kinematic systems.

Instructions. The capabilities of the language are defined by the following 10
general hypotheses that define a fragment T of physical theory.

Data. Measurements of the physical notions of position, size, mass, velocity etc.
are made using a data type of measurements. The data type is based upon a
subset M of numbers. The data type has very limited operations and tests: we
will assume that we can record measurements and compare them. We will work
with two choices of ordered sets of numbers, namely: M = Z, the set of integers,
and M = Q, the set of rational numbers. The data type of measurements are
the structures

(Z|0,≥) and (Q|0,≥).

We consider approximate measurements, to within certain accuracies ε ∈ M ,
and exact measurements, the special case ε = 0. We also need the Booleans for
comparisons.

Variables. We have variables for the numbers in M and for the Booleans. These
are the two basic types of the language. We may allow the nature of the variables
to be documented by comments space, mass, ... .

Introducing and Naming Particles. There is an unlimited supply of parti-
cles of any mass and radius. There is an unlimited supply of names or identifiers
from a set N to label the particles. Particles are chosen for possible use in a
system and named by an instruction of the form

p := particle(m, r)

which chooses a particle of mass m ∈M and radius r ∈M and names it p ∈ N ,
if no other particle has the name p, and places it in a store ready for use. If r = 0
then p is a point particle. This instruction is similar to a declaration of identifiers.

Removing Particles. Particles are removed from use in a system by an in-
struction of the form

remove(p)

which removes the particle named p in the system and places it in the store
ready for reuse.

Space. The particles move in a space S that has a coordinate system C to name
points and regions in space. C has a metric d : C×C → R to measure a notion of
distance between points. We will take space S to be represented by a coordinate
system C derived from Mn for n = 1, 2, 3.



56 E.J. Beggs and J.V. Tucker

Projection. There are devices for projecting a named particle from any point in
space with any velocity to arbitrary accuracy. These implement the instruction

project(p, x, εx, v, εv)

which projects a particle named p from point x ∈ Mn, to within an accuracy
of εx ∈ M , and with velocity v ∈ Mn, to within an accuracy of εv ∈ M . This
is subject to the two conditions that such a particle p exists and the point x is
available. Projecting a particle without error margins can be rewritten

project(p, x, v)

for convenience.

Placement. Placing a stationary particle from the store at any point is a
special case of projection with v = 0 and εv = 0. We rewrite the instruction
project(p, x, εx, 0, 0) as

place(p, x, εx)

which places a stationary particle named p at point x within an accuracy of εx,
subject to the two conditions above.

Observation. There are devices for finding the position of a particle in a system
with an error margin. These implement the operation

x := pos(p, ε)

which assigns to n variables x the n C-coordinates fromMn of the unique particle
named p with an error margin of ε; specifically, the coordinates of the particle
named p are in the ball

B(pos(p, ε), ε) = {x ∈Mn : d(x, pos(p, ε)) < ε}
where d is the metric on the coordinate system Mn.

Time. There is a clock to measure time. We allow the instruction

wait time t,

which does nothing for t ∈ M units of time. We can assume time is discrete or
continuous.

Measurements. Each measurement is a number from M . Physical quantities
can be measured in any units.

Control. In an experimental procedure instructions above are scheduled by
control constructs. We assume the scheduling of experimental procedures by the
three constructs of sequencing, conditional branching and iteration:



Programming Experimental Procedures for Newtonian Kinematic Machines 57

E1;E2,
if b then E1 else E2,

while b do E.

involving experimental procedures E,E1, E2 and test b. The tests are made form
the comparison relations ≥ on M and = on Booleans.

To these we add some language conventions concerning declarations of data
types and variables. These declarations we will illustrate by example rather than
discuss in general.

2.3 Behaviour of Procedures

There are much more difficult questions about what happens when the instruc-
tions are carried out. We make an important assumption on performing proce-
dures:

Finite Execution. In any finite time interval only finitely many instructions of
an experimental procedure can be completed.

In a specific language based on these hypotheses, normally it will be sufficient
to assume the following:

Duration of Instructions. There is a lower bound for the duration of all the
instructions.

For ease and elegance of calculations, we will further assume that

Fast Instructions. All the instructions are fast relative to the evolution of the
system and, hence, their finite duration can be neglected.

Alternately, if we chose not to neglect durations we could postulate specific ex-
ecution times for each instruction and keep precise track of these times in our
calculations. This temporal book-keeping would lead to changes in the timing of
various procedures.

Accuracy. Note that in this elementary language, we already introduce explicit
tolerances and error notions. For example, we use a function position(p, ε) that
returns the position of a particle only to within a given accuracy. To see that this
is physically sound, consider the measurement of position. A standard method
is to use a camera, with a suitable lens and film resolution for the pre-specified
accuracy, and simply take a picture at the given time. Now, suppose to the
contrary that we postulated an exact test that asked “Is the particle in a given
region?”. This is not physically sound. Using a camera we would take a photo-
graph, and could find that, up to the resolution of the camera, the particle was
on the boundary of the region. We would then have to take another photo at a
finer resolution to determine if the particle was in or out of the region. We might
have to take new photos many given times at successively increasing resolutions



58 E.J. Beggs and J.V. Tucker

to determine the answer, and this whole process could involve a large or even
unbounded time, which is not practically acceptable.

Time. In Newtonian mechanics it is assumed that there is an absolute universal
time. The wait instruction is defined directly in terms of this time.

Iteration. With the while statement in the language EP (T ), we must rule
out infinitely many operations being carried out in finite time, and that the Fi-
nite Execution Hypothesis is satisfied. A simple way to ensure that the while
statement always takes a finite time is by assuming that after performing the
test the while instruction waits for constant delay time δ > 0.

Measurements do not affect the system. This means that if we insert an ex-
tra measurement of the position of a particle this does not affect subsequent
measurements.

2.4 Examples

To give an impression of the language, here are some examples.

Example 1: Marble Run. Here is an example of a project and wait: the
marble run procedure from [4]. Let the data type M of measurement be Q. The
coordinate system for the space R

2 is that of polar coordinates (l, θ). The pro-
cedure does not involve approximations.

exp-procedure Marble run;
data
input n : nat;
output b : bool;
system x : space; m : mass; r : radius; p : particle; v : velocity; c : clock;
begin
initial calculations
m := M(n);
r := R(n);
x := X(n);
v := 1;
experiment
p := particle(m, r)
project(p, x, v);
wait time 3;
(l, θ) := pos(p, 1/10);
if 3/2 ≥ l then b := true else b := false
end Marble run.

The variable declarations above are merely comments not types.



Programming Experimental Procedures for Newtonian Kinematic Machines 59

Example 2: Observations of Solar System. For many centuries people
studied the sky to find the secret of planetary motion. The data were the an-
gular positions of the planets at given times (in historically appropriate form).
This gave rise to theories to try to fit the data of Ptolemy and Brahe by Coper-
nicus and Kepler, which Newton abstracted into his law of gravity. This was all
done with no ability to affect the system being measured; one recently we really
can create particles with a given position and velocity (e.g., space probes). The
observation of a solar system can be expressed by a procedure with a body of
the following form:

experiment
sun := particle(ms, rs);
earth := particle(me, re);
moon := particle(mm, rm);
project(sun, xs, vs);
project(earth, xe, ve);
project(moon, xm, vm);
wait time 1 year;
(ls, θs) := pos(sun, 1/10);
(le, θe) := pos(earth, 1/10);
(lm, θm) := pos(moon, 1/10);

To generate a series of observations of positions over time we need to repeat
these instructions.

2.5 Routines

Here are routines for testing if a particle is in a region and measuring its average
speed, both with an error margin. In these experimental procedures we call new
functions on the data type of measurement M which will be justified in the next
sections.

Proposition 1. The location of a particle p in the open ball B(x, r) can be
partially determined with error margin ε using EP (T ).

Proof. The answer can be given by a procedure with the following body:

experiment location
p := particle(m, r)
y := pos(p, ε/2)
if d(x, y) < r − ε then b := true;
if d(x, y) > r + ε then b := false;
if r − ε ≤ d(x, y) ≤ r + ε then don’t know;
end location

This test procedure, which returns 3 values, can be denoted: isparticle?(p, x, r, ε).



60 E.J. Beggs and J.V. Tucker

Proposition 2. In any system, the average speed of a particle over a period δ
can be measured with an error margin of ε using EP (T ).

Proof. The average speed of a particle over a period δ in a system can be found
using a procedure with the following body:

experiment speed
p := particle(m, r);
x := pos(p, εδ/2);
wait time δ;
y := pos(p, εδ/2);
v := d(x, y)/δ;
end average speed

3 Restrictions and Extensions of the Language for
Experimental Procedures

We can restrict and extend the language EP (T ) with new constructs.

3.1 Physical Extensions

Exactness. Despite the argument about soundness in 2.3, for mathematical
interest, we can require that instructions are exact, wherein each instruction
uses error ε = 0. Let this exact programming language be

EPε=0(T ) ⊂ EP (T ).

The use of exact instructions was seen in [4], [5].

We can also strengthen the hypotheses of EP (T ). There are also quite a va-
riety of changes possible to the theory T .

Particles. There are other shapes for objects to project such as polyhedra.
The use of triangular projectiles was discussed in [5].

Time. There are other natural instructions for time. Suppose there are clocks
to measure time and implement the instructions

start(c),
t := read(c),
stop(c),

which declares and initialises a clock c, reads the time on clock c and stores
in location t, and stops the clock c, respectively. With these new instructions
we can iterate experimental procedures for a fixed period or indefinitely in time.



Programming Experimental Procedures for Newtonian Kinematic Machines 61

The bounded wait instruction is easily implemented using the clocks and while
instruction, e.g.,

start(c);
while read(c) < t do skip;
stop(c)

This waits for time “t up to an error of δ” which means some time in the interval
[t, t+ δ]. Also, unbounded waiting is possible, e.g.,

start(c);
while true do skip;
stop(c).

Furthermore, time might be continuous rather than discrete.

3.2 Mathematical Extensions

Data. In place of Z and Q there are other choices for M , including: finite ex-
tensions of the integers and rationals, such as Z(π) and Q(π), or the set R of
reals. The number systems for the physical quantities could all be distinct (e.g.,
continuous state and discrete time).

Calculators. The data type M of measurements can be enriched with oper-
ations and tests, for which there are many possible choices. For example, in case
M = Z, we can extend the data type M to the ordered ring with equality

M = (Z|0, 1,+,−, ·,=,≥);

and, in the case M = Q, we can extend the data type M to the ordered field
with equality

M = (Q|0, 1,+,−, ·,−1 ,=,≥).

Composing these operations make algebraic formulae called terms or expressions.
Suppose there are calculators for evaluating these algebraic formulae on the
data type M of measurements. Then we may add to the language EP (T ) the
instructions

y := f(x)

which calculate the value f(x) of the formula f on the argument x and stores it
in location y.

The impact of this mathematical extension depends upon what operations are as-
sumed on M . The control constructs (especially the while statement) in EP (T )



62 E.J. Beggs and J.V. Tucker

turns many calculators into universal computers, which can compute all func-
tions definable by algorithms1.

Computers. If, in place of calculators, we assume there are computers ca-
pable of computing all algorithms over the data in M then we interfere with
the comparison of algorithmic and experimental procedures. However, such ex-
tensions have a use in making a language for integrating analogue and digital
computation.

4 Experimental Computation with Rational Numbers

The data type of measurement M seems a relatively simple component in the
design of EP (T ), when introduced in Section 2. Its purpose is to record and
compare measurements. Later, in Section 3, we saw that adding operations to M ,
turning M into a calculator, had computational consequences and needed care.
Here we will examine in more detail the influence of M on the computational
powers of EP (T ). First, we will show how to implement basic integer and rational
arithmetic using experimental procedures.

Theorem 2. There is a 1-dimensional Newtonian machine, based upon the mo-
tion of free particles on the line, which can be programmed by a procedure of
EP (T ), with the set M = Z of integers as data type of measurement, to perform
the addition of integers.

Proof. We can add two integers n and m by the following exact experimental
procedure:

exp-procedure Addition
project(p, n, 0,m, 0)
wait time 1
pos(p, 0)
end

It is enough to place particles at integer positions and fire them at integer veloc-
ities and to wait a positive integer time (all without error). Addition does not
need even a test on M ! For the subtraction and multiplication of integers we
need to add a test ≥ 0 and a changesign operation to the set of integers.

Theorem 3. Using the physical machine in 2, we can implement ring opera-
tions +,−,× and the tests = for integers by experimental procedures in EP (T ),
equipped with data type of measurement M = (Z|changesign,≥).
1 In general, for an arbitrary abstract data type, if we add arrays to the while language

we have a programming language that is universal and capable of programming all
deterministic algorithms based on the operations of the data type, i.e. a general
purpose computer for that data type (Tucker and Zucker [18]). However, since our
data type M is not arbitrary but based on the integer Z, rational Q or real numbers
R then the while construct is sufficient without arrays (Tucker and Zucker [18]).



Programming Experimental Procedures for Newtonian Kinematic Machines 63

Proof. Addition follows from Theorem 2. Subtraction is implemented by com-
bining the changesign on M and the experimental procedure for addition in the
proof of Theorem 2, since n−m = n+ changesign(m).

To multiply n and m we use the following exact experimental procedure:

exp-procedure Multiplication
project(p, 0, 0, n, 0)
if m ≥ 0 then (wait time m) else (wait time changesign(m))
if m ≥ 0 then (pos(p, 0)) else (changesign(pos(p, 0)))
end

With this simple data type of measurement M = (Z|changesign,≥) we can
build the ordered field of rational numbers:

Theorem 4. Using the physical machine in 2, we can implement all of +,−,
×,−1 and the test = for rational numbers by experimental procedures in EP (T )
with data type of measurement M = (Z|changesign,≥).

Proof. We represent the rational n
m as a pair (n,m) of integers with m > 0.

We can derive experimental procedures to implement addition, subtraction
and multiplication of rational numbers from the usual formulae for their defini-
tion in this representation, i.e. (n,m)±(a, b) = (n b±am,m b) and (n,m).(a, b) =
(n a,m b).

To implement the inverse on (n,m), we need to test for n = 0. This is done
using the given test n ≥ 0 and changesign. Now if n �= 0 then we swap n and
m, changing the signs of both if necessary. If n = 0 the inverse procedure can
give an exception. Testing equality on rationals is given by (n,m) = (a, b) if, and
only, if n b = am and testing (n,m) ≥ 0 is just n ≥ 0.

We have used EPε=0(T ) with its exact measurements. Consider the experimen-
tal calculations with errors. In the case of addition, if we assume that the pos
command takes the real position and rounds it to the nearest integer, then we
could use non-zero errors in this procedure. In the case of multiplication, it is
more difficult to introduce the possibility of errors (at least errors in the veloc-
ity), as we would have to use a formula to estimate the error; this is somewhat
self-defeating.

Theorem 5. Let f : Q
n → Q

m be computable by an algorithmic procedure.
Then f is computable by an experimental procedure of EP (T ) with data type of
measurement M = (Z|changesign,≥).

Proof. The computable functions on Q can be defined by the while program
languageWhile(Σ) applied to the algebra A = (Q|0, 1,=,−, ·,−1 , changesign,≥
,=) with signature Σ. The theorem follows from the construction of a translator
or compiler c from While(Σ) to EP (T ). The definition of this mapping c :
While(Σ) → EP (T ) is by structural induction on while programs. The basis
case consists of assignments of the form x := e, where e is an expression or
formula over Σ, and follows from the following lemma.



64 E.J. Beggs and J.V. Tucker

Lemma 3. There is a compiler that translates any expression over Σ into an
experimental procedure over of EP (T ) over M = (Z|changesign,≥).

Proof. From Theorem 4, we know there exist experimental procedures for every
basic operation named in Σ. These can be combined by sequencing to create
experimental procedures for arbitrary expressions. The compiler is defined by
structural induction on terms using these observations.

The induction step for Theorem 5 is straight-forward since we included the three
basic program forming operations of sequencing, conditional, and iteration in
EP (T ).

5 Concluding Remarks

In contrast to algorithmic computation, the idea of experimental computation
is not understood. It is a challenge to create a theory of experimental computa-
tion. At present, physical aspects of computation are being mapped through the
search for particular examples of experimental computation and unconventional
technologies for computing. Some attempts at formulating general principles are
being made in order to argue about general processing capabilities (e.g., the
analysis in Akl [1] is designed to rule out universal machines on broad physical
grounds). It is too early to expect anything other than a variety of agendas, ap-
proaches and debates, possibly based upon misunderstanding. We do not know
yet how to theorise about experimental computation; all issues are subtle, both
mathematically, physically, and philosophically; and we all express ourselves with
difficulty.

We are developing a methodology for theorising about experimental compu-
tation that uses the concepts of experimental procedure and equipment : see [4],
[5], [6]. Theoretical intuitions about someone making experiments turn out to
be strikingly similar to intuitions about algorithms and computers. However,
the primitive actions are very different and they are dependent on physical the-
ory for their form and meaning. Our belief that languages such as EP (T ) are
useful tools for a systematic theoretical investigation of experimental compu-
tation using logical methods must be tested by further research. In this paper
we have proposed a syntax for the language EP (T ). Syntax has the power to
isolate and organise important notions and processes, as we have seen again and
again in algebra, logic, linguistics, and programming. Syntax shapes the explo-
ration of diverse semantic models and the search for verisimilitude. However,
our discussion is not complete without tackling other aspects such as semantics.
Semantics will depend upon interpretations of physical theory, few of which are
free of philosophical problems.

The analysis of experimental computation using languages for expressing ex-
perimental procedures seems to be new. Given a language syntax, like EP (T ),
for experimental procedures, one can explore formally



Programming Experimental Procedures for Newtonian Kinematic Machines 65

(i) operational ideas about experiments in a physical theory;
(ii) logical properties of a physical theory;
(iii) comparisons of experimental procedures by translations;
(iv) properties of data and their physical representation;
(v) adding more complex physical constructs: for example, in the case of

EP (T ), not allowing the particles in a system to have unique names; involving
non-deterministic choice in control; taking time and other measurements to be
continuous data;

(vi) adding more complex physical constructs, such as introducing typing
systems for physical concepts, and even physical units (see [7]);

The theory of programming languages has a wealth of questions and technical
insights that are relevant to developing language for experimental computation.
The use of simple programming languages such as EP (T ) will help shape a
general theory. Applications with digital-analogue computation and complexity
theory is a possibility (after [6]).

But our earlier examples show that the notion of equipment in Newtonian
mechanics also needs to be analysed. We have proposed

Experimental computation = Experimental procedure + Equipment.

A formal theory is needed that constrains the architecture and construction
of mechanical systems and formally defines notions of constructible equipment.
We have outlined in [4] the problems of designing languages for the specification
of constructible equipment and of combining them with languages like EP (T )
for experimental procedures to make complete languages for experimental com-
putation. To compare experimental computation with digital computation we
need the equation:

Digital computation language = Algorithmic language + Hardware description
language.

This is unfamiliar in programming language theory because its primary aim
is to formulate algorithms that are independent of machines. We expect that
research on languages for experimental computation will lead to new ideas and
techniques in programming language theory.

References

1. Akl, S.G.: Conventional or unconventional: Is any computer universal? In:
Adamatzky, A., Teuscher, C. (eds.) From Utopian to Genuine Unconventional
Computers, pp. 101–136. Luniver Press, Frome (2006)

2. Beggs, E. J., Tucker, J.V.: Computations via experiments with kinematic systems,
Research Report 4.04, Department of Mathematics, University of Wales Swansea,
March 2004 or Technical Report 5-2004, Department of Computer Science, Uni-
versity of Wales Swansea (March 2004)

3. Beggs, E.J., Tucker, J. V.: Embedding infinitely parallel computation in Newtonian
kinematics. Applied Mathematics and Computation 178, 25–43 (2006)



66 E.J. Beggs and J.V. Tucker

4. Beggs, E. J., Tucker, J.V.: Can Newtonian systems, bounded in space, time, mass
and energy compute all functions? Theoretical Computer Science 371, 4–19 (2007)

5. Beggs, E.J., Tucker, J. V.: Experimental computation of real numbers by Newto-
nian machines. Proceedings Royal Society Series A 463, 1541–1561 (2007)

6. Beggs, E.J., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with
experiments as oracles (in preparation, 2008)

7. Chen, F., Rosu, G., Venkatesan, R.P.: Rule-based analysis of dimensional safety.
In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706. Springer, Heidelberg (2003)

8. Geroch, R., Hartle, J.B.: Computability and physical theories. Foundations of
Physics 16, 533–550 (1986)

9. Griffor, E. (ed.): Handbook of Computability Theory. Elsevier, Amsterdam (1999)
10. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical

Physics 21, 219–253 (1982)
11. Kreisel, G.: A notion of mechanistic theory. Synthese 29, 9–24 (1974)
12. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of

mathematics, vol. 129. North-Holland, Amsterdam (1989)
13. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics, Perspectives

in Mathematical Logic. Springer, Berlin (1989)
14. Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, S., Gab-

bay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Semantic
Modelling, vol. IV, pp. 357–526. Oxford University Press, Oxford (1995)

15. Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor,
E.R. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam
(1999)

16. Stoltenberg-Hansen, V., Tucker, J. V.: Concrete models of computation for topo-
logical algebras. Theoretical Computer Science 219, 347–378 (1999)

17. Stoltenberg-Hansen, V., Tucker, J. V.: Computable and continuous partial ho-
momorphisms on metric partial algebras. Bulletin for Symbolic Logic 9, 299–334
(2003)

18. Tucker, J. V., Zucker, J.I.: Computable functions and semicomputable sets on many
sorted algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of
Logic for Computer Science, vol. V, pp. 317–523. Oxford University Press, Oxford
(2000)

19. Tucker, J. V., Zucker, J.I.: Abstract versus concrete computation on metric partial
algebras. ACM Transactions on Computational Logic 5, 611–668 (2004)

20. Weihrauch, K.: Computable Analysis, An introduction. Springer, Heidelberg (2000)
21. Yao, A.: Classical physics and the Church Turing thesis. Journal ACM 50, 100–105

(2003)



Linear, Polynomial or Exponential?

Complexity Inference in Polynomial Time

Amir M. Ben-Amram1,�, Neil D. Jones2, and Lars Kristiansen3

1 School of Computer Science, Tel-Aviv Academic College, Israel
2 DIKU, the University of Copenhagen, Denmark

3 Department of Mathematics, University of Oslo, Norway
amirben@mta.ac.il, neil@diku.dk, larskri@iu.hio.no

Abstract. We present a new method for inferring complexity properties
for imperative programs with bounded loops. The properties handled are:
polynomial (or linear) boundedness of computed values, as a function of
the input; and similarly for the running time.

It is well known that complexity properties are undecidable for a
Turing-complete programming language. Much work in program analysis
overcomes this obstacle by relaxing the correctness notion: one does not
ask for an algorithm that correctly decides whether the property of in-
terest holds or not, but only for “yes” answers to be sound. In contrast,
we reshaped the problem by defining a “core” programming language
that is Turing-incomplete, but strong enough to model real programs
of interest. For this language, our method is the first to give a certain
answer; in other words, our inference is both sound and complete.

The essence of the method is that every command is assigned a “com-
plexity certificate”, which is a concise specification of dependencies of
output values on input. These certificates are produced by inference rules
that are compositional and efficiently computable. The approach is in-
spired by previous work by Niggl and Wunderlich and by Jones and
Kristiansen, but use a novel, more expressive kind of certificates.

Keywords: implicit computational complexity, polynomial time com-
plexity, linear time complexity, static program analysis.

1 Introduction

Central to the field of Implicit Computational Complexity (ICC) is the following
fundamental observation: it is possible to restrict a programming language syn-
tactically so that the admitted programs will possess a certain complexity, say
polynomial time. Such results lead to a sweet dream: the “complexity-certifying
compiler,” that will warn us whenever we compile a non-polynomial algorithm.

Since (as is well known) deciding such a property precisely for any program
in a Turing-complete language is impossible, the goal in this line of research is

� Research performed while visiting DIKU, the University of Copenhagen, Denmark.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 67–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



68 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

to extend the capabilities of the certifying compiler as much as possible, while
taking into account the price: in other words, explore the tradeoff between the
completeness of the method and the method’s complexity. At any rate, we insist
on the certification being sound—no bad programs shall pass.

The method presented in this paper is a step forward in this research program.
It can be used to certify programs as having a running time that is polynomial in
certain input values; we also present a variant for certifying linear time. Further,
we determine which variables have values that are polynomially (or linearly)
bounded. The latter is, in fact, the essential problem: since we will only consider
bounded loops, deriving bounds on the running time amounts to deriving a
bound on the counters that govern the loops.

Our work complements previous research by Kristiansen and Niggl [KN04],
Niggl and Wunderlich [NW06], and Jones and Kristiansen [JK08]. All methods
apply to a structured imperative language. The last two, in particular, take the
form of a compositional calculus of certificates—to any command a “certificate”
is assigned which encodes the certified properties of the command, and a cer-
tificate for a composite command is derived from those of its parts. We keep
this elegant structure, but use a new kind of certificates designed to accurately
discern phenomena such as accumulator variables in loops (think of a command
X := X+Y within a loop) as well as self-multiplying variables (X := X+X).

Normally, in theoretical research such as this, one does not bother with al-
gorithms for analysing a full-featured practical programming language, but con-
siders a certain core language that embodies the features of algorithmic interest.
It is well known that one can strip a lot of “syntactic sugar” out of any practical
programming language to obtain such a core which is still Turing-complete, and
once a problem is solved for the core, it is as good as solved for the full lan-
guage (up to implementing the appropriate translations). We go a step further
by proposing that if certain features are beyond the scope or our analysis, getting
rid of them is best done in the passage to the core language. Here is the proto-
typical example: Very often, program analyses take a conservative approach to
modelling conditionals: both branches are treated as possible. Since our analysis
also does so, we include in our core language only the following form for the
conditional command: if ? then C1 else C2 .

Here C1, C2 represent commands, while the question mark represents that the
conditional expression is hidden. In the core language, this command has a non-
deterministic semantics. Thus, the passage to the core language is an abstracting
translation: it abstracts away features that we overtly leave out of the scope of
our analysis. Our point of view is that it is beneficial to separate the concern of
parsing and abstracting practical programs (the front end) from the concern of
analysing the core language (the back end). A simple-minded abstraction (e.g.,
really just hiding the conditionals) is clearly doable, so there should be no doubt
that a front end for a realistic language can be built. Current static analysis
technology allows the construction of sophisticated front ends. Our theoretic ef-
fort will concentrate on the “back end”—analysing the core language. The reader



Linear, Polynomial or Exponential? Complexity Inference 69

X ∈ Variable ::= X1 | X2 | X3 | . . . | Xn

e ∈ Expression ::= X | (e + e) | (e * e)

C ∈ Command ::= skip | X:=e | C1;C2 | loop X {C}
| if ? then C else C

Fig. 1. Syntax of the core language. Variables hold nonnegative integers.

may want to peek at Figure 1, showing the syntax of the language. Its semantics
is almost self-explanatory, and is made precise in the next section.

The main result in this paper is a proof that the problems of polynomial and
linear boundedness are decidable for the core language. Our certification method
solves this problem completely: for example, for the problem of polynomial run-
ning time, we will certify a core-language program if and only if its time is
polynomially bounded. Furthermore, the analysis itself takes polynomial time.

A brief comparison with previous work. Both previous work we mentioned do not
use a core language to set a clear abstraction boundary. However, [JK08] treats
(implicitly) the same core language. Its inferences are sound, but incomplete, and
its complexity appears to be non-polynomial (this paper is, essentially, a journal
version of [JK05]—where completeness was wrongly claimed). The (implicit) core
language treated by [NW06] can be viewed as an extension of our core language.
When applied to our language, their method too is sound but incomplete (its
complexity is polynomial-time, like ours).

2 Problem Definition

The syntax of our core language is described in Figure 1. In a command loop X {C},
variable X is not allowed to appear on the left-hand side of an assignment in the
loop body C.

Data. It is most convenient to assume that the only type of data is nonnegative
integers. More generality is possible but will not be treated here.

Command semantics. As already explained, the core language is nondetermin-
istic. The if command represents a nondeterministic choice. The loop command
loop X� {C} repeats C a number of times bounded by the value of X�. Thus, it
is also nondeterministic, and may be used to model different kinds of loops (for-
loops, while-loops) as long as a bounding variable can be statically determined.

While the use of bounded loops restricts the computable functions to the
primitive recursive class, this is still rich enough to make the problem challenging
(and it can still be pushed to undecidability, if we give up the abstraction and
include conventional, deterministic conditionals, such as an equality test1).

1 Undecidability for such a language can be proved by a reduction from Hilbert’s 10th
problem.



70 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

The formal semantics associates with every command C over variables X1, . . . , Xn
a relation [[C]] ⊆ N

n × N
n. In the expression �x[[C]]�y, vector �x (respectively �y) is

the store before (after) the execution of C.
The semantics of skip is the identity. The semantics of an assignment leaves

some room for variation: either the precise value of the expression is assigned, or
a nonnegative integer bounded by that value. The latter definition is useful for
abstracting non-arithmetic expressions that may appear in a real-life program.
Because our analysis only derives monotone increasing value bounds, this choice
does not affect the results. Finally, composite commands are described by the
straight-forward equations:

[[C1; C2]] = [[C2]] ◦ [[C1]]
[[if ? then C1 else C2]] = [[C1]] ∪ [[C2]]

[[loop X� {C}]] = {(�x, �y) | ∃i ≤ x� : �x[[C]]i�y}

where [[C]]i represents [[C]] ◦ · · · ◦ [[C]] (i occurrences of [[C]]).
For every command we also define its step count (informally referred to as

running time). For simplicity, the step count of an atomic command is defined
as 1. The step count of a loop command is the sum of the step counts of the
iterations taken. Because of the nondeterminism in if and loop commands, the
step count is also a relation. We also refer to the iteration count , which only
grows by one each time a loop body is entered. The iteration count is linearly
related to the step count, but is easier to analyse.

Goals of the analysis. Our polynomial-bound calculus (Section 3) reveals, for
any given command, which variables are bounded throughout any computation
by a polynomial in the input variables2. The linear-bound calculus (Section 4)
identifies linearly-bounded variables instead. Finally, Section 5 extends these
methods to characterize commands where the maximum step count is bounded
polynomially (respectively, linearly).

As a by-product, the analysis reveals which inputs influence any specific out-
put variable.

An example. In the following program, all variables are polynomially bounded
(we invite the reader to check); this is not recognized by the previous methods.
In the next section we explain how the difficulty illustrated by this example was
overcome.

loop X5 {
if ? then { X3 := X1+X2; X4 := X2 }

else { X3 := X2; X4 := X1+X2 };
X1 := X3 + X4;

}

2 Thus, as pointed out by one of the reviewers, the title of this paper is imprecise:
we distinguish polynomial growth from super-polynomial one, be it exponential or
worse.



Linear, Polynomial or Exponential? Complexity Inference 71

3 A Calculus to Certify Polynomial Bounds

Our calculus can be seen as a set of rules for abstract interpretation of the core
language, in the sense of [Cou96]3. The maximal output value resulting of a given
command C is some function f of the input values x1, . . . , xn. There are infinitely
many possible functions; we map each one into an abstract value of which there
are finitely many. Each abstract value V is associated with a concretisation γ(V )
which is a (possibly infinite) set of functions such that f is bounded by one of
them.

Let D = {0, 1, 1+, 2, 3} with order 0 < 1 < 1+ < 2 < 3. Informally, D is a set
of dependency types, describing how a result depends on an input, as follows:

value 3 2 1+ 1 0
dependency at least

type exponential polynomial additive copy none

The notation [x = y] below denotes the value 1 if x = y and 0 otherwise.

Definition 1. Let V ∈ D
n. The concretisation γ(V ) includes all functions de-

fined by the following rules, and none others. (1) If there is an i such that
Vi = 1, then γ(V ) includes f(�x) = xi. (2) γ(V ) includes all polynomials of form
(
∑

i aixi) + P (�x), where ai ≤ [Vi = 1+], and P is a polynomial of non-negative
coefficients depending only on variables xi such that Vi = 2. (3) If there is an i
such that Vi = 3, then γ(V ) is the set of all n-ary functions over N.

A core-language expression e obviously describes a polynomial and it is
straight-forward to obtain a minimal vector α(e) such that γ(α(e)) includes
that polynomial.

A basic idea (going back to [NW06]) is to approximate the relation �x[[C]]�y by a
set of vectors V1, . . . , Vn that describe the dependence of y1, . . . , yn respectively
on �x. We combine the vectors into a matrix M ∈ D

n×n where column j is Vj .
Thus, Mij is the dependency type of yj on xi. A complementary and useful view
is that Mij describes a data-flow from xi to xj . In fact, M can be viewed as a
bipartite, labeled digraph where the left-hand (source) side represents the input
variables and the right-hand (target) side represents the output. The set of arcs
A(M) is the set {i → j | Mij 	= 0}. A list of arcs may also be more readable
than a matrix. For example, consider the command loop X3 {X1:= X1+ X2} or
the command X1:= X1+X3∗X2. Both are described (in the most precise way) by

the following collection of arcs: X2
1→ X2, X3

1→ X3, X1
1+→ X1, X2

2→ X1, X3
2→ X1

or, as a matrix,

⎡

⎣
1+ 0 0
2 1 0
2 0 1

⎤

⎦.

Such matrices/graphs make an elegant abstract domain (or “certificates”) for
commands because of the ease in which the certificate for a composite command
3 Abstract interpretation is a well-developed theoretical framework, which can shed

light on our algorithm. However in this paper we avoid relying on prior knowledge
of abstract interpretation.



72 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

can be derived. Let � denote the LUB operation on D, and extend it to ma-
trices (elementwise). If M1,M2 describe commands C1, C2, it is not hard to see
that M1 �M2 describes if ? then C1 else C2. For transferring the sequential
composition of commands to matrices, we define the following operation: a · b is
0 if either a or b is 0, and otherwise is the largest of a and b. Intuitively, compo-
sition should be represented by matrix product using · as “multiplication.” The
problem, though, is what result an “addition” ⊕ of 1+s should be. Consider the
commands

C1 = X2 := X1; X3 := X1

C2 = X1 := X2 + X3

The graph representing C1 has arcs X1
1→ X2, X1

1→ X3 and the graph for C2

has X2
1+→ X1, X3

1+→ X1. Hence entry M11 of the matrix for C1; C2 has value
1 · 1+ ⊕ 1 · 1+ = 1+ + 1+. And for this example, the right answer is 2, because
the command doubles X1 (and in a loop, X1 will grow exponentially). However,
the graph for C1′ = if ? then X2 := X1 else X3 := X1 also includes the arcs
X1

1→ X2, X1
1→ X3, but when C1′ is combined with C2, no doubling occurs.

Our conclusion is that matrices are just not enough, and in order to allow for
compositional computation, our certificates retain additional information. Basi-
cally, we add to the matrices another piece of data which distinguishes between
a pair of 1’s that arises during a single computation path (as in C1) and a pair
that arises as alternatives (as in C1′). We next move to the formal definitions.

3.1 Data Flow Relations

A few notations : We use A1(M) to denote the set of arcs labeled by {1, 1+}. For
any set S, C2(S) is the set of 2-sets (unordered pairs) over S. For M ∈ D

n×n,
we define r(M) to be C2(A1(M)). The identity matrix I has 1 on the diagonal
and 0 elsewhere.

A dataflow relation, or DFR, is a pair (M,R) where M ∈ D
n×n (and has the

meaning described above) and R ⊆ C2(A1(M)). Thus, R consists of pairs of
arcs.

For compactness, instead of writing {i → j, i′ → j′} ∈ R we may write
R(i, j, i′, j′).

Definitions: Operations on matrices and DFRs.
1. A⊗B is (�, ·) matrix product over D.

2. (M1, R1) � (M2, R2)
def
= (M1 �M2, (R1 ∪R2) ∩ C2(A1(M1 �M2))).

3. (M,R) · (M ′, R′)
def
= (M ′′, R′′), where:

M ′′ = (M ⊗M ′) � {i 2→ j | ∃s 	= t.R(i, s, i, t) ∧R′(s, j, t, j)}
R′′ = {{i→ j, i′ → j′} ∈ C2(A1(M ′′)) | ∃s, t.R(i, s, i′, t) ∧R′(s, j, t, j′)}
∪ {{i→ j, i→ j′} ∈ C2(A1(M ′′)) | ∃s.(i, s) ∈ A1(M) ∧R′(s, j, s, j′)}
∪ {{i→ j, i′ → j} ∈ C2(A1(M ′′)) | ∃s.R(i, s, i′, s) ∧ (s, j) ∈ A1(M ′)}.



Linear, Polynomial or Exponential? Complexity Inference 73

Observe how the rule defining M ′′ uses the information in the R-parts to
identify computations that double an input value by adding two copies of it,
a situation described by the diamond :

i

t

s

j���

���

���

���

The reader may have guessed that if this situation occurs in analysing a
program, the two meeting arcs will necessarily be labeled with 1+.

Proposition 1. The product is associative and distributes over �, i.e.,
(M,R) · ((M1, R1) � (M2, R2)) = ((M,R) · (M1, R1)) � ((M,R) · (M2, R2)) .

4. Powers: defined by (M,R)0 = (I, r(I)) and (M,R)i+1 = (M,R)i · (M,R).

5. Loop Correction: for a DFR (M,R), define LC�(M,R) = (M ′, R′) where M ′

is identical to M except that:
(a) For all j such that Mjj ≥ 2, M ′

�j = 3;
(b) For all j such that Mjj = 1+, M ′

�j = M�j � 2;
and R′ = R ∩ C2(A1(M ′)).
Remarks: Rule (a) reflects the exponential growth that results from mul-
tiplying a value inside a loop. If Xj is doubled, it will end up multiplied
by 2x� . Rule (b) reflects the behaviour of accumulator variables. Intuitively,
Mjj = 1+ reveals that some quantity y is added to Xj in the loop. Therefore,
the effect of the loop will be to add x� · y, hence the correction to M�j .

6. Loop Closure: For a given �, the loop closure with respect to X� is the limit
(M∗, R∗) of the series (Mi, Ri) where:

(�)
(M0, R0) = (I, r(I))
(M1, R1) = (M0, R0) � (M,R)

(Mi+1, Ri+1) = (LC�(Mi, Ri))2

This closure can be computed in a finite (polynomial) number of steps be-
cause the series is an increasing chain in a semilattice of polynomial height.
A more natural specification of the closure may be the following: (M∗, R∗)
is the smallest DFR that is at least (I, r(I)) and is fixed under both multi-
plication by (M,R) and under Loop Correction (the meaning of “smallest”
and “at least” has yet to be made precise). However, the definition above
(as a limit) is the useful one from the algorithmic point of view.

Calculation of DFRs

The following inference rules associate a DFR with every core-language com-
mand. The association of (M,R) with command C is expressed by the judgment
� C : M,R.

(Skip) � skip : I, r(I)



74 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

(Assignment)
α(e) = V

� Xi:= e : M, r(M)

where M is obtained from I by replacing the ith column with V .

(Choice)
� C1 : M1, R1 C2 : M2, R2

� if?then C1else C2 : (M1, R1) � (M2, R2)

(Sequence)
� C1 : M1, R1 C2 : M2, R2

� C1; C2 : (M1, R1) · (M2, R2)

(Loop)
� C : M,R

� loop X�{C} : (M∗, R∗)

where (M∗, R∗) is the loop closure of (M,R) with respect to X�.
The DFR for a command can always be computed in time polynomial in the

size of the command (i.e., the size of its abstract syntax tree). This is done
bottom up, so (since the calculus is deterministic) every node is treated once.
The work per node is the application of one of the above rules, each of which is
polynomial-time.

4 Certifying Linear Bounds

We present an adaption of the method to certify linear bounds on variables.
Essentially the only change is that when something is deduced to be non-linear,
it is labeled by a 3. Thus, 2’s only describe linear bounds. This is summarized
here:

value 3 2 1+ 1 0
dependency

type nonlinear linear additive copy none

For example: the command X1:= X1+2*X2 is described by X2
1→ X2, X2

2→ X1,

X1
1+→ X1.
The calculus �lin for linear bounds deviates from the polynomiality calculus

(judgments �) only as follows.

1. In abstracting expressions into vectors V ∈ {0, 1, 1+, 2}n, we treat linear
expressions as before, while every occurrence of multiplication e1∗e2 creates
a Type-3 dependence on all variables in e1 and e2. Formally, the abstraction
and concretisation functions α, γ are replaced with appropriate αlin and γlin.

2. For a DFR (M,R), define LClin� (M,R) = (M ′, R′) where M ′ is identical
to M except that: for all j such that Mjj ∈ {1+, 2}, M ′

�j = 3; and R′ =
R ∩ C2(A1(M ′)). LClin replaces LC in the calculation of the loop closure.



Linear, Polynomial or Exponential? Complexity Inference 75

5 Analysing Running Time

Recall that the iteration count grows by one each time a loop body is entered.
To certify that it is polynomially (or linearly) bounded, it suffices to include
an extra variable in the program that sums up the values of loop counters, and
certify that this variable is so bounded. We can extend our calculi to implicitly
include this variable, so that there is no need to actually modify the program.
This is achieved as follows.

1. Matrices become of order (n+1)×(n+1). Thus the identity matrix I includes
the entry Xn+1

1→Xn+1 which reflects preservation of the extra variable.
2. The inference rule for the loop command is modified to reflect an implicit

increase of the extra variable. The rule thus becomes:

(Loop)
� C : M,R

� loop X�{C} : M ′, R′

where M ′, R′ are obtained from the loop closure (M∗, R∗) by:

M ′ = M∗ � {� 1+→ (n+ 1), (n+ 1) 1+→ (n+ 1)}
R′ = R∗ ∪ {{i→ j, �→ n+ 1} | i→ j ∈ A1(M)}

We assume that the reader can see that the implicit Xn+1 is treated by these
rules just as a variable that actually accumulates the loop counters.

6 Concluding Remarks

We have presented a new method for inferring complexity bounds for imperative
programs by a compositional program analysis. The analysis applies to a lim-
ited, but non-trivial core language and proves that the properties of interest are
decidable. We believe that this core-language framework is important for giving
a robust yardstick for a project: we have a completeness result, so we can say
that we achieved our goal (which, in fact, evolved from the understanding that
previous methods did not achieve completeness for such a language).

This work is related, on one hand, to the very rich field of program analysis
and abstract interpretation. These are typically targeted at realistic, Turing
complete languages, and integrating our ideas with methods from that field is
an interesting direction for further research, whether one considers expanding
our approach to a richer core language, or creating clever front-ends for realistic
languages.

Another connection is with Implicit Computational Complexity. In this field,
a common theme is to capture complexity classes. Our core language cannot
be really used for computation, but one can define a more complete language
that has a simple, complexity-preserving translation to the core language. For
example, let us provide the language with an input medium in the form of a



76 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

binary string, and with operations to read it, as well as reading its length; and
then with a richer arithmetic vocabulary, including appropriate conditionals.
We obtain a “concrete” programming language Lconcrete that has an evident
abstracting translation T into the core language, and it is not hard to obtain re-
sults such as: f : N→ N is PTIME-computable if and only if it can be computed
by an L program p such that T p is polynomial-time (and hence recognized so
by our method). We leave the details to the full paper. Note that no procedure
for inferring complexity will be complete for Lconcrete itself, precisely because it
is powerful enough to simulate Turing machines.

Finally, let us point out some directions for further research:

– Extending the core language. For instance, our language does not include
constants as do the languages considered in [KN04, NW06]. Neither does
it include data types of practical significance such as strings (these too are
present in the latter works).

– Investigating the design of front ends for realistic languages.
– Extending the set of properties that can be decided beyond the current

selection of linear and polynomial growth rates and running times.

Acknowledgement. We are grateful to the CiE reviewers for some very detailed
and helpful reviews.

References

[Cou96] Cousot, P.: Abstract interpretation. ACM Computing Surveys 28(2), 324–328
(1996)

[JK05] Jones, N.D., Kristiansen, L.: The flow of data and the complexity of algo-
rithms. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS,
vol. 3526, pp. 263–274. Springer, Heidelberg (2005)

[JK08] Jones, N.D., Kristiansen, L.: A flow calculus of mwp-bounds for complexity
analysis. ACM Trans. Computational Logic (to appear)

[KN04] Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative
programming languages. Theor. Comput. Sci. 318(1-2), 139–161 (2004)

[NW06] Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and lin-
ear/polynomial space for imperative programs. SIAM J. Comput 35(5), 1122–
1147 (2006)



A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 77–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Summation Algorithm from 11th Century
China

Possible Relations Between Structure and Argument

Andrea Bréard

Université des Sciences et Technologies de Lille, U.F.R de Mathématiques,
Laboratoire Paul Painlevé

andrea.breard@math.univ-lille1.fr

REHSEIS - UMR7596 Recherches Epistémologiques et Historiques sur les Sciences
Exactes et les Institutions Scientifiques

Abstract. Mathematical writings in China relied entirely on the al-
gorithmic mode to express sequences of operations, to justify the cor-
rectness of these, and to bring mathematical objects in relation one to
another. In this paper, I shall use one example to show how the struc-
tural elements in an algorithm convey a mathematical meaning and can
be interpreted in the light of the ancient Chinese geometrical tradition.
The example stems from an 11th century text by Shen Gua 沈括 and
calculates the number of kegs of wine piled up in the form of a truncated
pyramid with a rectangular base.

Keywords: Shen Gua; Song dynasty; Sum of squares

Shen Gua’s Text

Jotting 301 in Shen Gua’s Brush Talks from the Dream Pool (Meng xi bi tan 夢
溪筆談, 11th century) calculates the total number of wine kegs when piled up in
layers in the shape of the frustum of a rectangular pyramid:3

Among mathematical procedures there are methods to calculate volumes
[in units of] chi. For categories like the chumeng 芻甍4, the chutong
芻童5, the square pond (fangchi 方池), an obscure gorge (ming gu 冥
谷), the qiandu 塹堵6, the bienao 鱉臑7, the cone with a circular base

3 Translated by the author following Shen and Hu [ ], vol. 2 pp. 574-5. For a detailed
discussion of this jotting and its historical significance see Bréard [ ] and Bréard [ ],
chapter 3.1.

4 The chumeng represents a kind of geometric solid belonging to the class of triangular
prisms.

5 The frustum of a rectangular pyramid.
6 A rectangular half parallelepiped. In the edition Shen and Hu [ ], vol. 2 p. 574 we

find the character qian 塹 whereas in the Nine Chapters on Mathematical Procedures
the character qian with the water radical at its left side is used. See [ ], problems
5.5-5.7 and 5.14.

7 A tetrahedron.

, , .

and

1

4
21

4

3



78 A. Bréard

(yuanzhui 圓錐) and the yangma 陽馬8 the [external] form of the object
is perfectly complete. Only a single procedure, one for volumes with
interstices (xi ji 隙積), does not exist yet. Among the objects whose
parallelepiped volumes are calculated globally by the ancient methods
are the following:
We have the cube (li fang 立方). It is explained as having six surfaces
that are all squares. The corresponding procedure is to multiply twice
[the side of a square] by itself, thus you obtain it [the volume].
We have the qiandu. It is explained as being similar to an earthen wall.
Two sides are battered and the two front sides are on an equal level. The
corresponding procedure is to add the upper and lower breadth, to take
away half of this and to take [the result] as its breadth. Multiply this
with the straight height.
Another [procedure] is to take the straight height as gu股9, to reduce the
lower breadth with the upper breadth and to take half of what remains
as gou 句10. Calculate the hypotenuse [with the procedure] gougu11 and
take it as the oblique height.
We have the chutong. It is explained as being similar to a dou that
has been turned upside-down. All of its four sides are battered. The
corresponding procedure is to double the upper length, to incorporate
it additionally to the lower length and to multiply this with the upper
breadth. Double the lower length, incorporate it additionally to the upper
length and multiply this with the lower breadth. Add the two positions
and multiply this with the height. Divide by six.
As for ‘volumes with interstices’, these are explained as: when accumu-
lating these, interstices appear. For categories like the piling up of blocks
to make the layers of an altar (tan 壇) and the accumulation of kegs of
wine in a wine shop, although they resemble ‘a dou that has been turned
upside-down’, with ‘all of its four sides battered’, but because they have
deficient and empty spaces, if we calculate using the method for the
chutong, we will constantly underestimate their [real] number. I have
thought about this and obtained the following: One uses the method
for the chutong, the result gives the upper line [of the counting board].
Furthermore on the lower line, one lays down the lower breadth, and
subtracts the upper breadth from it. What remains shall be multiplied
by the height, divided by 6 and added to the upper line. [Numerical
commentary:] Let us suppose one has accumulated kegs of wine. In the
uppermost layer there are 2 kegs of wine each in breadth and length. In
the lowermost layer there are 12 kegs of wine each. Layer by layer are in
progression one to another. If one begins by the progression in which the

8 A pyramid with a rectangular base.
9 Gu, the longer side of a right-angled triangle, the height.

10 Gou, the shorter side of a right-angled triangle, the base.
11 The procedure gougu expresses a similar relation in a right-angled triangle between

the three sides gou, gu and xian 弦 (the hypotenuse) as the theorem of Pythagoras.



A Summation Algorithm from 11th Century China 79

two uppermost layers are one to another, and counts until one gets to 12,
then one should obtain 11 layers. One solves this with the method for the
chutong. Doubling the length of the upper layer gives 4. This added to
the lower length gives 16. This multiplied with the upper breadth makes
32. Furthermore, if one doubles the two lower lengths, one obtains 16.
Added to the upper length gives 46. Multiplied with the upper breadth,
one obtains 312. By adding the two positions [on the counting board],
one obtains 344. This multiplied with the height gives 3784. Once more
one lays out 12, the lower breadth. Reduced by the upper breadth, one
has a remainder of 10. his multiplied by the height gives 110. Added to
the upper line gives 3894. Division by 6 gives 649. This represents the
number of wine kegs. If one solved [the problem] with the [method for a]
chutong, one would obtain the [volume] product of a full parallelepiped
(shi fang zhi ji 實方之積). The procedure for the volume with interstices
reveals the volume of what is not exhausted [by the procedure for the
continuous chutong] at the junction of the corners and adds what exceeds
outwards (xian hejiao bu jin yi chu xian ji 見合角不盡益出羨積).”

There are two numerical errors in the Song dynasty (AD 960 – 1279) edition
of Shen Gua’s text. Zhao Yushi趙與時 (1175-1231) mentions the problem in his
Records written after the guest has left (Bintui lu 賓退錄):

“In scroll 18 of the Guangling edition of the Brush Talks from the Dream
Pool the commentary to the procedure for accumulations of wine kegs,
it should read ‘24’ instead of ‘Furthermore, if one doubles the two lower
lengths, one obtains 16’. Instead of ‘Added to the upper length gives 46’ it
should read ‘26’. Scholars and officials who understand mathematics are
rare. This is the reason why nobody has ever mentioned these errors.”12

Shen Gua’s Algorithm

The structure of the above algorithm suggests that there are two separate blocks
of operations, which contribute to the correct result when added up. The first
block is a series of operations equivalent to the procedure for the continuous
chutong, the second block, performed on a different line of the counting board,
corresponds to an additional term, necessary for adapting the formula for the
continuous case to the discrete case.

A = [(2d + c) · b + (2c + d) · a] · h÷ 6︸ ︷︷ ︸
chutong

+(a− b) · h÷ 6︸ ︷︷ ︸
corrective term

(1)

The question is how Shen Gua did derive this algorithm. Assuming that the
text is not corrupted substantially, I would argue that we can make certain hy-
pothesis about his “discovery” of the procedure for a chutong with interstices,
12 Translated according to Shen and Hu [ ], vol. 1 preface p. 25.

2

4



80 A. Bréard

Fig. 1. Chutong

when we look at the structure of the algorithm given in the above jotting. My
argument that the structure of the algorithm here is theoretically significant is
supported by the fact, that the algorithm given in its general form – transcribed
here as in equation ( ) – does not correspond to the actual calculations for the
numerical example performed by Shen Gua. This brings the algorithmic proce-
dure ( ) into a different, more theoretically oriented, light. In his calculations
as resumed in ( ) he aims rather at efficiency by dividing only once:

A =
(

[(2 · 2 + 12) · 2 + (2 · 12 + 2) · 12] · 11 + [12− 2] · 11
)
÷ 6 (2)

The sequence of examples in the first section of Shen Gua’s text suggests
that he might have thought of a decomposition of the pile of wine kegs into
several blocks of different geometric shapes. Shen lists three procedures: one for
the volume of the cube and two for a transversal cut of the qiandu, the former
giving its surface, the latter calculating its oblique side. But the cube and the
qiandu are precisely those geometric shapes for which the algorithmic procedure
to calculate the continuous volume still holds in the case where each unit of
volume is represented by a discrete unit element. The volume becomes then
equal to the total number of unit elements piled up in the shape of a cube or a
qiandu.

A decomposition of the continuous chutong has been made explicit earlier
in a 263 AC commentary by Liu Hui to the Chinese canonical Nine Chapters
of Mathematical Procedures (Jiu zhang suan shu 九章算術)13: a central paral-
lelepiped, four blocks of half cuboids on the sides (qiandu 塹堵), and four blocks
of pyramids with a square base in the corners; named yangma 陽馬 in traditional
Chinese mathematics.

As becomes clear from the numerical example given at the end of Shen Gua’s
jotting, he has imagined an accumulation of discrete objects where breadth and
length diminishes by one element from one layer to the next above: there are 11
13 Translated and critically edited in Chemla and Guo [ ].

1

1
2

3



A Summation Algorithm from 11th Century China 81

Fig. 2. Decomposition of a chutong in the discrete case

layers, with 2 kegs of wine in the upper layer and 12 at the bottom. Figure
shows how one can conceive of an accumulation equivalent to that of a chutong
by pushing the elements into one corner.14 In that case, only for the blocks in
the corners, the yangma, a corrective term is necessary if one wants to use the
procedures of the continuous volumes for the discrete case. As mentioned above,
for the cube and the qiandu the procedures for the continuous case remain valid.

Fig. 3. Sum of squares represented with discrete elements

It is unclear how Shen Gua derived the corrective term for the discretized
yangma in the corners, but judging from slightly later sources the general pro-

14 I have shown elsewhere that structural elements of such considerations started to
play a role in the development of algorithms for the calculation of finite arithmetic
series as early as in the Nine Chapters. See Bréard [ ], pp. 85-6.

2

2



82 A. Bréard

cedure for the sum of squares might well already have been known by then.
It is algorithmically described in Yang Hui’s Detailed Explanations to the Nine
Chapters on Mathematical Methods (Xiang jie jiu zhang suan fa 詳解九章算法,
1261)15 as well as in Zhu Shĳie’s Jade Mirror of Four Unknowns (Si yuan yu
jian 四元玉鑑, 1303).

The corrective term in ( ) then appears when one compares the sum of
squares of integers to the procedure for the continuous yangma given as early as
in the Nine Chapters of Mathematical Procedures from Han dynasty (206 BC –
220 AD):

Number of wine kegs in a corner = 1 + 22 + 32 + . . . + (a− b)︸ ︷︷ ︸
=(h−1)

· (c− d)︸ ︷︷ ︸
=(h−1)

h−1∑
k=1

k2 = (h− 1) · h · (h− 1 +
1
2
)÷ 3

(h− 1)︸ ︷︷ ︸
=(a−b)

·h · ( h− 1︸ ︷︷ ︸
=(c−d)

+
1
2
)÷ 3 = (a− b) · (c− d) · h÷ 3︸ ︷︷ ︸

yangma

+(a− b) · h÷ 6︸ ︷︷ ︸
corrective term

Conclusion

The algorithmic description of the procedure of a finite accumulation of discrete
elements in the shape of a known geometric solid analyzed here shows well how
procedures in traditional mathematical writings in China reveal the underlying
rationale. In Shen Gua’s case, operating on two different lines on the counting
board corresponds to two operational blocks: on one line the procedure for the
continuous volume is laid out, on another line a corrective term for the discrete
case is calculated. This partition reflects the historical lineage of the treatment of
finite arithmetical series back to algorithms for calculating continuous geometric
solids. As early as in the Nine Chapters on Mathematical Procedures, one finds
mathematical problems concerning grain piled up in the form of a cone either on
the ground, against a wall or leaning in a corner. Their volume then is calculated
without correction of the algorithm for the circular cone, but gradually a separate
field of inquiry concerning related algorithms for discrete decompositions and -
mathematically speaking - the summation of the sum of finite arithmetic series
emerges. Shen Gua’s algorithm in jotting 301 stands at the watershed between
the pure geometrical algorithms for solid volumes and the algebraic treatment
of sums of finite arithmetic series in Zhu Shĳie’s Jade Mirror of Four Unknowns
(Si yuan yu jian 四元玉鑒) in 1303.

15 See Bréard [ ], chapter 3.2.

3

1

2



A Summation Algorithm from 11th Century China 83

References

[1] Bréard, A.: Shen Gua’s Cuts. Taiwanese Journal for Philosophy and History of
Science 10, 141–162 (1998)

[2] Bréard, A.: Re-Kreation eines mathematischen Konzeptes im chinesischen Diskurs:
Reihen vom 1. bis zum 19. Jahrhundert. Steiner, Stuttgart (1999)

[3] Chemla, K., Guo, S.: Les neuf chapitres sur les procédures mathématiques. Dunod,
Paris (2004)

[4] Shen, G., Hu, D. (eds.): Mengxi bitan jiaozheng (in Chinese) (Critical Edition of
Brush Talks from the Dream Pool), 2 vols. Shanghai guji chubanshe, Shanghai
(1987)



Sequential Automatic Algebras

Michael Brough, Bakhadyr Khoussainov, and Peter Nelson

Department of Computer Science, University of Auckland

Abstract. A sequential automatic algebra is a structure of the type
(A; f1, . . . , fn), where A is recognised by a finite automaton, and func-
tions f1, . . . , fn are total operations on A that are computed by input-
output automata. Our input-output automata are variations of Mealy
automata. We study some of the fundamental properties of these alge-
bras and provide many examples. We give classification results for certain
classes of groups, Boolean algebras, and linear orders. We also introduce
different classes of sequential automatic algebras and give separating ex-
amples. We investigate linear orders considered as sequential automatic
algebras. Finally, we outline some of the basic properties of sequential
automatic unary algebras.

Introduction

The main contribution of this paper is the introduction of the various notions
of sequential automatic algebras as natural sub-classes of the class of automatic
structures. As such these algebras enjoy all the decidability and model-theoretic
properties possessed by automatic structures. The goal is twofold. One is to
provide examples and investigate fundamental properties of sequential automatic
algebras. The other is to show that sequential automatic algebras have certain
algebraic and algorithmic advantages as opposed to general automatic structures.

Algebras are structures of the form (A; f1, . . . , fn) where each fi is a total
operation on A. Usually operations are replaced by their graphs (in finite model
theory for example). This transforms the algebra into a purely relational struc-
ture. Automata can then be used to recognize the graphs of the operations; this
loses the input-output behavior of the functions because an automaton recog-
nising the graph of an operation does not necessarily compute the output in
a sequential manner. Here we propose to use input-output automata to rep-
resent operations of algebras in order to capture the input-output behavior of
operations. Our input-output automata will be variations of Mealy automata.

Let Σ be an alphabet, and let Σ� = Σ ∪ {�}, where � �∈ Σ. An n-variable
sequential Mealy automatonM is a tuple (Q, q0, Δ,O), where Q is the finite
set of states, q0 ∈ Q the initial state, Δ : Q × Σn

� → Q × Σ� is the transition
function, and O : Q → Σ� the final output function. Note that the automaton
is deterministic. Such an automaton processes inputs of the form (w1, . . . , wn),
where each wi ∈ Σ�, and outputs a string from Σ� as follows. Think of the
automaton as having n input tapes, with wi on the ith tape, and one output tape
on which it writes symbols from Σ�. The automaton moves each of its n heads

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 84–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Sequential Automatic Algebras 85

simultaneously from left to right, reading a symbol from each of the input tapes,
changes its state and writes a symbol on the output tape according toΔ (starting
at q0). If wi is shorter than wj , then the automaton assumes the � symbol after
the end of wi. Once all input symbols are �, the automaton concatenates the
string O(s), where s is the current state, to the end of the string written to the
output tape and then halts. The resulting string in the output tape, up to the
first position where � is written, is the output ofM. We require that once � has
been written to the output, all subsequent symbols written are � and the final
output function is empty. Thus writing � can be thought of as terminating early.
Each sequential n-variable Mealy automaton uniquely determines a function
fM : (Σ�)n → Σ� called a sequential automatic operation.

Definition 1. An algebra A=(A; f1, . . . , fn) is sequential automatic if the
domain A is a regular language and operations fi on A are sequential automatic.

Operations computed by Mealy automata have been studied for many years.
Mealy automata form a subclass of transducers, an area of active research in
automata theory [3], and have also been studied by group theorists (see [9]
for instance), initiated by Aleshin who used permutations computed by Mealy
automata to solve the Burnside problem [1].

Some simple examples of sequential automatic algebras are finite algebras,
the tree algebra ({0, 1}�;Left,Right) where Left(x) = x0 and Right(x) = x1,
(ω; +), and (ω;S) where S(n) + 1 for n ∈ ω.

If a sequential n-variable Mealy automaton M never writes the symbol �,
we call M a strictly sequential n-variable Mealy automaton and define
a strictly sequential automatic operation and a strictly sequential au-
tomatic algebra accordingly. Strictly sequential automatic algebras form a
subclass of sequential automatic algebras.

For the next definition we briefly explain finite automaton recognisable re-
lations. An automaton M recognising a relation R of arity n behaves exactly
as an n-variable Mealy automaton but with no outputs; instead M has a set
Qf ⊂ Q of accepting states. M processes a tuple (w1, . . . , wn) in the same way
as Mealy automata do, and accepts the tuple iff after processing the tuple, it is
in one of the accepting states. Now we define automatic structures. These have
been studied in [4], [5], [10], [12], [17].

Definition 2. A relational structure A=(A;R1, . . . , Rm) is automatic if A,
R1, . . ., Rm are all finite automaton recognisable.

We also use sequential automatic functions as mappings between equivalence
classes. Let f be a function computed by an n-variable sequential Mealy au-
tomaton. Let E be an equivalence relation on A. We say that fM respects E
if for all (w1, . . . , wn), (w′

1, . . . , w
′
n) the condition (w1, w

′
1), . . ., (wn, w′

n) ∈ E
implies that (fM(w1, . . . , wn), fM(w′

1, . . . , w
′
n)) ∈ E. If every operation of an

algebra respects E then E is called a congruence relation of the algebra.



86 M. Brough, B. Khoussainov, and P. Nelson

Definition 3. Let A=(A; f1, . . . , fn) be a sequential automatic algebra. Let E be
a finite automaton recognisable congruence relation of A. The quotient algebra
A/E is called a generalised sequential automatic algebra. If E addition-
ally satisfies the property that for x = x′σk, where x′ does not end in σ, the
equivalence class of x is {x′σn|n ∈ ω} ∩A, then we call the factor algebra A/E
continuous generalised sequential automatic.

Let SSA, SA, CGSA and GSA denote respectively the classes of strictly se-
quential automatic, sequential automatic, continuous generalised sequential au-
tomatic, and generalised sequential automatic algebras (all closed under isomor-
phisms). We have: SSA ⊆ SA ⊆ CGSA ⊆ GSA. We will provide separating
examples for these later. This is unlike the case of automatic structures, where
quotients by automatic congruence relations give no new structures.

The group (Z; +) is an example of a continuous generalised sequential auto-
matic algebra. Here we represent numbers in base −2, allowing us to add integers
without knowing their signs beforehand.

If A is (strictly, continuous generalised, generalised) sequential automatic and
B is isomorphic to A then we call A a (strictly, continuous generalised,
generalised) sequential automatic presentation of B. Automatic presen-
tations are defined similarly. Often we abuse our definitions and refer to algebras
that have sequential automatic presentations as sequential automatic algebras,
or structures with automatic presentations as automatic structures. When we
describe an algebra as being automatic, it is to be taken as implicit that we are
considering it as a relational structure.

A brief outline of the paper is as follows. Section 1 describes basic properties
of the four classes of sequential automatic algebras and provides examples to
separate them. The section also provides a classification theorem for generalised
sequential algebras in the cases of finitely generated groups, Boolean algebras,
and ordinals. Section 2 proves that if linearly ordered sets are defined as sequen-
tial automatic algebras then the order must be obtained from the lexicographic
order on strings. This implies that the monadic second order theory of each se-
quential automatic linear order algebra is decidable. This also implies, from the
result of Kuske [13], there exists an automatic linear order not isomorphic to a
sequential automatic linear order algebra. Section 3 studies sequential automatic
unary algebras and proves that the reachability problem for such algebras is de-
cidable. This contrasts with automatic unary algebras, where the reachability
problem is undecidable [17], [4]. An example is given of a (unary) permutation
algebra that is automatic as a relational structure, but has no presentation as a
sequential automatic algebra.

Finally, we stress that the goal is to show that sequential automatic algebras
are more tame structures than their automatic counterparts. The ultimate goal
in the study of sequential automatic algebras is to investigate whether or not
natural problems asked about sequential automatic algebras, e.g. the isomor-
phism and the elementary equivalence problems, are decidable. This is the first
paper devoted to this study.



Sequential Automatic Algebras 87

1 General Properties, Separating Examples and
Classification Results

The first part of following proposition implies that all decidability properties
enjoyed by the class of automatic structures are present for automatic sequential
algebras (see [10]). The second part states that sequential automatic algebras
are closed under finite Cartesian products; the proof is straightforward:

Proposition 1. (1) Every generalised sequential automatic algebra is auto-
matic. In particular, there is an algorithm which, given a generalised sequential
automatic algebra A, a first order formula φ(x̄), and a tuple ā ∈ A, decides if
A |= φ(ā). (2) If A1, . . . ,Ak are (continuous generalised, generalised or strictly)
sequential automatic then so is A1 × . . .×Ak. 	

Now we separate SSA from SA, SA from CGSA, and CGSA from GSA. The
proof of the following proposition is easy:

Proposition 2. If A = (A; f1, . . . , fn) is strictly sequential automatic then for
each a ∈ A and fi the set f−1(a) = {x̄ | fi(x̄) = a} is finite. Hence, algebras
from the following classes are strictly sequential automatic iff they are finite:
groups, rings, Boolean algebras, lattices with complements, vector spaces. 	

Corollary 1. SSA is a proper subset of SA.

Proof. The algebra (ω; f), where f(x) = 0 for all x ∈ ω, is a separator. 	

Proposition 3. A group is sequential automatic iff it is finite. Hence SA is a
proper subset of CGSA.

Proof. Let n be the length of the string for the unit element 1. When the automa-
ton for multiplication reads a pair (x, x−1) of length > n, it halts and outputs
1 based on prefixes of length n. If the group were infinite, there would be in-
finitely many such pairs and finitely many such prefixes, and so distinct (x, x−1)
and (y, y−1) exist which share the same prefixes. Then (x, y−1) therefore would
output 1. A separating witness is the group (Z; +). 	

Definition 4. An algebra A is residually finite if for all distinct x, y ∈ A there
is a homomorphism φ : A → F onto a finite algebra F such that φ(x) �= φ(y).

Proposition 4. All algebras in the class CGSA are residually finite.

Proof. We first show this for sequential automatic algebras A = (A; f1, . . . , fn).
For n ∈ ω, define φn to be the function such that for a string w = σ0 . . . σk, if
k ≤ n then φn(w) = w, otherwise φn(w) = σ0 . . . σn. Define Fn = (F ; f ′

1, . . . , f
′
n),

where F is the image of A under φn and f ′
i = φn◦fi◦φ−1

n ; φn is a homomorphism
from A to Fn. Given two elements x, y of A, let n = max(|x|, |y|) be the length
of the longest string. Then φn : A → Fn is such that φn(x) �= φn(y). For a
continuous generalised sequential algebra A/E, we construct F from A as above,
and then take F/E′ where E′ is such that x ∼=E′ x′ iff there exist y, y′ ∈ A such
that y ∼=E y′ and φ(y) = x, φ(y′) = x′. 	




88 M. Brough, B. Khoussainov, and P. Nelson

Corollary 2. CGSA is a proper subclass of GSA.

Proof. The algebra A = (ω; f), with f(0) = 0 and f(n) = n−1 is generalised se-
quential automatic but not residually finite and hence not continuous generalised
sequential automatic.

This additive group of rational numbers is not residually finite. Hence:

Corollary 3. The group (Q; +) does not belong to CGSA. 	

Now we give a classification result for the classes of finitely generated groups,
Boolean algebras, and ordinals as continuous generalised sequential automatic
algebras. These have been classified as automatic structures (see [12], [8]). We re-
call some definitions. For groups, a finitely generated group is virtually abelian
if it contains an abelian subgroup of finite index. A finitely generated group is an
automatic structure iff it is virtually abelian [14]. For Boolean algebras, Bω de-
notes the Boolean algebra of finite and co-finite subsets of ω. An infinite Boolean
algebra is an automatic structure iff it is isomorphic to a finite Cartesian prod-
uct of Bω [12]. For ordinals, an ordinal is automatic iff it is strictly less than ωω

[17]. In order to treat ordinals as algebras we introduce the concept of a linear
order algebra. Let L = (L;≤) be a linearly ordered (lo) set. Define the function
f : L2 → L as f(x, y) = min(x, y). This function has the following properties
for all x, y, z ∈ L: 1) f(x, y) = f(y, x); 2) f(x, y) = x or f(x, y) = y; 3) if
f(x, y) = x and f(y, z) = y then f(x, z) = x. Given any function f : A → A
satisfying these conditions, we define a lo set by x ≤f y iff f(x, y) = x. We
call algebras (A; f), where f satisfies the above conditions, linear order (lo)
algebras. These transformations between lo sets and lo algebras preserve the
isomorphism type, and a lo set is automatic iff the corresponding lo algebra is
automatic (as relational structures).

Definition 5. Let L1,L2 be two linear order algebras. The algebra L1 +≤ L2 is
over L1 ∪ L2 such that if x ∈ L1 and y ∈ L2 then min(x, y) = min(y, x) = x,
and otherwise min(x, y) follows from L1 or L2. The algebra L1 ×≤ L2 is over
the Cartesian product of L1 and L2 such that min((x1, y1), (x2, y2)) is (x1, y1)
iff min(x1, x2) = x1, or x1 = x2 and min(y1, y2) = y1.

Proposition 5. Given two sequential automatic linear order algebras L1,L2,
the algebras L1 +≤ L2 and L1 ×≤ L2 are sequential automatic. In particular, all
ordinals less than ωω are sequential automatic linear order algebras. 	

Theorem 1. 1. A finitely generated group is continuous generalised sequential

automatic iff it is virtually abelian.
2. An infinite Boolean algebra is continuous generalised sequential automatic

iff it is isomorphic to a finite Cartesian product of Bω to itself.
3. An ordinal (as an lo algebra) is sequential automatic iff it is strictly below

ωω.



Sequential Automatic Algebras 89

Proof. For part 1), the proof essentially follows [8]. Let G be a finitely generated
virtually abelian group. We can assume that that our group G has a finitely
generated free abelian normal subgroup N of finite index. Then any element
g ∈ G can be given in the form g = fn where f ∈ F = G/N, n ∈ N . Given
two elements g1, g2 ∈ G, then g1g2 = f1n1f2n2 = f1f2f

−1
2 n1f2n2. Since N is

normal, φf (n) = f−1nf gives an automorphism of N for any f . Therefore when
we multiply f1n1 by f2n2 we get (f1f2)n where n = φf2(n1)n2 ∈ N .

We describe in general terms the sequential automatic encoding of G. We
represent group elements as a pair (f, n) where f ∈ F and n ∈ N . Because
F is finite and the F part of the product depends only on the F part of the
two inputs, we can encode f in the first digit. The rest of the string encodes n.
When computing the product (f1, n1)(f2, n2), the first state outputs f1f2 and
then branches to one of finitely many subautomata depending on f2.

We need to show that a sequential automaton can compute n1φf2(n2). The
subgroup N is, by assumption, isomorphic to Z

r for some r ∈ ω. Using the
encoding of Z and Proposition 1, we can encode elements of N and compute their
sums. All automorphisms of N ∼= Z

r can be determined from linear extension
of their action on a minimal generating set, and therefore correspond to matrix
multiplications. That means we can associate with each f ∈ F an integer matrix
Mf which computes the automorphism φf on the vector representation of N .
Multiplication by Mf can be computed by a sequential automaton.

To compute n1φf (n2), we combine the addition automaton for N and the
automaton for Mf , so that the first input string is given straight to the N
automaton, and the second input string is processed by the Mf automaton, the
output of which is given as the second input of the N automaton. Now one uses
the construction described to give a sequential presentation of G.

For part 2), by Proposition 1 we need to consider Bω. We encode subsets of ω
in binary. The final character of a binary word is interpreted as being recurring
(so when � is read following a 0(1) it is treated as a 0(1)). Our language can code
any finite or co-finite set. Given this encoding, the algebra Bω is a continuous
generalised sequential algebra.

The last part of the theorem follows from Proposition 5. 	


2 Linear Order Algebras

Here we investigate sequential automatic linear order (lo) algebras. The lexico-
graphical order will play an essential role in describing these algebras.

Example 1. Let L be a regular language. Consider �L, the lexicographic order
restricted to L. The algebra (L; min�) is sequential automatic. 	

As a corollary, one obtains that the dense order (the order of rational numbers)
is a sequential automatic lo algebra; this is isomorphic to the � order on the set
{w101 ∈ {0, 1}� | w does not have 101 as a substring}.
Example 2. An infinite sequential automatic lo algebra over a unary alphabet
is isomorphic to ω + n, n+ ω�, or ω + ω�, where ω� is ω reversed. 	




90 M. Brough, B. Khoussainov, and P. Nelson

Theorem 2. A linear order algebra is sequential automatic iff it is isomorphic
to the lexicographic order on a regular language.

Proof. One direction is explained in Example 1. The idea for the other direction
is that we have to decide which string is the minimum at the first position where
they differ, because then we have to output the next digit from either one or
the other. This is like the lexicographic order. Given a sequential automatic lo
algebra L = (L; f) we explicitly construct a regular language and an isomor-
phism. Let M denote the automaton for recognising L. For the isomorphism,
we use a slightly generalised form of sequential automata: instead of computing
a function from Σ∗ to itself, we have two alphabets Σ and Σ′ and compute a
function from Σ∗ to (Σ′)∗. Let Σ be the alphabet for L, and Σ′ = {0, . . . , |Σ|}.

For distinct strings w1, w2, let i be the first position where they differ. If one
is a prefix of the other, then this position is immediately after the end of this
string, when a blank symbol � is first read. Let u = f(w1, w2) be the output
string. For j < i, w1(j) = w2(j) = u(j). At position i there is a choice: u(i) must
equal either w1(i) or w2(i), determining the rest of the string. The ordering of
w1 and w2 gives an ordering on the pair of symbols {w1(i), w2(i)}; any pair of
inputs that reach the current state of the automaton and read these symbols
next must obey this ordering.

If we look at all pairs of symbols that can be read at this state, we get
an ordering on each pair. We would like to combine these orderings to give an
ordering on all of these symbols, and extend that to give an ordering on Σ∪{�}.
However, it is possible to get orderings on pairs which are not consistent (that
is, they cannot be simultaneously true in a linear ordering, for example a < b,
b < c, c < a). We deal with this by keeping track of the state of M. Given a
state q of M, let Σq be the set of all symbols (including �) which can be read
from q as part of a path to a final state ofM. If we have a reachable state (q, r)
in the product ofM and the automaton for f , the orderings given by r for pairs
in Σq must be consistent and so we can combine them to give an ordering on
Σq and then extend this to an ordering on Σ ∪ {�}.

We construct a sequential automaton A mapping L ⊂ Σ∗ into (Σ′)∗. Let the
states be the product ofM and the automaton for f . When a symbol σ is read,
we treat the f part as being given the input (σ, σ) and the M part as being
given σ, and output the element of {0, . . . , n} corresponding to the position of σ
in the ordering on Σ ∪ {�} associated with the pair of states. The final output
function for each state outputs the element of {0, . . . , n} corresponding to the
position of � in this ordering.

From the construction of A, it preserves the order of L when we take the lex-
icographic ordering on its image, and the function computed by A is injective.
It remains to show that the image of L under this function is a regular language
over Σ′. Construct another automaton by taking A and swapping the inputs
and outputs on the transitions. We add a single final state q0, and from each
state p = (q, r), where q is a final state in M, we add a transition to q0 when
O(p) (the final output function in A) is read. This gives an automaton which



Sequential Automatic Algebras 91

recognises exactly A(L). Therefore A is an isomorphism from L to a regular
language with the lexicographic order. 	

Corollary 4. The monadic second order theory of any sequential linear order
algebra is decidable.

Proof. From the theorem above, the result follows from the fact that the lexico-
graphical order is MSO definable in the binary tree [16]. 	

Corollary 5. There exists an automatic linear order (L;≤) which is not iso-
morphic to any sequential automatic linear order algebra.

Proof. In [13] Kuske constructed an automatic linear order that is not isomorphic
to the lexicographical order on any regular set. 	

The third application is this. A word is (ω;≤, P ), where P is a unary relation.
A word is automatic if it is isomorphic to an automatic structure. The word
(ω;≤, P ) can be transformed into the following algebra (ω; min≤, fP ), where
fP (x) is the maximum y such that y ≤ x and P (y). Call this a word algebra.
Two words are isomorphic iff their corresponding word algebras are isomorphic.

Corollary 6. If (ω; min≤, fP ) is a sequential automatic word algebra then (ω;≤,
P ) is a morphic word. Hence its monadic second order theory is decidable.

Proof. The order can be replaced with the length-lexicographic order in which
P is still regular. From results in [2], it follows that P is a characteristic of a
morphic word. The rest follows from Thomas and Carton in [8]. 	


3 Sequential Automatic Unary Algebras

Here we consider algebras of the form A = (A; f1, . . . , fn), where each fi is a
unary function onA. These algebras are called unary algebras. A unary algebra
can be transformed into a graph (A,E) where E(x, y) iff f1(x) = y∨. . .∨fn(x) =
y. The reachability problem for the unary algebra A is the set {(x, y) | in the
graph (A,E) there is a path from x to y}. For unary automatic algebras even
with one unary operation the reachability problem is Σ0

1 -complete [17] [4]. In
contrast, we have:

Theorem 3. If A = (A; f1, . . . , fn) is a sequential automatic unary algebra then
the reachability problem for A is decidable in PSPACE.

Proof. Suppose we want to check if (x, y) is in the reachability relation, and that
y has length n. If f(z) has length |f(z)| ≤ n, then either |z| ≤ n or f terminates
early, after at most n digits are read. In the second case, any string with the
same first n digits as z would give the same output. Since all our functions fi
are sequential, we need only consider the first n+ 1 digits when determining if y
is reachable. We need one extra digit to make sure we don’t mistake a string of
which y is a prefix for y itself. The algorithm is a straightforward search: begin



92 M. Brough, B. Khoussainov, and P. Nelson

at x, for each fi branch to search on the first n + 1 digits of fi(x), terminate
a branch when a string is reached that has already been visited, terminate the
algorithm either positively when y is reached, or negatively when all branches
terminate. Since we only consider the first n+ 1 digits, the search space is finite,
so the algorithm will always terminate. 	

Proposition 6. There exists a sequential automatic unary algebra A in which
the reachability relation is not recognised by pushdown automata.

Proof. Consider the unary algebra (A; f), where A = 0∗1∗2∗ and f(0i1j2k) =
0i+11j+12k+1. Let x be the string 012. The set of elements reachable from 012
is {0n1n2n | n ∈ ω}, which is not recognised by pushdown automata. 	

An algebra of permutations is a unary algebra (A; f1, . . . , fn) where each
fi : A→ A is a bijection.

Proposition 7. There is a PSPACE algorithm that, given a strictly sequential
automatic unary algebra A = (A; f1, . . . , fn), where A = Σ�, decides if A is an
algebra of permutations.

Proof. Take a Mealy automatonM computing one of the operations of the alge-
bra. Assume that all states are reachable. A strictly sequential Mealy automaton
gives a permutation on Σ� iff each state gives a permutation of its input and all
of the final output strings are empty.

For each state s ∈M, we check whether the final output string O(s) is empty,
and whether for each pair of symbols (σ1, σ2) ∈ Σ2, σ1 �= σ2 the output when
σ1 is read in state s is distinct from when σ2 is read. The space required is a
counter to run through the states which is proportional to log(|M|). 	

Theorem 4. (see also [9]): The length of a cycle on strings of length n of a
strictly sequential automatic permutation over Σ is of the form

∏n
i=1 ai where

1 ≤ ai ≤ |Σ|.
Proof. There are at most |Σ| strings of length 1, and since these are permuted
amongst themselves, cycles on strings of length 1 have lengths 1 ≤ L ≤ |Σ|.

We proceed by induction. Given a cycle of length Ln on strings of length
n, we consider these strings truncated to the first n − 1 digits. These strings,
by the induction hypothesis, are in a cycle of length Ln−1 =

∏n−1
i=1 ai where

1 ≤ ai ≤ |Σ|. Truncating to the first n − 1 digits gives a homomorphism, so
Ln−1 must divide Ln. Since Ln/Ln−1 cannot exceed |Σ|, the result follows. 	

Corollary 7. There are algebras of permutations which are automatic but not
strictly sequential automatic.

Proof. Let p : ω → ω be any nonzero polynomial with positive coefficients. Let
L be a regular language over Σ such that growthL(n) = |L ∩ Σn| = p(n) for
all n. Such languages exist (see [15] or [11]). Define the function f : L → L as
follows: If x ∈ L is not the largest length-lexicographically among all y ∈ L with



Sequential Automatic Algebras 93

|x| = |y|, then f(x) is the length-lexicographically least element z ∈ L greater
than x such that |x| = |z|; if x ∈ L is the length-lexicographically greatest
among all y ∈ L with |x| = |y|, then f(x) is the length-lexicographically least
element z ∈ L such that |z| = |x|. The structure (L, f) is an automatic relational
structure. The range of p coincides with the set of all lengths of cycles of the
permutation f . By the theorem above, (L, f) cannot be isomorphic to a strictly
sequential automatic permutation. 	

It is an open question if there is an algorithm that, given two sequential auto-
matic permutations, decides whether the permutations are isomorphic.

References

1. Aleshin, M.: Finite automata and Burnside’s problem for periodic groups. Mat.
Notes 11, 199–203 (1972)

2. Bárány, V.: A Hierarchy of Automatic Words having a Decidable MSO Theory.
In: Caucal, D. (ed.) Online Proceedings of the 11th Journées Montoises, Rennes
(2006)

3. Béal, M., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an efficient
procedure for deciding functionality and sequentiality. Theor. Comput. Sci. 292(1),
45–63 (2003)

4. Blumensath, A.: Automatic Structures. Diploma Thesis, RWTH Aachen (1999)
5. Blumensath, A., Grädel, E.: Automatic Structures. In: 15th Annual IEEE Sympo-

sium on Logic in Computer Science, Santa Barbara, pp. 51–62 (2000)
6. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata

and interpretations. Theory of Computing Systems 37(6), 641–674 (2004)
7. Cannon, J., Epstein, D., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word

processing in groups. Jones and Bartlett (1992)
8. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-

eralizations. Information and Computation 176, 51–76 (2002)
9. Grigorchuk, R., Nekrashevich, V., Sushanski, V.: Automata, Dynamical systems,

and groups. Tr. Mat. Inst. Steklova 231(Din. Sist. Avtom i Beskon. Gruppy), 134–
214 (2000)

10. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. LNCS,
vol. 960, pp. 367–392. Springer, Heidelberg (1995)

11. Khoussainov, B., Rubin, S.: Automatic Structures: Overview and Future Direc-
tions. Journal of Automata, Languages and Combinatorics 8, 287–301 (2003)

12. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic Structures: Richness
and Limitations. In: LICS, pp. 44–53. IEEE Computer Society, Los Alamitos (2004)

13. Kuske, D.: Is Cantor’s theorem automatic?. LNCS, vol. 2850, pp. 332–343. Springer,
Heidelberg (2003)

14. Oliver, G., Thomas, R.: Automatic Presentations for Finitely Generated Groups.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005)

15. Saloma, A., Soittola, M.: Automata-theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

16. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Trans. AMS 141, 1–35 (1969)

17. Rubin, S.: Automatic Structures. PhD Thesis, University of Auckland (2004)



The Role of Classical Computation in

Measurement-Based Quantum Computation

Dan Browne and Janet Anders

Department of Physics and Astronomy, University College London, Gower Street,
London WC1E 6BT
d.browne@ucl.ac.uk

Abstract. Measurement-based quantum computation (MBQC) is an
important model of quantum computation, which has delivered both
new insights and practical advantages. In measurement-based quantum
computation, more specifically the “one-way model” of computation, the
computation proceeds in the following way. A large number of quantum
bits (qubits) are prepared in a special entangled state called a cluster
state. The qubits are then measured in a particular basis and particular
order, the measurements are adaptive, some bases depending on the out-
come of previous measurements. A classical control computer processes
the measurement results in order to feed forward the bases for future
measurements. In this paper we focus on the role played by the classical
computer in this model and investigate some of its properties.

Keywords: Quantum computation, computational models, measure-
ment-based quantum computation.

1 Introduction

There remain many open questions in the relationship between quantum and
classical computation. In particular, it is still unclear what precisely the features
of quantum physics are which enable its (apparent) additional computational
power? The development of equivalent but different models of computation has
been a powerful tool in the evolution of classical computer science, and simi-
larly, employing different descriptions of quantum computations, both as formal
descriptions and physical recipes for its implementation, is proving very valuable.

One family of such models is known as measurement-based quantum computa-
tion (MBQC). The non-classical aspects of measurement are certainly a striking
aspects of quantum physics. In MBQC, measurements play the central role in
the computational model, a stark contrast to the reversibility of the unitary logic
gates in the standard circuit model of quantum computation. In this paper, we
shall focus on a model of MBQC introduced by Raussendorf and Briegel [1] and
known as the one-way quantum computer [3,2,4,5,6]. In the one-way model, the
computation consists of the preparation of a special entangled state called a clus-
ter state on many qubits, and the measurement of single qubits in a particular
order and particular basis. The bases for later measurements depends upon the

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 94–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Role of Classical Computation in MBQC 95

results of earlier measurements which must be processed by a suitable classical
control computer. Given a cluster state of sufficient size any quantum computa-
tion can be implemented, and the resources for this (number of entangled qubits)
scales linearly in the number of gates in the equivalent classical circuit.

It is natural to ask whether cluster states are unique in enabling MBQC or
whether other types of entangled states can accomplish a similar task. In fact,
recently a much broader class of states have been discovered which share this
property [7,8,9]. In this paper, we take a different approach and focus instead
upon the classical control computer. This is an essential component and repre-
sents the only active information processing in the model. We will see here that
focussing upon this aspect of the model reveals some interesting properties and
motivates some intriguing new questions.

2 One-Way Model of Quantum Computation

The most common description of quantum computation is known as the circuit
model. In that model, the computation is described as a sequence of quantum
logic gates, drawn from a universal gate set. Several universal gate sets have
been proposed, a common example consists of the CNOT gate: |i〉|j〉 → |i〉|i⊕ j〉
and arbitrary single qubit unitary transformations. The circuit model is familiar
from classical computation, where {NAND,FANOUT} and {NOT,TOFFOLI}
form irreversible and reversible universal gate sets.

Measure a sub-set of 
qubits

Process measurement 
results

Choose bases for next 
subset of 

measurements

Computational Output

Prepare entangled

resource state

e.g. cluster state

Fig. 1. A schematic outline of the one-way model of measurement-based quantum
computation



96 D. Browne and J. Anders

The one-way model, on the other hand, is radically different from this circuit
based approach, and has no natural classical analogue. In the one-way model,
computation proceeds in the following steps (see figure 1):

1. A special multi-qubit entangled resource state is created on many qubits.
2. A subset of qubits are measured - these measurements a projective single

qubit measurements in a particular set of bases.
3. The measurement outcomes are processed on a classical computer to deter-

mine the measurement bases for the next subset of qubits.
4. This next subset of qubits is measured.
5. The cycle of classical preprocessing on measurement outcomes and measure-

ment is repeated until all qubits have been measured.
6. The final processing step returns the classical output of the computation.

The one-way model has a wealth of important features, including the follow-
ing;

– Any quantum computation in the circuit model can be efficiently simulated
in this model and vice versa - the models are thus of equal computational
power.

– The measurement basis for each qubit is specified in advance up to a sign
(i.e. one bit of information) - it is this sign which is dependent on prior
measurements and is calculated by the control computer.

– The specification of the set of measurement-bases and their dependencies is
an equivalent description of a quantum computation to the specification of
a quantum circuit.

– The only entangling operations occur in the very first step of the computa-
tion, the construction of the entangled resource state.

A number of families of states have been identified which act as universal
resource states for this model. In [1] the two-dimensional cluster states were
shown to have this property. A cluster state is an entangled state on a square
lattice of qubits. Each qubit is prepared in the superposition of basis states
(1/
√

2)(|0〉+|1〉) and then entangling controlled-Z gates (|x〉|y〉 → (−1)x∧y|x〉|y〉)
are applied between nearest neighbours in the lattice. Cluster states are repre-
sented graphically (as in figure 1) with graph nodes representing qubits and edges
representing the entangling operations applied. Recently, a number of other uni-
versal families of resource states have been identified [7,10]. A striking feature of
[10] is the significantly different way the randomness of measurement outcomes
is accounted for.

3 CNOT Computers

Definition. A CNOT computer is a reversible classical computer, which imple-
ments circuits of logical gates drawn from the set {CNOT,NOT} on bits prepared
in the 0 state.



The Role of Classical Computation in MBQC 97

The CNOT computer has a number of interesting properties.

– It is not a universal classical computer because CNOT and NOT do not form
a universal set.

– Its computational power is described in terms of the complexity class Parity-
L, often written ⊕L. ⊕L contains all problems which can be decided using
a polynomial sized circuit on the CNOT computer.[11]

– In other words, ⊕L plays the role, for this model, played by the complexity
class P for universal classical computation.

– The CNOT computer is believed to be less powerful than a universal classical
computer since few of the problems in P have known efficient algorithms on
it.

– The following problems, however, have been shown to lie in ⊕L, and have
efficient CNOT constructions.
• Calculating the parity of the bits in an n-bit string.
• Inverting matrices over the Galois field GF(2) [12].
• Simulating a restricted class of quantum computations known as the

Clifford group [13].
– Any 2-bit reversible gate can be generated by CNOT and NOT, so it is

reasonable to consider this the most powerful model of reversible computing
in which three-bit gates are forbidden.

The main result of this paper is to show that for most variants of the one-
way model, the classical control computer which calculates the measurement
dependencies suffices to be a CNOT computer. We then use this observation
to construct a new framework to describe one-way quantum computation and
study its properties.

We shall not give a formal proof of this, as the technical aspects would go
beyond the scope of this article, but instead will outline the reasoning which
leads to this conclusion. The main idea is the following observation. When a
cluster state is employed in the one-way model as described in [1], the functions
which determine the sign of measurement bases can be reduced to calculating
the parity of a subset of the previous measurement outcomes. As stated above,
and as is simple to verify, the parity of bit strings can be computed efficiently
on a CNOT computer.

A simple way to picture of the way the dependencies in measurements arise
is due to Danos and Kashefi [14]. We label the outcomes of a single qubit mea-
surement ‘0’ and ‘1’. When a measurement is made on a qubit, which is part
of an entangled state with other qubits, then the state of these qubits after the
measurement depends upon the measurement outcome. Measurements in the
one-way model are so chosen that the post-measurement states of other qubits
are very simply related, as follows. Labelling these post-measurement state |ψ0〉
and |ψ1〉 respectively, according to whether ‘0’ or ‘1’ was measured,

|ψ1〉 = P |ψ0〉
where P is a tensor product of Pauli operators (X , Y , or Z) and the identity, with
support only upon qubits which have not yet been measured. This property is



98 D. Browne and J. Anders

guaranteed for measurement-patterns on cluster states which satisfy a geometric
criterion named “flow”. The proof of this may be found in [14].

Measurement patterns in the one-way model are designed such that they will
give the desired output on the final n qubits to be measured if the preceding
measurements all returned the ‘0’ output. By applying the operator P as a
correction when ‘1’ is obtained, one could ensure that the desired deterministic
computation is obtained regardless of the measurement outcomes. In fact, the
corrections never need be applied directly, they can simply be taken into account
in the choice of measurement-basis for these later qubits.

When a qubit comes to be measured the cumulative correction operator aris-
ing from all previously made measurements must be applied. This cumulative
operator will be a product of the correction operators from the previous mea-
surements. Two important properties of Pauli operators are that they are self-
inverse, P 2 = � and that pairs either commute or anti-commute. This means
a product of single-qubit Pauli operators can always be reduced to the form
XpxY pyZpz = Xpx+pyZpy+pz (neglecting the physically irrelevant global phase).
Here px is the parity of the number of operators X in the product, similarly for
Y and Z. The cumulative correction operator can be incorporated into the mea-
surement in the following way. The effect of an X correction is to flip the angle
of the measurement basis, whereas the Z correction means that the outcome of
the measurement should be flipped. To establish whether these corrections must
be applied, the parity of a subset of the previous measurements must be calcu-
lated. Since the parity of bit-strings can be calculated efficiently on the CNOT
computer, it suffices as the control computer for cluster state based one-way
quantum computation.

4 Discussion

In the final part of this paper, we shall discuss some of the consequences of this
observation and some of the questions it motivates. The CNOT computer is a
model of computation seemingly of lesser computational power than a univer-
sal classical computer and yet by allowing it access to measurement devices on
a cluster state, one creates a device which is universal for quantum computa-
tion. Remarkably, the only data exchanged by the CNOT computer and each
measurement device are a single bit in either direction.

There are a number of questions which naturally arise. Since the CNOT com-
puter is not classically universal, what kind of resource states will enable classical
universality in this model? It is clear that any resource state for universal quan-
tum computation will also enable universal classical computation, but can one
find quantum states which enable one but not the other? This would provide
an interesting classical analogue of measurement based quantum computation,
and a classification of resource states in terms of their computational resource
power.

A further classification is also possible. One could consider whether there ex-
ist resource states which only enable measurement-based quantum computation



The Role of Classical Computation in MBQC 99

when the control computer is fully classically universal. There is already evidence
for the existence of such states. Recently, models of measurement-based quan-
tum computation have been proposed [10] which utilise states with very different
properties to the cluster states. In particular, a different approach to attaining
deterministic computation is employed. These strategies are based upon buffer-
ing simulated logical gates with repeated attempts at the identity gate, suffi-
ciently many times so that the errors cancel. The errors in this model are not
restricted to Pauli operators, but can be generators of any finite sub-group,
in which case the control computer must employ a counting strategy to iden-
tify when they have cancelled out. Since carrying digits for addition cannot be
straightforwardly achieved in the CNOT computer, it is possible that some of
the states described in [9,10] do indeed fall into this category, and require a
universal classical computer to enable MBQC.

In conclusion, we have shown that the classical computer required for the feed-
back control in one-way quantum computer need not be classically universal, but
a limited power CNOT computer suffices. The questions which this observation
motivates are fascinating and will form a rich subject for further research.

References

1. Raussendorf, R., Briegel, H.: Phys. Rev. Lett. 86, 5188 (2001)
2. Raussendorf, R., Briegel, H.: Quantum. Inform. Compu. 2, 443 (2002)
3. Raussendorf, R., Browne, D., Briegel, H.: Phys. Rev. A 68, 022312 (2003)
4. Browne, D.E., Briegel, H.J.: One-way Quantum Computation - a tutorial intro-

duction. In: Bruss, D., Leuchs, G. (eds.). Lectures on Quantum Information (2006)
5. Nielsen, M.: Rep. Math. Phys. 57, 147 (2006)
6. Jozsa, R.: Measurement-based quantum computation. In: Angelakis, D.G. (ed.)

Quantum Information Processing - From Theory to Experiment (2006)
7. van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Phys. Rev. Lett. 97, 150504

(2006)
8. van den Nest, M., Dür, W., Miyake, A., Briegel, H.J.: New. J Phys. 9, 204 (2007)
9. Gross, D., Eisert, J., Schuch, N., Perez-Garcia, D.: Phys. Rev. A. 76 (2007)

10. Gross, D., Eisert, J.: Phys. Rev. Lett. 98, 220503 (2007)
11. Aaronson, S., Kuperberg, G.: The Complexity Zoo (accessed 10th March 2008),

http://qwiki.stanford.edu/wiki/Complexity Zoo

12. Damm, C.: Inform. Process. Lett. 36, 247 (1990)
13. Aaronson, S., Gottesman, D.: Phys. Rev. A 70, 052328 (2004)
14. Danos, V., Kashefi, E.: Phys. Rev. A 74, 052310 (2006)

http://qwiki.stanford.edu/wiki/Complexity_Zoo


The Algebraic Counterpart of the Wagner

Hierarchy

Jérémie Cabessa and Jacques Duparc

Université de Lausanne,
Faculty of Business and Economics HEC, Institute of Information Systems ISI,

CH-1015 Lausanne, Switzerland
Jeremie.Cabessa@unil.ch, Jacques.Duparc@unil.ch

Abstract. The algebraic study of formal languages shows that ω-rational
languages are exactly the sets recognizable by finite ω-semigroups. Within
this framework, we provide a construction of the algebraic counterpart of
the Wagner hierarchy. We adopt a hierarchical game approach, by trans-
lating the Wadge theory from the ω-rational language to the ω-semigroup
context.

More precisely, we first define a reduction relation on finite pointed
ω-semigroups by means of a Wadge-like infinite two-player game. The
collection of these algebraic structures ordered by this reduction is then
proven to be isomorphic to the Wagner hierarchy, namely a decidable
and well-founded partial ordering of width 2 and height ωω.

Keywords: ω-automata, ω-rational languages, ω-semigroups, infinite
games, Wadge game, Wadge hierarchy, Wagner hierarchy.

1 Introduction

This paper stands at the crossroads of two mathematical fields, namely the
algebraic theory of ω-automata, and hierarchical games, in descriptive set theory.

The basic interest of the algebraic approach to automata theory consists in the
equivalence between Büchi automata and finite ω-semigroups [12] – an extension
of the concept of a semigroup. These mathematical objects indeed satisfy several
relevant properties. Firstly, given a finite Büchi automaton, one can effectively
compute a finite ω-semigroup recognizing the same ω-language, and vice versa.
Secondly, among all finite ω-semigroups recognizing a given ω-language, there
exists a minimal one – called the syntactic ω-semigroup –, whereas there is
no convincing notion of Büchi (or Muller) minimal automaton. Thirdly, finite
ω-semigroups provide powerful characteristics towards the classification of ω-
rational languages; for instance, an ω-language is first-order definable if and
only if it is recognized by an aperiodic ω-semigroup [7,10,18], a generalization to
infinite words of Schützenberger, and McNaughton’s and Papert famous results
[9,16]. Even some topological properties (being open, closed, clopen, Σ0

2, Π0
2,

Δ0
2) can be characterized by algebraic properties on ω-semigroups (see [12,14]).
Hierarchical games, for their part, aim to classify subsets of topological spaces.

In particular, the Wadge hierarchy [19] (defined via the Wadge games) appeared

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 100–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Algebraic Counterpart of the Wagner Hierarchy 101

to be specially interesting to computer scientists, for it shed a light on the study
of classifying ω-rational languages. The famous Wagner hierarchy [20], known as
the most refined classification of ω-rational languages, was proven to be precisely
the restriction of the Wadge hierarchy to these ω-languages.

However, Wagner’s original construction relies on a graph-theoretic analysis
of Muller automata, away from the set theoretical and the algebraic frame-
works. Olivier Carton and Dominique Perrin [2,3,4] investigated the algebraic
reformulation of the Wagner hierarchy, a work carried on by Jacques Duparc
and Mariane Riss [6]. But this new approach is not yet entirely satisfactory, for
it fails to define precisely the algebraic counterpart of the Wadge (or Wagner)
preorder on finite ω-semigroups.

Our paper fill this gap. We define a reduction relation on subsets of finite
ω-semigroups by means of an infinite game, without any direct reference to the
Wagner hierarchy. We then show that the resulting algebraic hierarchy is iso-
morphic to the Wagner hierarchy, and in this sense corresponds to the algebraic
counterpart of the Wagner hierarchy. In particular, this classification is a refine-
ment of the hierarchies of chains and superchains introduced in [2,4]. We finally
prove that this algebraic hierarchy is also decidable.

2 Preliminaries

2.1 ω-Languages

Given a finite set A, called the alphabet, then A∗, A+, Aω , and A∞ denote
respectively the sets of finite words, nonempty finite words, infinite words, and
finite or infinite words, all of them over the alphabet A. Given a finite word u
and a finite or infinite word v, then uv denotes the concatenation of u and v.
Given X ⊆ A∗ and Y ⊆ A∞, the concatenation of X and Y is denoted by XY .

We refer to [12, p.15] for the definition of ω-rational languages. We recall
that ω-rational languages are exactly the ones recognized by finite Büchi, or
equivalently, by finite Muller automata [12].

For any set A, the set Aω can be equipped with the product topology of the
discrete topology on A. The class of Borel subsets of Aω is the smallest class con-
taining the open sets, and closed under countable union and complementation.

2.2 ω-Semigroups

The notion of an ω-semigroup was first introduced by Pin as a generalization
of semigroups [11,13]. In the case of finite structures, these objects represent
a convincing algebraic counterpart to automata reading infinite words: given
any finite Büchi automaton, one can build a finite ω-semigroup recognizing (in
an algebraic sense) the same language, and conversely, given any finite ω-semi-
group recognizing a certain language, one can build a finite Büchi automaton
recognizing the same language.



102 J. Cabessa and J. Duparc

Definition 1 (see [12, p. 92]). An ω-semigroup is an algebra consisting of
two components, S = (S+, Sω), and equipped with the following operations:
• a binary operation on S+, denoted multiplicatively, such that S+ equipped

with this operation is a semigroup;
• a mapping S+ × Sω −→ Sω, called mixed product, which associates with

each pair (s, t) ∈ S+ × Sω an element of Sω, denoted by st, and such that
for every s, t ∈ S+ and for every u ∈ Sω, then s(tu) = (st)u;

• a surjective mapping πS : Sω+ −→ Sω, called infinite product, such that: for
every strictly increasing sequence of integers (kn)n>0, for every sequence
(sn)n≥0 ∈ Sω+, and for every s ∈ S+, then

πS(s0s1 · · · sk1−1, sk1 · · · sk2−1, . . .) = πS(s0, s1, s2, . . .),
sπS(s0, s1, s2, . . .) = πS(s, s0, s1, s2, . . .).

Intuitively, an ω-semigroup is a semigroup equipped with a suitable infinite prod-
uct. The conditions on the infinite product ensure that one can replace the no-
tation πS(s0, s1, s2, . . .) by the notation s0s1s2 · · · without ambiguity. Since an
ω-semigroup is a pair (S+, Sω), it is convenient to call +-subsets and ω-subsets
the subsets of S+ and Sω, respectively.

Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a morphism of
ω-semigroups from S into T is a pair ϕ = (ϕ+, ϕω), where ϕ+ : S+ −→
T+ is a morphism of semigroups, and ϕω : Sω −→ Tω is a mapping canon-
ically induced by ϕ+ in order to preserve the infinite product, that is, for
every sequence (sn)n≥0 of elements of S+, one has ϕω

(
πS(s0, s1, s2, . . .)

)
=

πT
(
ϕ+(s0), ϕ+(s1), ϕ+(s2), . . .

)
.

An ω-semigroup S is an ω-subsemigroup of T if there exists an injective mor-
phism of ω-semigroups from S into T . An ω-semigroup S is a quotient of T
if there exists a surjective morphism of ω-semigroups from T onto S. An ω-
semigroup S divides T if S is quotient of an ω-subsemigroup of T .

The notion of pointed ω-semigroup can be adapted from the notion of pointed
semigroup introduced by Sakarovitch [15]. In this paper, a pointed ω-semigroup
denotes a pair (S,X), where S is an ω-semigroup and X is an ω-subset of S.
A mapping ϕ : (S,X) −→ (T, Y ) is a morphism of pointed ω-semigroups if
ϕ : S −→ T is a morphism of ω-semigroups such that ϕ−1(Y ) = X . The notions
of ω-subsemigroups, quotient, and division can then be easily adapted in this
pointed context.

Example 1. Let A be a finite set. The ω-semigroup A∞ = (A+, Aω) equipped
with the usual concatenation is the free ω-semigroup over the alphabet A [2]. In
addition, if S = (S+, Sω) is an ω-semigroup with S+ being finite, the morphism
of ω-semigroups ϕ : S∞

+ −→ S naturally induced by the identity over S+ is
called the canonical morphism associated with S.

In this paper, we strictly focus on finite ω-semigroups, i.e. those whose first
component is finite. It is proven in [12] that the infinite product πS of a finite
ω-semigroup S is completely determined be the mixed products of the form
xπS(s, s, s, . . .) (denoted xsω). We use this property in the next example.



The Algebraic Counterpart of the Wagner Hierarchy 103

Example 2. The pair S = ({0, 1}, {0ω, 1ω}) equipped with the usual multi-
plication over {0, 1} and with the infinite product defined by the relations
00ω = 10ω = 0ω and 01ω = 11ω = 1ω is an ω-semigroup.

Wilke was the first to give the appropriate algebraic counterpart to finite au-
tomata reading infinite words [21]. In addition, he established that the ω-
languages recognized by finite ω-semigroups are exactly the ones recognized by
Büchi automata, a proof that can be found in [21] or [12].

Definition 2. Let S and T be two ω-semigroups. One says that a surjective
morphism of ω-semigroups ϕ : S −→ T recognizes a subset X of S if there exists
a subset Y of T such that ϕ−1(Y ) = X. By extension, one also says that the
ω-semigroup T recognizes X.

Proposition 1 (Wilke). An ω-language is recognizable by a finite ω-semigroup
if and only if it is ω-rational.

Example 3. Let A = {a, b}, let S be the ω-semigroup given in Example 2, and
let ϕ : A∞ −→ S be the morphism defined by ϕ(a) = 0 and ϕ(b) = 1. Then
ϕ−1(0ω) = (A∗a)ω and ϕ−1(1ω) = A∗bω, and therefore these two languages are
ω-rational.

A congruence of an ω-semigroup S = (S+, Sω) is a pair (∼+,∼ω), where ∼+

is a semigroup congruence on S+, ∼ω is an equivalence relation on Sω, and
these relations are stable for the infinite and the mixed products (see [12]). The
quotient set S/∼ = (S/∼+, S/∼ω) is naturally equipped with a structure of ω-
semigroup. If (∼i)i∈I is a family of congruences on an ω-semigroup, then the
congruence ∼, defined by s ∼ t if and only if s ∼i t, for all i ∈ I, is called the
lower bound of the family (∼i)i∈I . The upper bound of the family (∼i)i∈I is
then the lower bound of the congruences that are coarser than all the ∼i.

Given a subset X of an ω-semigroup S, the syntactic congruence of X , de-
noted by ∼X , is the upper bound of the family of congruences whose associated
quotient morphisms recognize X , if this upper bound still recognizes X , and is
undefined otherwise. Whenever defined, the quotient S(X) = S/∼X is called
the syntactic ω-semigroup of X , the surjective morphism μ : S −→ S(X) is the
syntactic morphism of X , the set μ(X) is the syntactic image of X , and one
has the property μ−1(μ(X)) = X . The pointed ω-semigroup (S(X), μ(X)) will
be denoted by Synt(X). One can prove that the syntactic ω-semigroup of an
ω-rational language is always defined, and is the unique (up to isomorphism) and
minimal (for the division) pointed ω-semigroup recognizing this language [12].

Example 4. Let K = (A∗a)ω be an ω-language over the alphabet A = {a, b}.
The morphism ϕ : A∞ −→ S given in Example 3 is the syntactic morphism of
K. The ω-subset X = {0ω} of S is the syntactic image of K.

Finally, a pointed ω-semigroup (S,X) will be called Borel if the preimage π−1
S (X)

is a Borel subset of Sω+ (where Sω+ is equipped with the product topology of the
discrete topology on S+). Notice that every finite pointed ω-semigroup is Borel,



104 J. Cabessa and J. Duparc

since by Proposition 1, its preimage by the infinite product is ω-rational, hence
Borel (more precisely boolean combination of Σ0

2) [12].

3 The Wadge and the Wagner Hierarchies

Let A and B be two alphabets, and let X ⊆ Aω and Y ⊆ Bω . The Wadge
game W ((A,X), (B, Y )) [19] is a two-player infinite game with perfect infor-
mation, where Player I is in charge of the subset X and Player II is in charge
of the subset Y . Players I and II alternately play letters from the alphabets A
and B, respectively. Player I begins. Player II is allowed to skip her turn – for-
mally denoted by the symbol “−” – provided she plays infinitely many letters,
whereas Player I is not allowed to do so. After ω turns each, players I and II
respectively produced two infinite words α ∈ Aω and β ∈ Bω. Player II wins
W ((A,X), (B, Y )) if and only if (α ∈ X ⇔ β ∈ Y ). From this point onward,
the Wadge game W ((A,X), (B, Y )) will be denoted W(X,Y ) and the alphabets
involved will always be clear from the context.

Along the play, the finite sequence of all previous moves of a given player is
called the current position of this player. A strategy for Player I is a mapping
from (B ∪ {−})∗ into A. A strategy for Player II is a mapping from A+ into
B ∪ {−}. A strategy is winning if the player following it must necessarily win,
no matter what his opponent plays.

The Wadge reduction is defined via the Wadge game as follows: a set X is
said to be Wadge reducible to Y , denoted by X ≤W Y , if and only if Player II
has a winning strategy in W(X,Y ). One then sets X ≡W Y if and only if both
X ≤W Y and Y ≤W X , and also X <W Y if and only if X ≤W Y and X 
≡W Y .
The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
A set X is called self-dual if X ≡W Xc, and non-self-dual if X 
≡W Xc. One can
show [19] that the Wadge reduction coincides with the continuous reduction,
that is X ≤W Y if and only if f−1(Y ) = X , for some continuous function
f : Aω −→ Bω.

The Wadge hierarchy consists of the collection of all ω-languages ordered by
the Wadge reduction, and the Borel Wadge hierarchy is the restriction of the
Wadge hierarchy to Borel ω-languages. Martin’s Borel determinacy [8] easily
implies Borel Wadge determinacy, that is, whenever X and Y are Borel sets,
then one of the two players has a winning strategy in W(X,Y ). As a corollary,
one can prove that, up to complementation and Wadge equivalence, the Borel
Wadge hierarchy is a well ordering. Therefore, there exist a unique ordinal, called
the height of the Borel Wadge hierarchy, and a mapping dW from the Borel
Wadge hierarchy onto its height, called the Wadge degree, such that dW (X) <
dW (Y ) if and only if X <W Y , and dW (X) = dW (Y ) if and only if either
X ≡W Y or X ≡W Y c, for every Borel ω-languages X and Y . The Borel Wadge
hierarchy actually consists of an alternating succession of non-self-dual and self-
dual sets with non-self-dual pairs at each limit level (as soon as finite alphabets
are considered) [5,19].



The Algebraic Counterpart of the Wagner Hierarchy 105

The Wagner hierarchy is precisely the restriction of the Wadge hierarchy to
ω-rational languages, and hence corresponds to the most refined classification
of such languages [6,12,20]. This hierarchy has a height of ωω, and it is decid-
able. The Wagner degree of an ω-rational language can indeed be computed by
analyzing the graph of a Muller automaton accepting this language [20].

Selivanov gave a complete set theoretical description of the Wagner hierar-
chy in terms of boolean expressions [17], and Carton, Perrin, Duparc, and Riss
studied some algebraic properties of this hierarchy [2,4,6]. In this context, the
present work provides a complete construction of the algebraic counterpart of
the Wagner hierarchy.

4 The SG-Hierarchy

We define a reduction relation on pointed ω-semigroups by means of an infinite
two-player game. This reduction induces a hierarchy of pointed ω-semigroups.
Many results of the Wadge theory [19] also apply in this framework, and provide
a detailed description of this algebraic hierarchy.

Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups, and let X ⊆ Sω and
Y ⊆ Tω be two ω-subsets. The game SG((S,X), (T, Y )) is an infinite two-player
game with perfect information, where Player I is in charge of X , Player II is in
charge of Y , and players I and II alternately play elements of S+ and T+ ∪ {−},
respectively. Player I begins. Unlike Player I, Player II is allowed to skip her
turn – denoted by the symbol “−” –, provided she plays infinitely many moves.
After ω turns each, players I and II produced respectively two infinite sequences
(s0, s1, . . .) ∈ Sω+ and (t0, t1, . . .) ∈ Tω+ . Player II wins SG((S,X), (T, Y )) if and
only if πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y . From this point onward, the
game SG((S,X), (T, Y )) will be denoted by SG(X,Y ) and the ω-semigroups
involved will always be known from the context. A play in this game is illustrated
below.

(X) I : s0 s1 · · · · · · after ω moves−→ (s0, s1, s2, . . .)
↘ ↗

(Y ) II : t0 · · · · · · after ω moves−→ (t0, t1, t2, . . .)

We now say that X is SG-reducible to Y , denoted by X ≤SG Y , if and only if
Player II has a winning strategy in SG(X,Y ). We then naturally set X ≡SG Y
if and only if both X ≤SG Y and Y ≤SG X , and also X <SG Y if and only if
X ≤SG Y and X 
≡SG Y . The relation ≤SG is reflexive and transitive, and ≡SG
is an equivalence relation.

Notice that if (S,X) and (T, Y ) are two pointed ω-semigroups, a given player
has a winning strategy in the game SG(X,Y ) if and only if this same player
also has one in the Wadge game W(π−1

S (X), π−1
T (Y )). Therefore Borel Wadge de-

terminacy implies the determinacy of SG-games involving Borel pointed
ω-semigroups.

The collection of Borel pointed ω-semigroups ordered by the ≤SG-relation is
called the SG-hierarchy, in order to underline the semigroup approach. Notice



106 J. Cabessa and J. Duparc

that the restriction of the SG-hierarchy to Borel pointed free ω-semigroups is ex-
actly the Borel Wadge hierarchy. When restricted to finite pointed ω-semigroups,
this hierarchy will be called the FSG-hierarchy, in order to underline the finite-
ness of the ω-semigroups involved. As corollaries of the determinacy of Borel SG-
games, a straightforward generalization in this context of Martin and Wadge’s
results [8,19] shows that, up to complementation and ≤SG-equivalence, the SG-
hierarchy is a well ordering. Therefore, there exist again a unique ordinal, called
the height of the SG-hierarchy, and a mapping dSG from the SG-hierarchy onto
its height, called the SG-degree, such that dSG(X) < dSG(Y ) if and only if
X <SG Y , and dSG(X) = dSG(Y ) if and only if either X ≡SG Y or X ≡SG Y c,
for every Borel ω-subsets X and Y . It directly follows from the Wadge anal-
ysis that the SG-hierarchy has the same familiar “scaling shape” as the Borel
or Wadge hierarchies: an increasing sequence of non-self-dual sets with self-dual
sets in between, as illustrated in Figure 1, where circles represent the ≡SG-
equivalence classes of pointed ω-semigroups, and arrows stand for the <SG-
relation.

Fig. 1. The SG-hierarchy

5 The FSG and the Wagner Hierarchies

This section shows that the FSG-hierarchy is precisely the algebraic counterpart
of the Wagner hierarchy. Consequently, this algebraic hierarchy has a height of
ωω, and it is decidable.

Let S = (S+, Sω) be a finite ω-semigroup, and let ϕ : A∞ −→ S be a surjective
morphism of ω-semigroups, for some finite alphabet A. Then every ω-subset X of
Sω can be lifted on an ω-rational language ϕ−1(X) of Aω . The next proposition
proves that this lifting induces an embedding from the FSG-hierarchy into the
Wagner hierarchy.

Proposition 2. Let (S,X) and (T, Y ) be two finite pointed ω-semigroups, and
let ϕ : A∞ −→ S and ψ : B∞ −→ T be two surjective morphisms of ω-
semigroups, where A and B are finite alphabets. Then X ≤SG Y if and only
if ϕ−1(X) ≤W ψ−1(Y ).

Proof (sketch). A complete proof can be found in [1, pp. 86–88]. For the first
direction, a given winning strategy for Player II in SG(X,Y ) induces via ϕ and
ψ−1 a winning strategy for this same player in the game W

(
ϕ−1(X), ψ−1(Y )

)
.

Conversely, a given winning strategy for Player II in W
(
ϕ−1(X), ψ−1(Y )

)
also

induces via ϕ−1 and ψ a winning strategy for this same player in SG(X,Y ). �



The Algebraic Counterpart of the Wagner Hierarchy 107

By the previous proposition, the Wadge reduction on ω-rational languages and
the SG-reduction on ω-subsets recognizing these languages coincide. The next
corollary mentions that this property holds in particular for ω-rational languages
and their syntactic images, meaning that the SG-reduction is the appropriate
algebraic counterpart of the Wagner reduction. As a direct consequence, the
Wagner degree is a syntactic invariant : if two ω-rational languages have the
same syntactic image, then they also have the same Wagner degree.

Corollary 1. Let K and L be two ω-rational languages and μ(K) and ν(L) be
their syntactic images.

(1) K ≤W L if and only if μ(K) ≤SG ν(L).
(2) If Synt(K) = Synt(L), then K ≡W L.

Proof. Since μ and ν are syntactic morphisms, one has μ−1(μ(K)) = K and
ν−1(ν(L)) = L. Proposition 2 leads to the conclusion. For (2), if Synt(K) =
Synt(L), then μ(K) = ν(L), and (1) leads to the conclusion. �
As another consequence, the SG-degree of an ω-subset is invariant under surjec-
tive morphism, and in particular under syntactic morphism. Therefore, syntactic
finite pointed ω-semigroups are minimal representatives of their ≤SG-equivalence
class.

Corollary 2. Let μ : S −→ T be a surjective morphism of finite ω-semigroups,
let Y ⊆ Tω, and let X = μ−1(Y ). Then X ≡SG Y .

Proof. Let ϕ : S∞
+ −→ S be the canonical morphism of ω-semigroups associated

with S, and let ψ = μ◦ϕ : S∞
+ −→ T . The mapping ψ is a surjective morphism of

ω-semigroups. It satisfies ψ−1(Y ) = ϕ−1 ◦μ−1(Y ) = ϕ−1(X), thus in particular,
ϕ−1(X) ≡W ψ−1(Y ). Proposition 2 then shows that X ≡SG Y . �
Finally, the following theorem proves that the Wagner hierarchy and the FSG-
hierarchy are isomorphic. The required isomorphism is the mapping which asso-
ciates every ω-rational language with its syntactic image. Therefore, the Wagner
degree of an ω-rational language and the SG-degree of its syntactic image are
the same.

Theorem 1. The Wagner hierarchy and the FSG-hierarchy are isomorphic.

Proof. Consider the mapping from the Wagner hierarchy into the SG-hierarchy
which associates every ω-rational language with its syntactic image. We prove
that this mapping is an embedding. Let K and L be two ω-rational languages,
and let X = μ(K) and Y = ν(L) be their syntactic images. Corollary 1 ensures
thatK ≤W L if and only ifX ≤SG Y . We now show that, up to≡SG-equivalence,
this mapping is onto. Let X be an ω-subset of a finite ω-semigroup S = (S+, Sω),
let μ : S −→ S(X) be the syntactic morphism of X , and let Y = μ(X) be its
syntactic image. Corollary 2 ensures that X ≡SG Y . Now, let also ϕ : S∞

+ −→ S
be the canonical morphism associated with S+, and let L = ϕ−1(X). Then the
morphism of ω-semigroups ψ = μ ◦ ϕ : S∞

+ −→ S(X) is the syntactic morphism
of L [12], and one has ψ(L) = Y ≡SG X . �



108 J. Cabessa and J. Duparc

As a corollary, we show that the FSG-hierarchy is decidable: for every ω-subset
X of the hierarchy, one can effectively compute the Cantor normal form of base
ω of the ordinal dSG(X).

Corollary 3. The FSG-hierarchy has height ωω, and it is decidable.

Proof. By the previous theorem, the FSG-hierarchy and the Wagner hierarchy
have the same height, namely ωω. In addition, given an ω-subset X of a finite
ω-semigroup S = (S+, Sω), one can effectively compute the SG-degree of X as
follows. Let ϕ : S∞

+ −→ S be the canonical morphism associated with S+, and let
L = ϕ−1(X). Theorem 1 shows that the SG-degree of X is equal to the Wagner
degree of L. Furthermore, the Wagner degree of L can be effectively computed
as follows. First, one can effectively compute an ω-rational expression describing
L = ϕ−1(X) [12, Corollary 7.4, p. 110]. Next, one can shift from this rational
expression to some finite Muller automaton recognizing L, see [12, Chapter I,
sections 10.1, 10.3, and 10.4]. Finally, the Wagner degree of the ω-language rec-
ognized by a finite Muller automaton is effectively computable [20]. �
Example 5. Consider the syntactic image (S,X) of the ω-language K = (A∗a)ω

given in example 4. We can prove that dSG((S,X)) = dW (K) = ω.

6 Conclusion

This work is a first step towards the complete description of the algebraic coun-
terpart of the Wagner hierarchy. Using a hierarchical game approach, we defined
a reduction relation on finite pointed ω-semigroups which was proven to be the
algebraic counterpart of the Wadge (or Wagner) preorder on ω-rational lan-
guages. As a direct consequence, the Wagner degree of ω-rational languages is
a syntactic invariant. The resulting algebraic hierarchy is then isomorphic to
the Wagner hierarchy, namely a decidable partial order of width 2 and height
ωω. But the decidability procedure presented in Corollary 3 relies on Wagner’s
naming procedure over Muller automata, and in this sense withdraws from the
purely algebraic context.

The natural extension of this work would be to fill this gap, and hence describe
an algorithm computing the Wagner degree of any ω-rational set directly on its
syntactic pointed ω-semigroup, without any reference to some underlying Muller
automata. This study is the purpose of a forthcoming paper.

We can also hope to extend this work to more sophisticated ω-languages,
like those recognized by deterministic counters, or even deterministic pushdown
automata. This would obviously require to understand first the kind of infinite
ω-semigroups corresponding to such machines.

References

1. Cabessa, J.: A Game Theoretical Approach to the Algebraic Counterpart of the
Wagner Hierarchy. PhD thesis, Universities of Lausanne and Paris 7 (2007)

2. Carton, O., Perrin, D.: Chains and superchains for ω-rational sets, automata and
semigroups. Internat. J. Algebra Comput. 7(6), 673–695 (1997)



The Algebraic Counterpart of the Wagner Hierarchy 109

3. Carton, O., Perrin, D.: The Wadge-Wagner hierarchy of ω-rational sets. In:
Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS,
vol. 1256, pp. 17–35. Springer, Heidelberg (1997)

4. Carton, O., Perrin, D.: The Wagner hierarchy. Internat. J. Algebra Comput. 9(5),
597–620 (1999)

5. Duparc, J.: Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank. J.
Symbolic Logic 66(1), 56–86 (2001)

6. Duparc, J., Riss, M.: The missing link for ω-rational sets, automata, and semi-
groups. Internat. J. Algebra Comput. 16(1), 161–185 (2006)

7. Ladner, R.E.: Application of model theoretic games to discrete linear orders and
finite automata. Information and Control 33(4), 281–303 (1977)

8. Martin, D.A.: Borel determinacy. Ann. of Math (2) 102(2), 363–371 (1975)
9. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. research mono-

graph no. 65). MIT Press, Cambridge (1971)
10. Perrin, D., Pin, J.-E.: First-order logic and star-free sets. J. Comput. System

Sci. 32(3), 393–406 (1986)
11. Perrin, D., Pin, J.-É.: Semigroups and automata on infinite words. In: Semigroups,

formal languages and groups (York, 1993), pp. 49–72. Kluwer Acad. Publ., Dor-
drecht (1995)

12. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141.
Elsevier, Amsterdam (2004)

13. Pin, J.-É.: Logic, semigroups and automata on words. Annals of Mathematics and
Artificial Intelligence 16, 343–384 (1996)

14. Pin, J.-E.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V.
(eds.) LATIN 1998. LNCS, vol. 1380. Springer, Heidelberg (1998)

15. Sakarovitch, J.: Monöıdes pointés. Semigroup Forum 18(3), 235–264 (1979)
16. Schützenberger, M.P.: On finite monoids having only trivial subgroups.. Inf. Con-

trol 8, 190–194 (1965)
17. Selivanov, V.: Fine hierarchy of regular ω-languages. Theoret. Comput. Sci. 191(1-

2), 37–59 (1998)
18. Thomas, W.: Star-free regular sets of ω-sequences. Inform. and Control 42(2), 148–

156 (1979)
19. Wadge, W.W.: Reducibility and determinateness on the Baire space. PhD thesis,

University of California, Berkeley (1983)
20. Wagner, K.: On ω-regular sets. Inform. and Control 43(2), 123–177 (1979)
21. Wilke, T.: An Eilenberg theorem for ∞-languages. In: Leach Albert, J., Monien, B.,

Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 588–599. Springer,
Heidelberg (1991)



Computing by Observing: A Brief Survey

Matteo Cavaliere

The Microsoft Research - University of Trento,
Centre for Computational and Systems Biology, CoSBi, Trento, Italy

cavaliere@cosbi.eu

Abstract. This paper is a brief survey of a computational paradigm
called computing by observing that stresses the role of an observer in
computation. The idea of the paradigm is that a computing device can
be obtained by combining a basic system and an observer that transforms
the trajectories of the basic system into a readable output. The paradigm
has been applied in several areas: natural computing (DNA computing
and membrane computing), automata and formal language theory. In
general, it has been shown that simple basic systems observed by simple
observers can produce that which only much more complex systems can
produce.

1 Introduction

A standard procedure in many fields of science is to conduct an experiment, ob-
serve the entire dynamics of a system and then take the result of this observation
as the final output. A momentary picture of the observed system is irrelevant,
and rather the entire dynamics of the system is evaluated.

Inspired by this, has been defined a framework where the computation is
obtained by observing the entire progress of a basic system. In other words, the
entire observed progress constitutes the result of the computation. The paradigm
(called computing by observing) stresses the role of the observer in computation
and defines a computation by balancing the power of the observed system and
the power of the external observer.

The paradigm, in the most general case, is sketched in Figure 1. Following a
set of rules the observer translates the trajectories of the observed basic system
into a readable output, usually strings.

In this abstract framework, the basic system has usually a dynamics specified
by some fixed rules (applied iteratively) and the observer is a mapping that
associates to each configuration reached by the system a label taken from a
finite set of labels. Here one considers observed systems and observers as formal
machines – the process of observation is actually a process used to filtrate and
interpret informations.

The framework was originally [5] applied to a membrane system. Following
the same idea, new bio-inspired models of computation have been obtained in [1]
(sticker systems) and in [2] (splicing systems). The generalization of the frame-
work to formal language theory has been proposed in [7], to string-rewriting in

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 110–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Computing by Observing: A Brief Survey 111

time

basic system config. 2 config. 3 config. 4config. 1

observer

aabc...output

Fig. 1. Basic Idea of the Computing by Observing Framework

[4,6], where derivations of grammars and string-rewriting systems are observed
by finite state automata. The passage from a basic system as concrete, observ-
able, bio-physical thing to an abstract formal rewriting system can be imagined
in the following manner: one can associate a set of (physical) objects to strings
and can have some rewriting rules to evolve such objects.

In general, in all these mentioned works, already rather simple basic systems
observed by simple observers were proved to be computationally universal (i.e.,
equivalent to Turing machines).

However, in most of these results it was necessary to design both a specific
basic system and a specific observer to produce a specific result. On the other
hand most basic systems cannot be (easily) programmed or modified (e.g., think
to a basic system representing a biological system). However, their evolution can
be monitored by using different observers. Then, it is natural to ask how much
one can compute by fixing a basic system and choosing different observers (in
other words, computing by only observing).

This question was (partially) answered in [3] where it was shown that every
computational device can be obtained by observing in the “right” manner a
fixed basic system (with both - observer and observed basic systems with limited
computational power).

In this paper we briefly survey the results obtained by using such a paradigm
in the formal languages area.

In what follows we use some basic notions and standard terminology from
formal language theory (for details, the reader is invited to consult the corre-
sponding chapters of the handbook of formal languages, [9]).

We only recall that REG and CF denotes the classes of regular and context-
free grammars, respectively and that by REG, CF and RE we denote the classes of
languages generated by regular, context-free, and type-0 grammars, respectively.

2 Computing by Observing

In this section we present grammar/observer (G/O) systems that are generative
devices based on the framework discussed in the Introduction.



112 M. Cavaliere

In this case, a formal grammar plays the role of the observed basic system
and an automaton – be it a finite automaton or even a Turing machine – plays
the role of the observer.

Initially, a formal definition of the observer is given, and then the definition of
a G/O system is recalled. Three ways of working for a G/O system (initial, free,
always writing) are presented. Examples of G/O systems are presented later.
This section is essentially based on [7].

2.1 An Example of Observer: Automata with Singular Output

As observer, we essentially use a device mapping arbitrarily long strings into
just one singular symbol and we call it automata with singular output.

An automaton with singular output is a tuple A = (Q, V,Σ, q0, δ, σ) with state
set Q, input alphabet V , initial state q0 ∈ Q, and a complete transition function
δ as known from conventional finite state automata; further there is the output
alphabet Σ and a labeling function σ : Q �→ Σ ∪ {λ} ∪ {⊥} where λ denotes the
empty string and ⊥ /∈ Σ.

The output of an automaton with singular output is the label of the state in
which it halts/stops. For a string w ∈ V ∗ and an automaton A we then write
A(w) for this output; for a sequence w1, . . . , wn of n ≥ 1 strings over V ∗ we
write A(w1, . . . , wn) for the string A(w1) · · ·A(wn).

The class of all (deterministic) automata with singular output will be denoted
by FAO. Clearly, in the same way observers can be obtained from other classes
of automata such as pushdown automata, linear bounded automata or Turing
machines.

2.2 G/O Systems

We combine a formal grammar and an observer obtaining the central notion of
this section: G/O system.

A G/O system is a pair Ω = (G,A) constituted by a generative gram-
mar G = (N,T, S, P ) and an automaton with singular output (observer) A =
(Q, V,Σ, q0, δ, σ) with output alphabet Σ, which then is also the output alpha-
bet of the entire system Ω. The automaton’s input alphabet must be the union
of N and T from the grammar to make the desired interaction possible, i.e.,
V = N ∪ T .

We distinguish three different modes of generation that define three different
models of G/O systems:
1. writing a non-empty output in every step (always writing G/O systems),
2. writing a non-empty output in every step after an initialization phase of

writing only λ (initial G/O systems), and
3. changing between empty and non-empty output in an arbitrary manner (free

G/O systems).

In the case of an always writing G/O system Ω the language generated by Ω is

La(Ω) = {A(w1, w2, . . . , wn) | S = w0 ⇒ w1 ⇒ . . .⇒ wn,

wn ∈ T ∗ and A(wi) 	= λ, for all 1 ≤ i ≤ n}.



Computing by Observing: A Brief Survey 113

Note that the very first sentential form, which is always the starting symbol,
is excluded from the observation (otherwise, all words in L(Ω) would start with
the same letter, if the observer was deterministic). The sentential forms wi, 1 ≤
i ≤ n, are obtained by applying the productions of G, in the standard sequential
way, as usually defined in grammars.

The best way to ensure the last condition, i.e., that λ is never written as
output, is of course to define the observer in such a way that it can never produces
empty output.

For an initial G/O system the output is defined as

Li(Ω) = {A(w0, w1, . . . , wn) | S = w0 ⇒ w1 ⇒ . . .⇒ wn, wn ∈ T ∗,
and for all i ∈ {1, . . . , n}, A(w0, w1, . . . , wi−1) 	= λ

implies A(wi) 	= λ}.

Finally, a free G/O system generates a language in the following non-restricted
manner:

Lf(Ω) = {A(w0, w1, . . . , wn) | S = w0 ⇒ w1 ⇒ . . .⇒ wn, wn ∈ T ∗}.

Thus in all three cases the language contains all those words which the ob-
server can produce during the possible terminating derivations of the underlying
grammar. Derivations which do not terminate do not produce a valid output;
this means that we only take into account finite words. Of course, by consider-
ing the other case of non-terminating derivations the G/O systems could also be
used to generate languages of infinite words.

We will actually mainly present the variant where we consider as language
produced by Ω:

L⊥,a(Ω) = La(Ω) ∩Σ∗.

In this way the strings in La(Ω) containing ⊥ are filtered out and they are not
present in L⊥,a(Ω).

Analogously, the languages L⊥,i(Ω) and L⊥,f(Ω) are defined.
For a class G of grammars and a class O of observers, La(G,O), Li(G,O),

Lf (G,O), L⊥,a(G,O), L⊥,i(G,O), and L⊥,f (G,O) denote the classes of all lan-
guages generated by G/O systems with grammars from G and observers from O
in the respective modes. Quite obviously we obtain for fixed classes of grammars
G and observers O the inclusions

La(G,O) ⊆ Li(G,O) ⊆ Lf (G,O)

and the same for the variants where the special symbol ⊥ can be written.
A description of a (free) G/O system Ω = (G,A) is presented in Figure 2.
For simplicity, in what follows, we present only the mappings that the ob-

servers define, without giving a real implementation (in terms of finite automata)
for them.



114 M. Cavaliere

G = (N, T, S, P)

N = {S, A, B, C}     T = {t}

P= { S →  A, ⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⊥
∈
∈
∈
=

=
+

+

else

Ctwifc

BCwA
*

*

*

   wif     b

AB wif    a

S  wif   

)(

λ

A →  AB, A → C, B →  C, C →  t }

S ⇒ A ⇒n-1 AB
n-1⇒ CB

n-1⇒n-1 C
n⇒ tC

n-1⇒ n-1  t
n

λ a    …       a            b   ...   b      c    ….         c  

⎪⎩⊥ else

observed behavior of the grammar {an bn cn | n >0} 

Fig. 2. Consider Ω = (G, A). At each sentential form produced by the grammar G
the observer A associates a symbol that can be a, b, c, ⊥ or the empty string λ (the
vertical arrow is the observer mapping). The concatenation of these symbols is then an
output string. For instance, in the figure the output string is λa · · · ab · · · bc · · · c. The
mapping defined by the observer is specified by the regular expressions. The language
Lf (Ω) is obtained by considering all possible halting derivations of G and collecting
all the output strings. Strings in Lf (Ω) containing ⊥ are filtered out and not present
in L⊥,f (Ω) that in this case is {anbncn | n > 0}.

2.3 Always Writing G/O Systems

The first mode of generation we present is the one of writing an output in every
step, i.e., we consider the model of always writing G/O systems. This is maybe
the most natural one, since in most cases the observation of an experiment should
be complete, at least if about the outcome nothing is known beforehand.

We can see that every context-free language L is in L⊥,a(CF, FAO). For this
consider a context-free grammar in the Greibach normal form. There, all right
sides of rules are elements of TN∗; this means that in every step exactly one
terminal is produced. Since the grammar is still context-free, there is a leftmost
derivation for every word in L. In this derivation all sentential forms except the
initial S are strings over T+N∗. An observer can check that a derivation produces
only sentential forms of this structure. Then it can output the rightmost terminal
for each one of these sentential forms, and the result equals the string derived
by the original grammar.

However, L⊥,a(CF, FAO) is bigger than only CF . As an example for a non-
context-free language from this class we present {anbncn | n > 0}. The grammar
for this language is

G = ({S,A,B,C}, {t}, S, {S → A,A→ AB,A→ C,B → C,C → t}).



Computing by Observing: A Brief Survey 115

The derivations whose observations will result in the output of words anbncn are
the ones of the form

S ⇒ A
n−1⇒ ABn−1 ⇒ CBn−1 n−1⇒ Cn ⇒ tCn−1 n−1⇒ tn.

To produce the output and rule out all other derivations, the observing automa-
ton A will realize the following mapping from the set of sentential forms of G
into {a, b, c,⊥}:

A(w) =

⎧
⎪⎪⎨

⎪⎪⎩

a if w ∈ AB∗,
b if w ∈ C+B∗,
c if w ∈ t+C∗,
⊥ else.

While {anbncn | n > 0} is still semilinear, also the language {a2n | n > 0},
which is not semilinear, lies in the class L⊥,a(CF, FAO). To show this, we first re-
call that a binary tree of depth k has exactly 2n−1 nodes, if the root is considered
to already have depth one. Therefore a context-free grammar, which can have
full binary trees as derivation trees, and an observer, which can check that only
such derivations are made, can generate {a2n | n > 0} when interacting in a G/O
system. For this example our grammar is G = ({S,A,B,C, T1, T2, T3}, {t}, S, P ),
where the set P of productions is

{S → A,A→ BB,B → CC,C → AA,A→ BT1, B → CT2,

C → AT3, A→ t, B → t, C → t, T1 → t, T2 → t, T3 → t}.

Now, for example, derivations resulting in the outputs a2 and a8 are

S ⇒ A⇒ t

and

S ⇒ A⇒ BB ⇒ CCB ⇒ CCCT2 ⇒ tCCT2 ⇒ ttCT2 ⇒ tttT2 ⇒ tttt,

respectively. The conditions that the observer has to check (for putting out a in
every step) are rather straightforward to see after the previous example.

A sentential form containing any A must be completely changed to one from
B∗, the same from B to C, and finally from C to A. This is done by use of the
rules A → BB,B → CC and C → AA respectively. To ensure that the entire
sentential form is completely changed, the observer maps to a only the sentential
forms of the form A+B∗ ∪ B+C∗ ∪ C+A∗ – others result in the output ⊥. We
notice that there are never more than two different non-terminals present at the
same time.

To stop the derivation the rightmost non-terminal of the sentential form must
produce the corresponding Ti, with i ∈ {1, 2, 3}, by using one of the rules A →
BT1, B → CT2, or C → AT3, and then the only possible further steps are to
derive all non-terminals to t. In these cases, the sentential forms mapped to a
must be of the form t∗A∗T3 ∪ t∗B∗T1 ∪ t∗C∗T2 ∪ t+.



116 M. Cavaliere

Therefore the mapping of the observer is

A(w) =

⎧
⎨

⎩

a if w ∈ A+B∗ ∪B+C∗ ∪ C+A∗∪
t∗A∗T3 ∪ t∗B∗T1 ∪ t∗C∗T2 ∪ t+,

⊥ else.

We note here one difference between the two examples: while in the first case for
a word of length n the workspace used by the grammar is n

3 , in the second case
the space is logarithmic in the length of the output.

Trying to characterize the class L⊥,a(CF, FAO) more closely, we can easily see
that it is contained in the class of context-sensitive languages. In fact, the G/O
system must write a symbol of output at each step and then the total space used
by such a system for the generation of a word w is bounded by a constant de-
pending only on the context-free grammar. Therefore, every language generated
by an always writing G/O systems is context-sensitive by the workspace theo-
rem. It is an open problem whether or not the class L⊥,a(CF, FAO) corresponds
exactly to the class of context-sensitive languages.

2.4 Initial G/O Systems

The second variant of G/O systems is called initial G/O system and in this
model the sentential forms of an initial phase are mapped exclusively to λ. After
the first non-empty output only non-empty outputs can be produced – looking
back to the biochemical motivation of the concept of evolution and observer,
this would correspond to a phase of initializing an experiment and then a phase
of actual observation.

Such an initialization phase – which is not restricted, but can be much longer
than the actually observed phase – greatly enhances the power of our G/O
systems. Indeed, with the same classes of grammars and observers as in Section
2.3 we obtain computational universality in this case.

Theorem 1. L⊥,i(CF, FAO) = RE. [7]

2.5 Free G/O Systems

An immediate corollary of Theorem 1 is the fact that L⊥,f (CF, FAO) = RE.
However a G/O system composed of even less powerful components, namely a
locally commutative context-free grammar (LCCF ) and a finite state automaton
is universal, if the output λ can be used without any restriction. Notice that
LCCF languages are strictly included in CF languages (e.g., [7]).

Theorem 2. L⊥,f (LCCF,FAO) = RE. [7]

An interesting fact is that intuitively the observer’s ability to produce ⊥, i.e.,
to eliminate certain computations, seems a powerful and essential feature in all
three models. However, we obtain all recursively enumerable languages over Σ
simply by intersection of a language over Σ⊥ with the regular language Σ∗.



Computing by Observing: A Brief Survey 117

Now notice that recursive languages are closed under intersection with regular
sets (can be obtained just by looking to the definition of recursive languages).
Therefore, there must exist some grammar/observer systems Ω generating a
non-recursive Lf (Ω) (i.e., not using the filtering with ⊥).

3 Computing by Only Observing

As discussed in the Introduction, it is interesting to understand how much one
can compute by allowing only changes in the observer, keeping unchanged the
observed basic system.

For this purpose, we say that a grammar is universal (modulo observation)
for a family of languages if it can generate every language in the family when
observed in an appropriate way.

Formally, as in [3]:

Definition 3. A grammar G is universal modulo observation (m.o.) for a fam-
ily of languages L if L = L⊥,f ({G},FAO).

We show by means of an example that a G/O system can generate different
classes of languages if the observer is changed while the grammar remains fixed.

Let us consider the following context-free grammar:

G = ({S,A,B,C}, {t, p}, S, {S → pS, S → p,

S → A,A→ AB,A→ C,B → C,C → t}).
If G is coupled with the observer A′ such that A′(w) = a if w ∈ {S,A,B,C, t,
p}+, then Ω = (G,A′) defines the language L⊥,f(Ω) = {ai | i ≥ 2}, a regular
language. In fact, the derivation S → pS

n−2⇒ pn−1S → pn produces (when
observed) the string an+1.

Keeping the same grammar G we change the observer into A′′ such that:

A′′(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ if w = S,
a if w ∈ AB∗,
b if w ∈ C+B∗,
c if w ∈ t+C∗,
⊥ else

In this case, one can verifies that Ω = (G,A′′) generates the language L⊥,f(Ω) =
{anbncn | n > 0}, a context-sensitive language.

This example suffices to underline that “part” of the computation can be done
by choosing the right observer, keeping unchanged the underlying basic system.

Actually, this “part” can be really crucial: in fact, starting from universal
type-0 grammars, one can construct an “universal” context-free grammar that
can generate all recursively enumerable languages when observed in the correct
manner. Formally,

Theorem 4. There exists a context-free grammar that is universal m.o. for
RE. [3].



118 M. Cavaliere

4 Restrictions on the Observed System

We can consider two restrictions on the observed systems and precisely on the
considered context-free grammars: bounding the number of nonterminals and
considering leftmost derivations only. In these cases we observe REG and CF,
respectively.

The context-free grammar used as a universal grammar in Theorem 4 has no
bound on the number of nonterminals in its sentential forms.

The next result shows that indeed this is a necessary property of context-free
grammars that are observationally complete for type-0 grammars. In fact, when a
bound is imposed, our observations constitute regular languages only. Recall that
a context-free grammar is nonterminal bounded if there exists a constant k such
that all sentential forms generated by the grammar have at most k nonterminals.

Theorem 5. For every G/O system Ω = (G,A) with G nonterminal bounded
context-free, A ∈ FAO, L⊥,f(Ω) is regular. [3]

A leftmost generative grammar is a quadruple G = (N,T, S, P ) where G has
only leftmost derivations: we assume that P ⊆ N+ × (N ∪ T )∗, and α→ β ∈ P
implies wαx⇒ wβx for w ∈ T ∗ and x ∈ (N ∪ T )∗.

A pushdown automaton corresponds to leftmost derivations in a type 0 gram-
mar with productions of the form pA → aqα for the instruction from state p
to q, reading a, popping A and pushing α back to the stack. The following re-
sult implies that pushdown automata are less computationally powerful than
context-free grammars when observed.

Lemma 6. For every G/O system Ω = (G,A) with G a leftmost type-0 gram-
mar, A ∈ FAO, L⊥,f(Ω) is context-free. [3]

This result makes explicit the fact that, when considering this framework, the
complexity of the produced output is influenced by the particular dynamics of
the observed system.

5 Final Remarks

The survey has tried to show that a relevant parameter in defining the complex-
ity of a computation can be the external observer. Theorem 4 proves that the
observer can be crucial, if the observed system is sufficiently complex: it is possi-
ble to ‘observe’ every recursively enumerable language from a fixed context-free
grammar.

It would be then extremely interesting to find grammars (in general systems)
that can characterise (by changing the observer) families of languages with cer-
tain specified properties. Other directions of investigations are possible: for in-
stance, what classes can be obtained without making use of the symbol⊥ (largely
used in most of the proofs of the results presented here), or with G/O systems
using weaker observers (considering interesting restrictions on finite state au-
tomata). On this respect, which are the realistic limitations one should impose



Computing by Observing: A Brief Survey 119

on the observer? An interesting suggestion, would be to impose a bound on the
time (window) of observation. Another interesting new topic concerns the possi-
bility of using such framework to learn in an easier way complex languages ([8]).
Along these lines, we expect several interesting results and, maybe, being a new
research area, new type of questions.

References

1. Alhazov, A., Cavaliere, M.: Computing by observing bio-systems: The case of sticker
systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384.
Springer, Heidelberg (2005)

2. Cavaliere, M., Jonoska, N., Leupold, P.: DNA splicing: Computing by observing.
Natural Computing (to appear)

3. Cavaliere, M., Hoogeboom, H.J., Frisco, P.: Computing by only observing. In: H.
Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036. Springer, Heidelberg (2006)

4. Cavaliere, M., Leupold, P.: Observation of string-rewriting systems. Fundamenta
Informaticae 74(4) (2006)

5. Cavaliere, M., Leupold, P.: Evolution and observation - A new way to look at mem-
brane systems. In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2003. LNCS, vol. 2933. Springer, Heidelberg (2004)

6. Cavaliere, M., Leupold, P.: Evolution and observation - A non-standard way to
accept formal languages. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354.
Springer, Heidelberg (2005)

7. Cavaliere, M., Leupold, P.: Evolution and observation: A non-standard way to gen-
erate formal languages. Theoretical Computer Science 321 (2004)

8. Fernando, C., Cavaliere, M., Soyer, O., Goldstein, R.: Hebbian Learning of Context-
Sensitive Languages (manuscript, 2008)

9. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Heidelberg
(1996)



A Quantum Information-Theoretic Proof of the

Relation between Horn’s Problem and the
Littlewood-Richardson Coefficients

Matthias Christandl

Centre for Quantum Computation, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge

CB3 0WA, United Kingdom
and

Arnold Sommerfeld Center for Theoretical Physics, Faculty of Physics,
Ludwig-Maximilians-Universität München, 80333 München, Germany

matthias.christandl@qubit.org

Abstract. Horn’s problem asks for the conditions on sets of integers
µ, ν and λ that ensure the existence of Hermitian operators A, B and
A + B with spectra µ, ν and λ, respectively. It has been shown that this
problem is equivalent to deciding whether Uλ ⊂ Uµ ⊗ Uν for irreducible
representations of GL(d, C) with highest weights µ, ν and λ. In this pa-
per we present a quantum information-theoretic proof of the relation
between the two problems that is asymptotic in one direction. This re-
sult has previously been obtained by Klyachko using geometric invariant
theory [1]. The work presented in this paper does not, however, touch
upon the non-asymptotic equivalence between the two problems, a result
that rests on the recently proven saturation conjecture for GL(d,C) [2].

1 Introduction and Results

Given three spectra µ, ν and λ, are there Hermitian operators A, B with

(Spec A, Spec B, Spec A+B) = (µ, ν, λ) ?

It is known as Horn’s problem to characterise the set of triples (µ, ν, λ) which
have an affirmative answer. Those form a convex polytope whose describing
inequalities have been conjectured by Horn in 1962 [3]. In this paper, we will
not be concerned with the characterisation of the polytope itself which has by
now been achieved [1] [2] but rather with the connection of Horn’s problem
to the representation theory of GL(d,C). This connection was first noted by
B. V. Lidskii [4] and emerges as a natural twist to Klyachko’s work on the
inequalities. More precisely, he proves the following two theorems relating the
admissible spectral triples to the Littlewood-Richardson coefficients cλµν . cλµν is
the multiplicity of the irreducible representation Uλ of GL(d,C) in the tensor
product representationUµ⊗Uν of GL(d,C). µ, ν and λ denote the highest weights
of the respective representations.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 120–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On Horn’s Problem and the Littlewood-Richardson Coefficients 121

Theorem 1. If cλµν �= 0, then there exist Hermitian operators A and B such
that

(Spec A,Spec B,Spec A+B) = (µ, ν, λ).

Theorem 2. For Hermitian operators A, B and C := A + B with integral
spectra µ, ν and λ, there is an N ∈ N such that

cNλNµ,Nν �= 0.

The original proofs of both theorems are based on deep results in geomet-
ric invariant theory. The contributions of this paper are elementary quantum-
information-theoretic proofs of Theorem 1 and of the following variant of
Theorem 2:

Theorem 3. For all Hermitian operators A, B and C := A + B on C
d with

spectra µ, ν and λ, there is a sequence (µ(j), ν(j), λ(j)), such that

cλ
(j)

µ(j)ν(j) �= 0

and

lim
j→∞

µ(j)

j
= Spec A

lim
j→∞

ν(j)

j
= Spec B

lim
j→∞

λ(j)

j
= Spec A+B.

Theorems 2 and 3 can be shown to be equivalent with help of the fact that
the triples (µ, ν, λ) with nonvanishing Littlewood-Richardson coefficient form a
finitely generated semigroup (see [5] for a similar equivalence in the context of
the quantum marginal problem). Here, we choose to prove Theorem 3 since it
more naturally fits our quantum information-theoretic approach. The basis of
this approach is an estimation theorem for the spectrum of a density operator
(Theorem 4) [6], which has recently been used [5] [7][8] to prove a relation analo-
gous to the one presented in this paper between the Kronecker coefficient of the
symmetric group and the spectra of a bipartite density operator and its margins.

In 1999, Knutson and Tao proved the saturation conjecture for GL(d,C),
i.e. they proved that

cNλNµ,Nν �= 0 for some N ∈ N implies cλµν �= 0.

This result implies that the N in Theorem 2 can be taken to be one and the
equivalence of the two problems is strict and not only asymptotic. The proof
appeared in [2] and introduces the honeycomb model. A more compact version
of this proof based on the hive model was given by [9], and a more accessible
discussion can be found in [10].

We proceed with the introduction of the necessary group theory and quantum
information theory before turning to the proofs.



122 M. Christandl

2 Preliminaries

2.1 Spectrum Estimation

The tensor space (Cd)⊗k carries the action of the symmetric group Sk which
permutes the tensor factors and the diagonal action of GL(d,C): g �→ g⊗k. Since
those actions commute in a maximal way, the tensor space decomposes in a form
known as Schur-Weyl duality:

(Cd)⊗k ∼=
⊕

λ

Uλ ⊗ Vλ,

where Uλ and Vλ are irreducible representations of GL(d,C) and Sk, respectively.
The sum extends over all labels λ that are partitions of k into d parts, i.e.
λ = (λ1, . . . , λd) where the positive integers λi obey λi ≥ λi+1. As a label of an
irreducible representation of GL(d,C), λ is a dominant weight and as a label of
an irreducible representation of Sk it is a Young frame.

The following theorem has been discovered by Alicki, Rudnicki and Sadowski
in the context of quantum optics [11] and independently by Keyl and Werner
for use in quantum information theory [6]. In [7] a short account of Hayashi and
Matsumoto’s elegant proof [12] of this theorem is given.

Theorem 4. Let (Cd)⊗k ∼= ⊕
λ Uλ ⊗ Vλ be the decomposition of tensor space

according to Schur-Weyl duality and denote by Pλ the projection onto Uλ ⊗ Vλ.
Then for any density operator ρ with spectrum r we have

TrPλρ⊗k ≤ (k + 1)d(d−1)/2 exp
(−kD(λ̄||r)) (1)

where D(·||·) denotes the Kullback-Leibler distance of two probability distribu-
tions and λ̄ = (λ̄1, . . . , λ̄d) = ( λ1

|λ| , . . . ,
λd

|λ| ). |λ| =
∑
i λi = k.

This theorem can be interpreted as follows: The joint measurement of k copies
of the state ρ by projection onto the spaces Uλ′⊗Vλ′ will – with high probability
– result in a measurement outcome λ′ = λ satisfying λ

k ≈ r. λ
k is therefore an

estimate for the spectrum of ρ. Indeed the error exponent in eq.(1) is optimal [6].

2.2 Littlewood-Richardson Coefficients

Given two irreducible representationsUµ and Uν of GL(d,C) with highest weights
µ and ν we decompose the tensor product representation Uµ ⊗ Uν of GL(d,C)
(here, the group is represented simultaneously with Uµ and Uν) into irreducible
representations of GL(d,C)

Uµ ⊗ Uν ∼=
⊕

λ

cλµνUλ, (2)

where cλµν denotes the multiplicity of Uλ and is known as the Littlewood -
Richardson coefficient. Since GL(d,C) is the complexification of U(d), the



On Horn’s Problem and the Littlewood-Richardson Coefficients 123

unitary group in d dimensions, we are allowed to – and will later on – regard
all representations as representations of U(d). The definition of the Littlewood-
Richardson coefficient in eq. (2) is indeed the standard one. In the proofs below,
however, we will work with a different definition given in terms of the symmetric
group:

Vλ ↓Sn

Sk×Sn−k

∼=
⊕

µ,ν

cλµνVµ ⊗ Vν . (3)

Here, we restricted the irreducible representation Vλ of Sn to the subgroup Sk×
Sn−k and decomposed it into products of irreducible representations of Sk and
Sn−k. Observing that Sn is self-dual, i.e. V �λ ∼= Vλ, this definition can be put
into the following invariant-theoretic form

cλµν = dim(Vλ ⊗ Vµ ⊗ Vν)Sk×Sn−k , (4)

where Sk×Sn−k acts simultaneously on Vλ and Vµ⊗Vν . Clearly, this character-
isation only applies to Young frames, i.e. dominant weights with non-negative
parts. The extension to the case of arbitrary dominant weights follows from the
observation that cλµν is invariant under the transformation

µ �→ µ′ := µ+m(1d)

ν �→ ν′ := ν + n(1d)

λ �→ λ′ := λ+ (m+ n)(1d)

(5)

for integers m and n, i.e. cλµ,ν = cλ
′
µ′,ν′ . (1d) is short for (1, . . . , 1) (d ones).

3 Proofs

3.1 From Hermitian Operators to Density Operators

It will suffice to prove our results for nonnegative Hermitian operators and Young
frames, i.e. dominant weights with nonnegative parts. In order to see this, as-
sume that Theorem 1 holds for Young frames and consider an arbitrary triple
of dominant weights (µ, ν, λ) with cλµ,ν �= 0. Choose m and n large enough so
that (µ′, ν′, λ′) defined above has no negative parts. Since cλ

′
µ′,ν′ �= 0 there are

positive Hermitian operators A′ and B′ with

(Spec A′, Spec B′, Spec A′ +B′) = (µ′, ν′, λ′).

This equation is equivalent to

(Spec A, Spec B, Spec A+B) = (µ, ν, λ),

where A := A′ −m11 and B := B′ − n11. The latter is obtained by subtracting
(m(1d), n(1d), (m+n)(1d)) on both sides of the former observing that Spec (A′−
m11) = Spec A′−m(1d) (similarly for B). A similar argument can be carried out
for Theorem 3.



124 M. Christandl

Since we want to use intuition from quantum information theory, we define
p = TrA/(TrA + B), ρA = A/TrA and ρB = B/TrB. The conditions on the
spectra of (A,B,A+B) are then equivalent to the conditions on the spectra of
(ρA, ρB, pρA+(1−p)ρB), the convex mixture of density operators (i.e. trace one
positive Hermitian operators).

We will therefore prove the following two theorems which are equivalent to
Theorems 1 and 3 by the above discussion.

Theorem 5. Let (µ, ν, λ) be a triple of Young frames with cλµ,ν �= 0. Then there
exist quantum states ρA and ρB such that

Spec ρA = µ̄

Spec ρB = ν̄

Spec ρC = λ̄,

where p = |µ|
|λ| and ρC = pρA + (1− p)ρB .

Theorem 6. For all density operators ρA, ρB and ρC = pρA+ (1− p)ρB on C
d

with spectra µ, ν and λ and p ∈ [0, 1], there is a sequence (µ(j), ν(j), λ(j)), such
that

cλ
(j)

µ(j),ν(j) �= 0

and

lim
j→∞

µ̄(j) = Spec ρA

lim
j→∞

ν̄(j) = Spec ρB

lim
j→∞

λ̄(j) = Spec ρC .

3.2 Proof of Theorem 5

We assume without loss of generality that 0 < p ≤ 1
2 . It is well-known that the

Littlewood-Richardson coefficients form a semigroup, i.e. cλµν �= 0 and cλ
′
µ′ν′ �= 0

implies cλ+λ′
µ+µ′,ν+ν′ �= 0[13][14]. As a consequence, cλµν �= 0 implies cNλNµNν �= 0 for

all N . For every N we will now construct density operators ρAN and ρBN whose
limits ρA := limN→∞ ρAN and ρB := limN→∞ ρBN satisfy the claim of the theorem.

Fix a natural number N , set n := N |λ| as well as k := N |µ| and let p := k
n .

Since cλµν can only be nonzero if |µ| + |ν| = |λ|, we further have n − k = N |ν|.
As explained above, the nonnegativity of the parts of µ, ν and λ allows us to
invoke the characterisation of the Littlewood-Richardson coefficient in terms of
the symmetric group:

cNλNµ,Nν = dim(VNµ ⊗ VNν ⊗ VNλ)Sk×Sn−k ,



On Horn’s Problem and the Littlewood-Richardson Coefficients 125

where Sk acts on VNµ, Sn−k on VNν and Sk × Sn−k ⊂ Sn on VNλ. Now pick a
nonzero |ΨN 〉 ∈ (VNµ ⊗ VNν ⊗ VNλ)Sk×Sn−k . Consider

H(1) ⊗ · · · ⊗ H(k) ⊗H(k+1) ⊗ · · · ⊗ H(n)

⊗K(1) ⊗ · · · ⊗ K(k) ⊗K(k+1) ⊗ · · · ⊗ K(n),
(6)

where H(i) and K(j) are isomorphic to C
d. Embed the representation VNµ in

H(1) ⊗ · · · ⊗ H(k), VNν in H(k+1) ⊗ · · · ⊗ H(n) and VNλ in K(1) ⊗ · · · ⊗ K(n).
The symmetric group Sn permutes the pairs H(i)⊗K(i) ∼= C

d2 and its subgroup
Sk × Sn−k permutes the first k and the last n− k pairs separately.

Any irreducible representation of the group Sk × Sn−k is isomorphic to a
tensor product of irreducible representations of Sk and Sn−k. |ΨN 〉 is a trivial
representation of Sk × Sn−k and can therefore only be isomorphic to the tensor
product Vk⊗Vn−k of the trivial representations Vk ≡ V(k,0,...,0) of Sk and Vn−k ≡
V(n−k,0,...,0) of Sn−k. On the first k pairs the k-fold tensor product of g ∈ U(d2)
commutes with the action of Sk, and on the remaining pairs it is the n− k-fold
tensor product of g ∈ U(d2) which commutes with Sn−k. Schur-Weyl duality
decomposes the space in (6) into

⊕

τ,τ ′
Ud

2

τ ⊗ Vτ ⊗ Ud
2

τ ′ ⊗ Vτ ′ ,

so that
|ΨN 〉 ∈ Ud2k ⊗ Vk ⊗ Ud

2

n−k ⊗ Vn−k,
and in terms of projectors onto those spaces

|ΨN〉〈ΨN | ≤ Pk ⊗ Pn−k
= [dimUd

2

k

∫

CPd2−1
|ψ〉〈ψ|⊗kdψ]⊗ [dimUd

2

n−k

∫

CPd2−1
|φ〉〈φ|⊗(n−k)dφ].

This directly implies

1 = Tr |ΨN 〉〈ΨN |Pk ⊗ Pn−k
≤ dimUd

2

k dimUd
2

n−k max
ψ,φ

Tr |ΨN 〉〈ΨN ||ψ〉〈ψ|⊗k ⊗ |φ〉〈φ|⊗(n−k)

and therefore guarantees the existence of vectors |φN 〉 and |ψN 〉 satisfying

Tr [|ΨN〉〈ΨN ||φN 〉〈φN |⊗k ⊗ |ψN 〉〈ψN |⊗(n−k)] ≥ (dimUd
2

k dimUd
2

n−k)−1.

Since |ΨN 〉〈ΨN | ≤ PNµ ⊗ PNν ⊗ PNλ we have

Tr [PNµ ⊗ PNν ⊗ PNλ][|φN 〉〈φN |⊗pn ⊗ |ψN 〉〈ψN |⊗(1−p)n]

≥ Tr |ΨN 〉〈ΨN |[|φN 〉〈φN |⊗pn ⊗ |ψN 〉〈ψN |⊗(1−p)n].

We define

ρAN = Tr K(1) |φN 〉〈φN | = Tr H(1) |φN 〉〈φN | (7)

ρBN = Tr K(k+1) |ψN 〉〈ψN | = Tr H(k+1) |ψN 〉〈ψN | (8)



126 M. Christandl

and find, defining ρCN = pρAN + (1− p)ρBN which satisfies

TrPNλ(ρCN )⊗k ≥ 1
n+ 1

TrPNλ(ρAN )⊗pn ⊗ (ρBN )⊗(1−p)n,

that

TrPNµ(ρAN )⊗pn ≥ (dimUd
2

k dimUd
2

n−k)−1

TrPNν(ρBN )⊗(1−p)n ≥ (dimUd
2

k dimUd
2

n−k)−1

TrPNλ(ρCN )⊗n ≥ (n+ 1)−1(dimUd
2

k dimUd
2

n−k)−1.

Since dimUd
2

n ≤ n−d2 these are inverse polynomial lower bounds, which, con-
trasted with the exponential upper bounds from Theorem 4,

TrPµρAN
⊗k ≤ (k + 1)d(d−1)/2 exp(−kD(µ̄||rA)) ≤ (k + 1)d(d−1)/2 exp(−kε2/2)

and similarly for ρBN and ρCN , imply

||Spec ρAN − µ̄|| ≤ ε
||Spec ρBN − ν̄|| ≤ ε
||Spec ρCN − λ̄|| ≤ ε

for ε = O(d
√

(logN)/N). The proof is now completed, since N was arbitrary
and the existence of the limiting operators is guaranteed by the compactness of
the set of density operators.

3.3 Proof of Theorem 6

We assume without loss of generality that 0 < p ≤ 1
2 . If p is rational, consider a

positive integer n such that k = pn (otherwise, approximate p by a sequence of
fractions k/n). Define purifications |ψ〉AC and |φ〉BC of ρA and ρB, respectively
such that pTrA|ψ〉〈ψ|AC + (1 − p)TrB|φ〉〈φ|BC = ρC . Consider the vector

|τ〉 = |ψ〉A1C1 ⊗ · · · ⊗ |ψ〉AkCk ⊗ |φ〉B1Ck+1 ⊗ · · · ⊗ |φ〉Bn−kCn ,

where |ψ〉AjCj = |ψ〉AC and |φ〉BjCk+j = |φ〉BC . This vector is invariant under
the action of Sk permuting systems AjCj and Sn−k permuting the systems
BjCk+j and is therefore of the form

|τ〉 =
∑

µ,ν,λ

|τµνλ〉,

for vectors |τµνλ〉 ∈ Uµ ⊗ Uν ⊗ Uλ ⊗
(
Vµ ⊗ Vν ⊗ Vλ

)Sk×Sn−k .
By Theorem 4, for all ε > 0 and µ with µ̄ �∈ Bε(rA) = {x := (x1, . . . , xd) :

||x− rA||1 ≤ ε} we have

TrPµ(ρA)⊗k ≤ (k + 1)d(d−1)/2 exp(−kD(µ̄||rA)) ≤ (k + 1)d(d−1)/2e−
kε2
2 ln 2



On Horn’s Problem and the Littlewood-Richardson Coefficients 127

where Pinsker’s inequality D(µ̄||rA) ≥ ||µ̄−rA||21
2 ln 2 was used in the last inequality.

Similar statements hold for ρB and ρC . Together with

TrPλTrA1···AkB1···Bn−k
|τ〉〈τ | = TrPλ(TrA|ψ〉〈ψ|AC)⊗k ⊗ (TrB |φ〉〈φ|BC)⊗n−k

= TrPλ
1
n!

∑

π∈Sn

π(TrA|ψ〉〈ψ|AC)⊗k ⊗ (TrB|φ〉〈φ|BC )⊗n−kπ−1

≤ (n+ 1)TrPλ(ρC)⊗n

we obtain (see [7])

TrPµ ⊗ Pν ⊗ Pλ|τ〉〈τ | ≤ (n+ 1)d(d−1)/2(n+ 3)e−
pnε2

2 .

This estimate can be turned around to give
∑

(µ,ν,λ):(µ̄,ν̄,λ̄)∈
(Bε(r

A),Bε(r
B),Bε(r

C))

TrPµ ⊗ Pν ⊗ Pλ|τ〉〈τ | ≥ 1− δ, (9)

for δ := (n+ 1)d(d+8)/2(n+ 3)e−
pnε2

2 ln 2 , because the number of Young frames with
n boxes in d rows is smaller than (n+ 1)d.

For positive RHS of equation (9) the existence of a triple (µ, ν, λ) with ||µ̄−
rA|| ≤ ε (and for ν and λ alike) and |τµνλ〉 �= 0 is therefore guaranteed. In
particular,

cλµν = dim(Vµ ⊗ Vν ⊗ Vλ)Sk×Sn−k �= 0

holds. The proof of the theorem is completed with the choice of an increas-
ing sequence of appropriate integers n. The speed of convergence of the re-
sulting sequence of normalised triples to (rA, rB , rC) can be estimated with ε =
O(d

√
(logn)/n), a value for which the LHS of eq.(9) is bounded away from zero.

Acknowledgment

The technique used in this paper was developed in collaboration with Graeme
Mitchison and Aram Harrow in the context of the quantum marginal problem.
I would like to thank both of them for many enlightening discussions. The hos-
pitality of the Accademia di Danimarca in Rome, where part of this work was
carried out, is gratefully acknowledged. This work was supported by the Euro-
pean Commission through the FP6-FET Integrated Project SCALA CT-015714,
an EPSRC Postdoctoral Fellowship and a Nevile Research Fellowship of Mag-
dalene College Cambridge.

References

1. Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators.
Sel. math. New. ser. 4, 419–445 (1998)

2. Knutson, A., Tao, T.: The honeycomb model of GLn(C) tensor products I: Proof
of the saturation conjecture. J. Am. Math. Soc. 12(4), 1055–1090 (1999)



128 M. Christandl

3. Horn, A.: Eigenvalues of sums of Hermitian matrices. Pacif. J. Math. 12, 225–241
(1962)

4. Lidskii, B.V.: Spectral polyhedron of the sum of two Hermitian matrices. Func.
Anal. Appl. 16, 139–140 (1982)

5. Christandl, M., Harrow, A.W., Mitchison, G.: On nonzero Kronecker coefficients
and what they tell us about spectra. Comm. Math. Phys. 270(3), 575–585 (2007)

6. Keyl, M., Werner, R.F.: Estimating the spectrum of a density operator. Phys. Rev.
A 64(5), 052311 (2001)

7. Christandl, M., Mitchison, G.: The spectra of density operators and the Kronecker
coefficients of the symmetric group. Comm. Math. Phys. 261(3), 789–797 (2005)

8. Christandl, M.: The Structure of Bipartite Quantum States: Insights from Group
Theory and Cryptography. PhD thesis, University of Cambridge (February 2006),
quant-ph/0604183

9. Buch, A.: The saturation conjecture (after Knutson, A., Tao, T.:). Enseign.
Math. 46, 43–60 (2000)

10. Knutson, A., Tao, T.: Honeycombs and sums of Hermitian matrices. Notices Amer.
Math. Soc. 48, 175–186 (2001)

11. Alicki, R., Rudnicki, S., Sadowski, S.: Symmetry properties of product states for
the system of N n-level atoms. J. Math. Phys. 29(5), 1158–1162 (1988)

12. Hayashi, M., Matsumoto, K.: Quantum universal variable-length source coding.
Phys. Rev. A 66(2), 022311 (2002)

13. Elashvili, A.G.: Invariant algebras. Advances in Soviet Math. 8, 57–64 (1992)
14. Zelevinsky, A.: Littlewood-Richardson semigroups, math.CO/9704228 (1997)



Pell Equations

and Weak Regularity Principles

Charalampos Cornaros�

Department of Mathematics, University of Aegean, GR-832 00 Karlovassi, Greece
kornaros@aegean.gr

Abstract. We study the strength of weak forms of the Regularity Prin-
ciple in the presence of IE1 (induction on bounded existential formulas)
relative to other subsystems of PA. In particular, the Bounded Weak
Regularity Principle is formulated, and it is shown that when applied to
E1 formulas, this principle is equivalent over IE−

1 to IΔ0 + exp.

1 Introduction

The Regularity Principle asserts that if infinitely many elements x are assigned
at least one color from a bounded palette, then infinitely many x are assigned
the same color. In this paper, we study versions of this principle over weak
subsystems of first-order PA (=Peano Arithmetic).

As usual (see, e.g., [5], [7]), IΓ denotes the induction schema for formulas in
Γ (plus the base theory PA−), LΓ denotes the least number schema for formulas
in Γ (plus PA−) and BΓ denotes the collection schema for formulas in Γ (plus
IΣ0), where Γ is one of the formula classes Σn, Σ0(Σn), Πn, En, Un. Also, IΔn

denotes the induction schema for Δn formulas (plus PA−) and LΔn denotes the
induction schema for Δn formulas (plus PA−). The parameter free counterpart
of IΓ is denoted by IΓ−. We write φ(x) ∈ ∇n(T ), for some theory T and some
φ(x) ∈ En, if there exists some ψ(x) ∈ Un such that T proves ∀x(φ(x)↔ ψ(x)).

Our aim in this section is to define the versions of the regularity principle
that will be studied in the sequel and give a summary of our results, in view of
results already known.

Definition 1. (Regularity Principle) Rφ denotes the following formula

(∀w)(∃x > w)(∃y ≤ u)φ(x, y)→ (∃y ≤ u)(∀w)(∃x > w)φ(x, y).

For a class of formulas Γ , RΓ = {Rφ|φ ∈ Γ}.
For the formula classesΣm andΠm, the regularity axiom schema is a well studied
combinatorial principle. Indeed, the following result is well-known (see Theorem
2.23 in [5]).

� The author would like to thank S. Boughattas, for useful discussions concerning this
paper and for drawing his attention to the contents of [2].

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 129–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



130 C. Cornaros

Theorem 1. For any m ∈ IN,

IΔ0 +BΣm+2 ⇔ IΔ0 +RΣm+1 ⇔ IΔ0 +RΠm ⇔ IΔ0 +BΠm+1.

(Note that we do not include any induction principle in the formulation of the
collection schemas.)

Although other formula classes will be discussed in passing, the primary focus
of the present work is on the principle’s application to formulas in the class Δ0

and especially in its subclass E1.
The author’s interest in this subject was aroused in the following way. In her

paper [1], P. D’Aquino (building on earlier work of R. Kaye, see [8]) proved that
IE1 + P 
 IΔ0 + exp, where P is an axiom asserting that every Pell equation
has a nontrivial solution, and exp is the axiom (∀x)(∃y)ϕe(x, y), where ϕe(x, y)
is one of the usual Δ0 formulas defining the graph of the function y = 2x in IN.
As IΔ0 + exp 
 P , it follows that, in any model of IΔ0, every Pell equation
has a nontrivial solution if and only if the model has a well defined, and total,
exponential function. Recall that a Pell equation is an equation of the form
Y 2−dX2 = 1, where d is not a square. It is a well known theorem of elementary
number theory that any Pell equation has a non trivial solution. Obviously any
proof of this fact must use a function exceeding what is available in IE1 (and
even IΔ0). The strategy used for the classical proof goes as follows.

Step 1. Using Dirichlet’s Approximation lemma, one can prove that there are
infinitely many pairs of positive integers of the form (p, q) such that the
norm N(p, q) = p2 − q2d is bounded above by the number �2√d + 2
where �  is the floor function.

Step 2. Using a combinatorial principle (regularity will do), one concludes that
there are infinitely many pairs (pi, qi) that

(i) for each i, pi ≥ 0, qi > 0,
(ii) have the same norm, let us say N(N �= 0, as d is not a square)

(iii) are congruent modulo N , i.e., pi ≡ pj(modN) and qi ≡ qj(modN) for
each i �= j.

It follows that (p1p2−dq1q2)2−d(p1q2−p2q1)2 = N2, for any two distinct pairs
(p1, q1), (p2, q2). Setting now p1p2 − dq1q2 = NY and p1q2 − p2q1 = NX , for
some integers X,Y , it clearly follows that X �= 0 and Y 2 − dX2 = 1.

Let us make some comments about this strategy. We know (see [2]) that
Dirichlet’s lemma can be proved in IE1 without any use of combinatorial princi-
ples. So the strength needed to prove the existence of a nontrivial solution must
come from the combinatorial principle employed in Step 2. This combinatorial
principle cannot be PHPΔ0 (or even PHPΣ1), where PHPΓ denotes the pi-
geonhole principle for formulas in Γ , because PHPΣ1 cannot prove exp (see
[4]). As we will check below, aside from IE1 only an instance of RE1 is needed
to prove the following result.

Theorem 2. IE1 +RE1 
 P and, therefore, IE1 +RE1 
 IΔ0 + exp.

This allows us to replace IΔ0 with IE1 in Theorem 1.



Pell Equations and Weak Regularity Principles 131

Corollary 3. For each m ∈ IN,

IΔ0 +BΣm+2 ⇔ IE1 +RΣm+1 ⇔ IE1 +RΠm ⇔ IΔ0 +BΠm+1.

It would seem to be difficult to prove the converse of the second part of Theorem 2.

Problem 1. Does IΔ0 + exp prove RE1?

A. R. Woods (personal communication) has observed that, if we have a positive
answer to Problem 1, then we would take a negative solution to the open problem
of whether IΔ0 + exp 
 Δ0 ≡ E1. As we can show, IE1 + RU1 
 IΣ1, without
any additional assumptions (as usual, U1 denotes the class of bounded universal
formulas) and it follows that RU1 is strong enough for IΔ0 + exp. In search for
a “reversal” of the sort suggested by Problem 1, it is natural to try to reduce
the strength of the regularity principle. One possibility is to restrict the rate of
increase of x in the definition of regularity down to polynomial growth.

Definition 2. (Bounded Regularity Principle) For m ≥ 1, R(φ,m) denotes
the formula

(∃r>1)(∀w>1)(∃x>w)(∃y≤u)(rwm≥x ∧ φ(x, y))→
(∃y≤u)(∀w>1)(∃x>w)φ(x, y).

As before, we can show that IE1 + R(E1, 3) 
 IΔ0 + exp (see Corollary 12).
However, we have not managed to prove the converse implication. An alternative
approach is to consider a new version of R, which we will call “weak regularity
principle”.

Definition 3. (Weak Regularity Principle) WRφ denotes the formula
(∀w)(∃x > w)(∃y ≤ u)φ(x, y)→
(∀w)(∃y ≤ u)(∃x1 > w)(∃x2 > w)[φ(x1 , y) ∧ φ(x2, y) ∧ x1 �= x2].

In other words, this principle says: If it is possible to find infinitely many el-
ements x, which can be assigned to some color y from a bounded palette,
then it is possible to find two arbitrarily large distinct elements, assigned to
the same color of the palette. Actually this is the situation in Step 2. The
“color” assigned to the pair (p, q) can be considered to be (a code for) the triple
(N(p, q), p(mod|N(p, q)|), q(mod|N(p, q)|), where |N(p, q)| is the absolute value
of the norm of (p, q). As we will see, it is enough to use regularity (bounded or
not) for just 6D3 colors, where D = �2√d+ 2 (d not a square). Note that we
need only two distinct pairs (pi, qi) with the same “color”, for the existence of
a non trivial solution of the Pell equation Y 2 − dX2 = 1. So weak regularity
would suffice. Also note that the problem of finding infinitely many pairs (pi, qi)
with the above properties is obviously much harder than finding just two pairs
with the same properties. But again, the last task is difficult because, otherwise,
it would be easy to find a nontrivial solution of the Pell equation, which is not
true, as it is generally believed that solving Pell equations appears to be harder
than factoring.



132 C. Cornaros

Generally speaking, the phrase “infinitely many elements” could have a dif-
ferent meaning instead of the normal one, e.g. “arbitrarily large elements”. For
this reason, we have replaced < with the symbol ≺, corresponding to a definable
strict partial order. Then we can define the (weak) regularity principle in terms
of ≺. We denote them by R(φ,≺) and WR(φ,≺) respectively. For example,
WR(φ,≺) is defined as follows:

(∀w)(∃x � w)(∃y ≤ u)φ(x, y)→
(∀w)(∃y ≤ u)(∃x1 � w)(∃x2 � w)[φ(x1, y) ∧ φ(x2, y) ∧ x1 ≺ x2],

where u could be a free variable of φ but w is not allowed to appear free in φ.
In the sequel we will also study some other interesting limit principles, namely
R(Γ1, Γ2) (respectively WR(Γ1, Γ2)), which denote the axiom schemas R(φ,≺)
(respectively WR(φ,≺)) for each φ ∈ Γ1,≺∈ Γ2 plus the usual axioms describing
that ≺ is a strict order.

Finally, we can also formulate a bounded version of weak regularity.

Definition 4. (Bounded Weak Regularity Principle) By WR(φ,≺,m) we
denote the m-bounded version of the weak regularity principle, that is,

(∃r > 1)(∀w > 1)(∃x ≤ rwm)(∃y ≤ u)(φ(x, y) ∧ x > 1 ∧ w ≺ x)→
(∀w > 1)(∃y ≤ u)(∃x1, x2)(w ≺ x1 ∧ w ≺ x2 ∧ x1 ≺ x2 ∧ φ(x1, y) ∧ φ(x2, y)).

In the following sections, we will study the strength of the (bounded) weak
regularity principle over various base theories. Our results can be summarized
as follows.

– WR(Δn+1, Δn+1)↔WR(E1, Σ0(Σn))↔WR(U1, Σ0(Σn))↔ IΣn+1.
– IE−

1 +WR(Σ0(Σn), <) 
 BΣn+1 + exp.
– WR(E0, Σ0(Σn), 1)
IΣn.
– For all m ≥ 3, n ≥ 0,
WR(Δn+1, Δn+1,m)↔WR(E1, Δn+1,m)↔ BΣn+1 + IΔ0 + exp,
WR(Δ0, Δ0,m)↔WR(E1, Δ0,m)↔IΔ0 +WR(Δ0, <, 1)↔IΔ0 + exp.

– There exists a ∀∃U1-formula W , describing some particular instances of
bounded weak regularity for ∇1(IE−

1 ) formulas and for the standard order
(<), such that IE−

1 
 P ↔W ↔ IΔ0 + exp.

Let us make some comparison of the “infinite” principles R and WR, with
the well-known “finite” pigeonhole principles (we call them “finite” because they
involve bounded sets). We know that (see [4]) for each n ≥ 1,

– PHP (Σ0(Σn))⇔ IΣn
– IΔ0 +BΣn+1 ⇔ PHP (Σn+1).

But, unfortunately, PHP (Σn) loses its strength for the case n = 1 or n = 0.
Both cases of PHP can be proved from (the strictly stronger) IΔ0 +WR(Δ0, <)
and IΔ0 +WR(Δ0, <, 1) respectively. We could generally say that the strength



Pell Equations and Weak Regularity Principles 133

of WR (bounded or not) stands between those of R and PHP . This is true for
at least Σ0(Σn) formulas, because we can show that for all n ≥ 0,m ≥ 1,

IE1+R(Σ0(Σn),m) 
WR(Σ0(Σn), Σ0(Σn)) 
WR(E1, Σ0(Σn)) 

IΔ0 +WR(Σ0(Σn), <) 
 BΣn+1+exp 
 PHPΔn+1 
 PHP (Σ0(Σn)).

By the above results, it follows that there exist natural combinatorial princi-
ples equivalent to IΔ0 + exp over IE−

1 . In view of this fact, one is naturally led
to some interesting problems, such as the following.

Problem 2. Are there any natural combinatorial principles with strength exact-
ly IΔ0 +Ω1?

Problem 3. Are there “finite” combinatorial principles which have strength
strictly greater than polynomial growth for models of IΔ0?

In what follows, we presume that the reader is familiar with the relationships
among different weak subsystems of PA (details can be found in [5], [7], [10]).

2 Limit Schemata and Weak Regularity

By modifying the proof of Theorem 1 in [3], one can obtain the following theorem.

Theorem 4. If f is a Σ0(Σn), n ≥ 0, definable function (with parameters) over
IΣn, then the following limit schemata are equivalent:

(i) IΣn+1

(ii) (∃x)(∀m)(f(m) ≤ x)→ (∃m)(∀n > m)(f(n) ≤ f(m))
(iii) (∃x)(∀m)(f(m) ≤ x)→ (∃m)(∀n)(f(n) ≤ f(m))
(iv) (∀n)(f(n)≤f(n+ 1)) ∧ (∃x)(∀m)(f(m)≤x)→ (∃m)(∀n>m)(f(n) = f(m)).

We now use this result to prove

Theorem 5. For each n ∈ IN,

(i) IΣn +WR(E1, Σ0(Σn)) 
 IΣn+1

(ii) IΣn +WR(U1, Σ0(Σn)) 
 IΣn+1.
(iii) IΣn +WR(Σ0(Σn), <) 
 BΣn+1.

Proof. It suffices to prove part (ii) of Theorem 4. So let f be a Σ0(Σn) defin-
able function such that (∃x)(∀m)(f(m)≤x) but (∀m)(∃n>m)(f(n)>f(m)). Now
define

n � m⇔ (∃n1 ≤ n)(∃n2 ≤ n)(∃m1 ≤ m)(∃m2 ≤ m)[n = 〈n1, n2〉∧
m = 〈m1,m2〉 ∧ n2 = f(n1) ∧ n1 > m1 ∧ n2 > f(m1)]

and let φ(x, y) denote the formula y = (x)2, i.e., the 〈 〉-second part of x, where
〈 〉 is the standard coding of pairs. Clearly, φ is an E1 (and U1) formula and ≺



134 C. Cornaros

is Σ0(Σn) definable. So, using WR(E1, Σ0(Σn)), we can reach a contradiction.
For (iii), let us suppose that some θ(x, y) ∈ Πn does not satisfies collection, so

(∀y < a)(∃x)θ(x, y) and (∀w)(∃y < a)(∃x > w)θ(x, y).

Define F (y) = x ↔ θ(x, y) ∧ (∀z < x)¬θ(z, y). Clearly, the range of F is un-
bounded, thus (∀w)(∃x > w)(∃y < a)F (y) = x. Using WR(Σ0(Σn), <), we
reach a contradiction. �

As we will now see, IΣn is redundant in parts (i) and (ii) of Theorem 5. Using
Theorem 16, IΣn can be replaced by IE−

1 in (iii).

Theorem 6. For any n ∈ IN,

IΣn+1 
WR(Δn+1, Δn+1) 
WR(E0, Σ0(Σn), 1) 
 IΣn.
Proof. To prove the first implication, let M |= IΣn+1, u,w0 ∈ M and suppose
that M |= (∀w)(∃x � w)(∃y ≤ u)φ(x, y), for some φ ∈ Δn+1 and ≺∈ Δn+1.
First, we define a Δn+1-definable function F : M →M by

F (w) = x⇔ x � w ∧ (∃y ≤ u)φ(x, y) ∧ (∀z < x)[(∃y ≤ u)φ(z, y)→ z �� w].

Using IΣn+1, we can easily prove, by induction on w, that

(∀w)(∃y ≤ u)(∃x)(x = F (w+1)(w0) ∧ φ(x, y)). (†)
But the set {(w, y) : w ≤ u+ 1∧ y ≤ u ∧ ∃x[x = F (w+1)(w0) ∧ φ(x, y)]} is Σn+1

definable, so it can be coded in M by some element, i.e., there exists t ∈M such
that (∀w ≤ u + 1)(∃y ≤ u)(〈w, y〉 ∈ t). Using PHPΔ0 we can find w1, w2 with
w1 < w2 and y ≤ u such that 〈w1, u〉 ∈ t∧〈w2, u〉 ∈ t. So there exist two distinct
x1 = F (w1+1)(w0), x2 = F (w2+1)(w0) such that

(∃y ≤ u)(∃x2 � w0)(∃x1 � w0)(φ(x1, y) ∧ φ(x2, y) ∧ x1 ≺ x2).

To prove the second implication now, let us suppose that

M |= WR(E0, Σ0(Σn), 1) and M |= ¬IΣn.
Then there exist θ(x,u) ∈ Σn and a, b ∈M such that

M |= θ(0, b) ∧ ∀x(θ(x, b)→ θ(x + 1, b)) ∧ ¬θ(a, b).

Define x � w ↔ (w > a ∧ x ≤ a) ∨ (w < a ∧ a ≥ x > w ∧ θ(x, b) ∧ θ(w, b))
∨(w ≤ a ∧ x < w ∧ ¬θ(x, b) ∧ ¬θ(w, b)) and let φ(x, y) denote the formula
x = y. Obviously, (∀w > 1)(∃x � w)(∃y ≤ a)[φ(x, y) ∧ 1 < x ≤ aw], so, by the
hypothesis, we obtain

(∀w > 1)(∃y ≤ a)(∃x1 � w)(∃x2 � w)[φ(x1 , y) ∧ φ(x2, y) ∧ x1 ≺ x2].

But now taking w = a we arrive at a contradiction. �

By repeating the above proof and noting that, over IΔ0 + exp, IΔn+1 is equiv-
alent to BΣn+1 (see [9]) and x is bounded by a power of w0 and r in (†) above,
we obtain



Pell Equations and Weak Regularity Principles 135

Corollary 7. For each n ∈ IN and m ≥ 1,

IΔ0 + exp 
WR(Δn+1, Δn+1,m)↔WR(E0, Δn+1,m)↔ BΣn+1.

In the next section we will prove the equivalence of WR(Δ0, Δ0, 3) with IΔ0 +
exp. More precisely, we will show the equivalence of the theories

IE−
1 +WR(E1, <,m), IΔ0 + exp and IE−

1 +WR(U1, <,m),

for each m ≥ 3. So we obtain also the following

Corollary 8. For any n ∈ IN and m ≥ 3,

WR(Δn+1, Δn+1,m)↔WR(E1, Δn+1,m)↔
WR(U1, Δn+1,m)↔ IΔ0 +BΣn+1 + exp.

3 Dirichlet’s Approximation Lemma in IE1

We start with some simple facts about IE1. IE1 can prove that
√
d is irrational

for every d not a square, i.e.,

IE1 
 ∀d[∀a ≤ d(a2 �= d)→ ∀x∀y(x2 = dy2 → x = y = 0)].

Note that, for any M |= IE1 and d ∈M not a square, we can define in a natural
way =,+, ·, and < in the quadratic extension M [

√
d], by means of E0 formulas.

For example, we define p+
√
dq < r +

√
ds by

[p ≥ r → s > q ∧ (p− r)2 < d(s− q)2] ∧ [p < r ∧ s < q → (p− r)2 > d(s− q)2].

Clearly, we can also extend < for the case where p, q, r, s are rational numbers,
i.e., elements of Q(M). Note that this definition makes < a total order on Q(M)2.
We identify every n ∈M with n+

√
d 0 ∈M [

√
d]. We also consider any element

of M [
√
d](= Q(M)2) of the form r +

√
d 0 as “rational” and any other element

as “irrational”. It is easy to prove the existence of �x +
√
dy (the integer part

of x+
√
dy). It follows that �√d < √d < �√d+ 1, so dividing by a sufficiently

large element of M we have proved that M [
√
d] has arbitrarily small irrational

elements between 0 and 1.
We continue now with a definition and a lemma that are necessary to prove

Dirichlet’s Approximation Lemma in IE1 and come from [2].

Definition 5. (Farey series) Let I be a Bézout domain and N > 0 an arbi-
trary element of I. The Farey series FN of order N is the ascending series of
irreducible fractions between 0 and 1, whose denominators do not exceed N.

Lemma 9 Suppose that M |= IE1, d ∈M is not a square and α ∈M [
√
d] irra-

tional between 0 and 1. Then, for every N > 0 in M , there exist two successive
elements of FN such that α lies between them.

Using this Lemma, we can easily prove.



136 C. Cornaros

Theorem 10. (Dirichlet’s Approximation Lemma in IE1) If M,d are as
in Lemma 9, then for every irrational a in M [

√
d] and every Q > 0, there exist

p, q ∈M, such that (Q + 1)3 ≥ q > Q and

|a− p

q
| < 1

q2
.

Theorem 11. There exists an ∇1(IE−
1 ) formula φ, depending on a parameter

d, such that

IE1 
 (∀d)(d �= � ∧WR(φd, <, 3)→ (∃x)(∃y)(x > 1 ∧ x2 − dy2 = 1)),

where < denotes the usual ordering.

Proof. The construction of φd follows the ideas described in the introduction.
Let φd(x, y) be the formula

x = 〈p, q〉 ∧ |p2 − dq2| < D ∧ q �= 0∧
y = (p2 − dq2 +D) + (p mod|p2 − dq2|)(2D) + (q mod|p2 − dq2|)(2D)2,

where D = �2√d + 2, q mod|p2 − dq2| and p mod|p2 − dq2| are defined in the
usual way. Thus φd can be described in an E1 or an U1 formula over IE1, i.e.,
φd ∈ ∇1(IE1)(= ∇1(IE−

1 )). Using Dirichlet’s Lemma we can easily prove that:

(∀w > 1)(∃x > w)(∃y < 6D3)(x ≤ d12w3 ∧ φd(x, y))

or, in other words,

∀p∀q∃s∃r∃y < 6D3(〈p, q〉 > 1→ 〈p, q〉 < 〈s, r〉 ≤ d12〈p, q〉3) ∧ φd(〈x, y〉, y)),

where by 〈 , 〉 we denote the standard coding function (note that its basic
properties are provable in IE−

1 ).
Indeed, let w = 〈p, q〉 and consider p − √d q ∈ M [

√
d]. Applying Dirichlet’s

Lemma for Q = max{d, q + p} and a =
√
d, we get some s − √d r such that

r > Q and |s − √d r| < 1
r . From s + r > p + q we deduce 〈s, r〉 > 〈p, q〉 and

s+
√
d r = |s−√d r + 2

√
d r| < 2r

√
d+ 1

r . By multiplying, we obtain

0 < |s2 − dr2| < 2
√
d+

1
r2

< 2
√
d+ 1 < D.

Hence |s2 − dr2 +D| = s2 − dr2 +D < 2D and so y < 6D3.

Case 1. Q = d(≥ 2). From s < dr, it follows that 〈s, r〉 < 〈dr, r〉 < 2d2r2 ≤
2d2(d+ 1)6 < 27d8 = 2324d8 ≤ w3d12.

Case 2. Q = q + q ≥ d. Then 〈s, r〉 < 〈dr, r〉 < 2d2r2 ≤ 2d2(Q + 1)6. But from
〈p, q〉 > (Q+1)2

4 we take 43〈p, q〉3 > (Q+1)6 and thus 43w3 > (Q+1)6. It follows
that 〈s, r〉 < 2d243w3 ≤ d9w3.

Hence, assuming M |= WR(φd, <, 3), we can take r = d12 as a bound in any
case to obtain two distinct pairs (s1, r1), (s2, r2) such that 0 < r1, 0 < r2 and
some y < 6D3 such that φd(〈s1, r1〉, y) ∧ φd(〈s2, r2〉, y). By the definition of φd,
it follows that



Pell Equations and Weak Regularity Principles 137

s21 − dr21 = s22 − dr22 and
s1 = s2 mod|s21 − dr21 | ∧ r1 = r2 mod|s21 − dr21 |. (*)

Furthermore, if we suppose that s1
r1

= s2
r2

, then for some m ≥ 0 we have s1 = r1m

and s2 = r2m. Replacing s1 by r1m and s2 by r2m in s21 − dr21 = s22 − dr22 , we
get r2 = r1, i.e., a contradiction. From (*), by multiplication, we take (s1s2 −
dr1r2)2− d(s1r2− s2r1)2 = k2, where k = (s21− dr21). Also (*) implies that there
exist x, y, y �= 0, such that s1s2 − dr1r2 = kx∧ s1r2 − s2r1 = ky. It follows that
x2 − dy2 = 1 and x > 1, as required. �

4 Bounded WR vs. exp

As already mentioned, it was proved in [1] that

IE−
1 + P 
� IΔ0 + exp,

where P is the axiom expressing “every Pell equation has a nontrivial solution”.
As a direct consequence of this result and Theorem 11, we obtain

Corollary 12. IE1 + WR(E1, <, 3) 
 IΔ0 + exp and so IE1 + R(E1, 3) 

IΔ0 + exp.

A problem that naturally arises now is

Problem 4. Does IE1 +WR(E1, <, n) 
 IΔ0 + exp for n = 1 or 2?

The converse of Corollary 12 can be easily seen to hold.

Lemma 13 Let M |= IΔ0 + exp and ≺ be a strict partial order on M defined
by a Δ0 formula. Then, for every m > 0 and φ ∈ Δ0, M |= WR(φ,≺,m).

Corollary 14. For every m ≥ 3,

WR(E1, Δ0,m)↔WR(U1, Δ0,m)↔ IΔ0 + exp.

Recall that if we take either WR(E1, Δ0) or WR(U1, Δ0) instead of their bound-
ed versions, then we gain much power as Theorem 5 shows.

For the rest of the paper, by W we denote the ∀∃U1-formula

(∀d)(d �= �→WRd(φd, <, 3)),

where φd(x, y) is the formula defined in Theorem 11 and WRd(φd, <, 3) is

(∀u)[u = 6(�2√d+ 2)3 ∧ (∀w > 1)(∃w < x ≤ d12w3)(∃y ≤ u)φd(x, y)→
(∀w > 1)(∃y ≤ u)(∃x1, x2)(w < x1 < x2 ∧ φd(x1, y) ∧ φd(x2, y))].

Note that P is a ∀∃E0-formula. Lemma 13 can be restated as IΔ0 + exp 
 W
and so we have proved.



138 C. Cornaros

Theorem 15. IE1 
 P ↔W .

Note that we can improve Corollary 12 as follows.

Theorem 16. IE−
1 +W 
 IΔ0 + exp.

Proof. As we saw in the proof of Theorem 11, IE1 proves

(∀d, p, q)(d �= �→ (∃D∃s∃r∃y < 6D3)[〈p, q〉 > 1→
〈p, q〉 < 〈s, r〉 < d12〈p, q〉3 ∧ φd(〈s, r〉, y)]), (∗)

where D = �2√d+ 2. By inspection, the formula above is ∀E1. But, according
to a result in [6], IE1 is a ∃∀E1 conservative extension of IE−

1 and so (∗) is
provable in IE−

1 . Using this observation we are now able to prove IE−
1 +W 
 P

as in the proof of Theorem 11. The result follows, since IE−
1 + P 
 IΔ0 + exp

(see Corollary 4.10 in [1]). �

References

1. D’Aquino, P.: Pell equations and exponentiation in fragments of arithmetic, Ann.
Pure Appl. Logic 77, 1–34 (1996)

2. Ayat, S.M.: The Skolem-Bang Theorems in Ordered Fields with an IP,
arxiv.org/abs/0705.3356

3. Beklemishev, L.D., Visser, A.: On the limit existence principles in elementary arith-
metic and Σ0

n-consequences of theories. Ann. Pure Appl. Logic 136, 56–74 (2005)
4. Dimitracopoulos, C., Paris, J.: The pigeonhole principle and fragments of arith-

metic. Z. Math. Logik Grundlag. Math. 32, 73–80 (1986)
5. Hájek, P., Pudlák, P.: Metamathematics of first-order arithmetic. Springer, Berlin

(1993)
6. Kaye, R.: Diophantine induction and parameter-free induction, Ph. D. Dissertation,

Manchester (1987)
7. Kaye, R.: Parameter-free universal induction. Z. Math. Logik Grundlag. Math. 35,

443–456 (1989)
8. Kaye, R.: Diophantine induction. Ann. Pure Appl. Logic 46, 1–40 (1990)
9. Slaman, T.: Σn-bounding and Δn-induction. Proc. Amer. Math. Soc. 132, 2449–

2456 (2004)
10. Wilmers, G.: Bounded existential induction. J. Symbolic Logic 50, 72–90 (1985)



Computable Categoricity of

Graphs with Finite Components

Barbara F. Csima1,�, Bakhadyr Khoussainov2,��, and Jiamou Liu3,� � �

1 Department of Pure Mathematics, University of Waterloo
csima@math.uwaterloo.ca

www.math.uwaterloo.ca/∼csima
2 Department of Computer Science, University of Auckland

bmk@cs.auckland.ac.nz

www.cs.auckland.ac.nz/∼bmk
3 Department of Computer Science, University of Auckland

jliu036@ec.auckland.ac.nz

www.cs.auckland.ac.nz/∼jliu036

Abstract. A computable graph is computably categorical if any two
computable presentations of the graph are computably isomorphic. In
this paper we investigate the class of computably categorical graphs. We
restrict ourselves to strongly locally finite graphs; these are the graphs
all of whose components are finite. We present a necessary and sufficient
condition for certain classes of strongly locally finite graphs to be com-
putably categorical. We prove that if there exists an infinite Δ0

2-set of
components that can be properly embedded into infinitely many com-
ponents of the graph then the graph is not computably categorical. We
outline the construction of a strongly locally finite computably categor-
ical graph with an infinite chain of properly embedded components.

1 Introduction

In this paper we are interested in computable graphs. A computable graph
G is a pair (V,E) where the set V of vertices and the set E of edges are both
computable sets. All our graphs are undirected and infinite. If G is a computable
graph isomorphic to a graph G′ then G is called a computable presentation
of G′ and G′ is called computably presentable. For a computable graph G we
can always assume that the set of vertices of G is ω, the set of natural numbers.

The study of computable structures goes back to the late 1950s and finds its
roots in the work of A. Malcev [15] and M. Rabin [16]. Later the theory has been
developed by Yu. Ershov and A. Nerode and their colleagues (e.g. [3]). For the
current state of the area see, for example, the book by Ershov and Goncharov
[7], the Handbooks on computable models and algebra [5] [6]. See also [11].

� Partially supported by Canadian NSERC Discovery Grant 312501.
�� B. Khoussainov has partially been supported by Marsden Fund of Royal New

Zealand Society.
� � � J. Liu is supported by NZIDRS of Education New Zealand.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 139–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.math.uwaterloo.ca/~csima
www.cs.auckland.ac.nz/~bmk
www.cs.auckland.ac.nz/~jliu036


140 B.F. Csima, B. Khoussainov, and J. Liu

One of the central themes in the theory of computable structures is concerned
with computable isomorphisms. We say that two computable graphs G1, G2

have the same computable isomorphism type if G1 and G2 are computably
isomorphic.

Definition 1. The number of computable isomorphism types of graph G, de-
noted by dim(G), is called the computable dimension of G. If the computable
dimension of G equals 1 then the graph G is called computably categorical.

For example the graph (ω,E) where E = {{i, i + 1} | i ∈ ω} is computably
categorical. The graph consisting of ω many copies of (ω,E) is not computable
categorical; in fact, it has computable dimension ω. In general, providing ex-
amples of computably categorical graphs or graphs of computable dimension ω
is easy. S. S. Goncharov in [9] was the first to provide examples of graphs of
computable dimension n, where n > 1. In this paper we will be interested in
the study of computably categorical graphs in a specific class of graphs called
strongly locally finite graphs.

The study of computably categorical structures constitutes one of the major
topics in the study of computable isomorphisms. Here the goal is to provide a
characterization of computably categorical structures within specific classes of
structures. This has been done for Boolean algebras [4], linearly ordered sets [17],
trees [14], Abelian groups [8], ordered Abelian groups [12], etc. Hence, this paper
fits the general program devoted to the study of computable isomorphisms.

Let S be a sequence G0,G1, . . . of pairwise disjoint finite graphs. Define the
new graph GS as the disjoint union of these graphs. More formally, the set of
vertices of GS is

⋃
i∈ω Vi and the set of edges is

⋃
i∈ω Ei.

Let G be a graph. We say that vertices v and w are connected if there
is a path from v to w. In this case we also say that w is reachable from v.
A component of G is a maximal subset of G in which any two vertices are
connected. The component containing a vertex v is denoted by C(v).

We say that G is strongly locally finite if every component of G forms a
finite graph. It is not hard to see that G is strongly locally finite if and only
if G is GS for some sequence S of pairwise disjoint finite graphs. The following
proposition gives a full description of computable dimensions for strongly locally
finite graphs:

Proposition 1. The computable dimension of any strongly locally finite graph is
either 1 or ω. In particular, no strongly locally finite graph has a finite computable
dimension n, where n > 1.

Proof. We invoke the following well-known result of Goncharov [10]. If any two
computable presentations of a structure A are isomorphic via a Δ0

2-function then
the computable dimension ofA is either 1 or ω. Now, if G is strongly locally finite
then any two computable presentations ofG are isomorphic via aΔ0

2-function. ��
By this proposition, it makes perfect sense to work towards a characterization
of computably categorical strongly locally finite graphs. This is the subject of
this paper.

Finally, all our graphs considered in this paper are strongly locally finite.



Computable Categoricity of Graphs with Finite Components 141

2 Computable Categoricity and the Size Function

Let G be a computable graph. Define the size function sizeG : V → ω by
sizeG(v) = |C(v)|, where C(v) is the component of vertex v.

Lemma 1. Let G1,G2 be computable presentations of G such that sizeG1, sizeG2

are computable. Then G1 and G2 are computably isomorphic.

Proof. For i ∈ {1, 2}, we can effectively reveal C(v) for any vertex v in Gi
by searching for the sizeGi(v) vertices that are connected to v. To construct a
computable isomorphism between G1 and G2, map each v to the corresponding
vertex v′ in G2 such that C(v) ∼= C(v′). In the construction, use the back and
forth method of building the isomorphism. ��
The lemma implies that G is computably categorical if the size function is com-
putable for all computable presentations of G.

Proposition 2. Suppose sizeG is a computable function. The graph G is com-
putably categorical if and only if the size function is computable for all computable
presentations of G.

Proof. One direction is proved by Lemma 1. The other direction is straightfor-
ward since from G to any computable presentation G′ of G there is a computable
isomorphism h. Then sizeG′(v) = sizeG(h(v)). ��
In the rest of this section we suppose that sizeG is computable. For any vertex
v ∈ V , one effectively reveals the component of v by using sizeG(v). So, we
effectively list (without repetition) C0, C1, . . . all components of G.

Given two finite graphs H1 = (V1, E1) and H2 = (V2, E2), we say H1 prop-
erly embeds into H2 if V1 can be mapped injectively to a proper subset of V2

that preserves the edge relation. We denote it by H1 ≺ H2.

Lemma 2. If there are infinitely many i such that {j | Ci ≺ Cj} is an infinite
set, then G is not computably categorical.

Proof. Our goal is to build a graph G′ = (ω,E′) such that G′ ∼= G but G′ is not
computably isomorphic to G. Let Φ0, Φ1, . . . be a standard enumeration of all
partial computable functions from ω to ω. We construct a graph G′ that satisfies
the following requirements:

Pe : Φe is not an isomorphism from G to G′

The requirement Pe has a higher priority than Pt if t > e. We construct G′
by stages. At stage s we construct a finite graph G′s so that G′s is isomorphic to
G restricted to C0 ∪ . . . ∪ Cs−1, G′s ⊂ G′s+1 for all s, and fs is the isomorphism
constructed at stage s. Our desired graph will be G′ = ∪s G′s. Set G′0 to be the
empty graph. Set f0 to be undefined.

At stage s+ 1, consider Gs obtained by adding Cs to Gs−1. Let C′
0, . . . , C

′
s−1

be all components in G′s−1 such that each C′
i is isomorphic to Ci via the partial

function fs for i < s. Find minimal e ≤ s+ 1 such that for some i < s we have:



142 B.F. Csima, B. Khoussainov, and J. Liu

1. Φe has not been processed and Φe,s+1 is defined on Ci.
2. Φe,s+1 is a partial isomorphism.
3. The component C′

j = Φe(Ci) is free for Φe, and Ci ≺ Cs.
If such e does not exist then go on to the next stage. Otherwise, act as follows:
(1) Extend C′

j to a component, denoted by C′
s, such that C′

s
∼= Cs; (2) Build

a new copy C′
j isomorphic to Cj ; (3) Redefine fs by mapping Cj to C′

j and
Cs to C′

s. Declare C′
s not free for all Φt with t > e, and declare Φe processed.

This completes the construction for G′s+1.
The correctness of the construction is now a standard proof. The proof is

based on the following two observations. First of all, one inductively shows that
each requirement Pe is satisfied. Secondly, one proves that the function f(v) =
lims fs(v) establishes an isomorphism (which is necessarily a Δ0

2-set). ��
For a computable graph G with a computable size function, let C0, C1, . . . be an
effective list of all components of G. Define the proper extension function
extG : ω → ω by extG(i) = |{j | Ci ≺ Cj}|.
Lemma 3. Suppose there are finitely many i such that the set {j | Ci ≺ Cj} is
infinite. If extG is not computable then G is not computable categorical.

Proof. The construction of G′ that is isomorphic but not computably isomorphic
to G is very similar to the construction for the previous lemma. The only differ-
ence is that we start with G0 as consisting of all (finitely many) components in
G that embed into infinitely many components. Therefore in this construction
let C0, C1, . . . list all other components in G. The construction of the previous
lemma is then repeated.

Suppose Pe is the requirement with the highest priority that is not satisfied.
Let s be the stage when all requirements with higher priorities are satisfied. Since
Φe is an isomorphism, we can compute the the function extG as follows. Consider
Ci for which Φe(Ci) is free for Φe. Note that there are only finitely many Ci that
are not free for Φe. Let t be the stage > s such that Φe,t is defined on Ci. From
this stage on Ci can not be properly embedded into Ck for all k > t. Hence the
number of proper extensions of Ci in Gt can be computed effectively. ��
We can now prove the following characterization theorem:

Theorem 1. Let G be a graph such that sizeG is a computable function. Then
the following are equivalent:

1. G is computably categorical.
2. The size function is computable in all computable presentations of G.
3. There are finitely many i such that the set {j | Ci ≺ Cj} is infinite and the

function extG is computable.

Proof. The equivalence of (1) and (2) follows from Proposition 2. The direction
(1) to (3) follows from the lemmas above. We prove the implication (3) → (1).
So, let G′ be a computable presentation of G. Take all components Ci such that



Computable Categoricity of Graphs with Finite Components 143

{j | Ci ≺ Cj} is infinite. There are only finitely many such Ci; non-uniformly
map them to isomorphic components in G′.

Take Ci such that {j | Ci ≺ Cj} is finite. Since extG is computable, we can list
all components X1, . . ., Xp in G that properly extend Ci. In G′ find components
Y , Y1, . . ., Yp such that Y is isomorphic to Ci and each Yi is isomorphic to Xi.
Map Ci isomorphically to Y . It is not hard to show, using the definition of the
function extG and induction on the number of proper extensions of Ci, that Y
is a component of G′ isomorphic to Ci. ��

3 A Sufficient Condition for Not Computably Categorical

In this section we do not assume computability of the size function sizeG. The
theorem below gives us a version of Lemma 2 in this case.

Theorem 2. Let G be a strongly locally finite graph on which the reachability
relation is computable. If there exists an infinite Δ0

2 set of vertices X such that
(∀x ∈ X)(∃∞v)[C(x) ≺ C(v)], then G is not computably categorical.

Proof. For each s ∈ ω, let Gs be the restriction of the graph of G to vertices
among {0, ..., s}. Since G is computable, we can uniformly compute Gs. For each
v ∈ {0, ..., s}, let Cs(v) denote the connected component of v in Gs. Since the
reachability relation on G is computable, we may assume without loss of gener-
ality that if Cmax(v,w)(v) = Cmax(v,w)(w), then Cs(v) = Cs(w) for all s. That is,
when a new vertex is added to the graph of G it is immediately decided whether
it is in the same component as any previously present vertices.

We will build a computable graph H ∼= G such that we meet for each e ∈ ω
the requirement:

Re : Φe is not an isomorphism from H to G

We will construct H by stages. At each stage s we will have a function hs :
Gs ∼= Hs and we will ensure that h = lims hs exists.

If we declare that hs(v) = w, then we will define hs such that hs : Cs(v) ∼=
Cs(w). If at a later stage t the component of v in G grows (Cs(v) � Ct(v)), and
we still have ht(v) = hs(v), then we will add a new vertex to Ht and define ht
to extend hs so that ht : Ct(v) ∼= Ct(w).

To meet requirement Re we will find a vertex ve such that either Φe(ve) ↑ or
C(ve) ≺ C(Φe(ve)).

Let {Xs}s∈ω be a Δ0
2 approximation of X . For n, s ∈ ω, let xn,s = μx[x ∈

Xs∧(∀m < n)[x ∈ Cs(xm,s)]]. Note that since X is Δ0
2 and since each component

of G is finite, xn = lims xn,s exists for all n.
At each stage s of the construction, we will have ve,s = xn,s for some n ≥ e.

We will ensure that for each e ∈ ω, ve = lims ve,s exists and provides the witness
for meeting requirement Re.

The basic idea for meeting a single requirement R0 is as follows. We let v0,s =
x0,s at every stage s. If we ever see that Φ0,s(v0,s) ↓, and if Φ0 appears to be an



144 B.F. Csima, B. Khoussainov, and J. Liu

isomorphism in the sense that the component of v0,s in Gs is isomorphic to the
component of Φ0(v0,s) in Hs, then we begin to search for a new component to
appear in G that properly extends the component of v0,s. If v0,s ∈ X , then we
will find such a component. So, at the same time as searching for the component,
we also run the approximation of X to see if v0,t = v0,s at some later stage t.
If we first find out that v0 changes, then we continue to wait for Φ0 to converge
on this new v0. If we are provided with a new component extending that of v0,s
then we re-define our map h and extend the graph H so that the component of
Φ0(v0,s) in H is now isomorphic to the new large component, and we include
a new component in H that is isomorphic to the component of v0,s in G. Thus
at the end of stage s + 1, we will have Cs(v0,s) ≺ Cs(Φe(v0,s)). This will have
us meet requirement R0 unless the component of v0,s in G grows at some later
stage. If this happens, we again search for a proper extension of the component
of v0 in G to complete the diagonalization. Note that after a certain stage, v0,s
will never change, and will always be a member of X . Since the component of
v0 in G is finite, it can grow only finitely often. If after the component of v0 in
G has fully appeared we see that Φ0(v0) ↓, then we will at that point succeed in
meeting requirement R0.

The only extra complication for multiple requirements is that we want to
ensure that h : H ∼= G, so we must make sure that if some w ∈ range(hs), then
h−1(w) exists. That is, we only re-define h−1

s (w) finitely often. This is where we
will use the ve instead of just xe as witnesses. If we find that Φe(ve,s) ↓, but is
mapped to some component where we have already redefined h for the sake of
higher priority requirements, then instead of proceeding with the diagonalization,
we will change ve to be the next member of X (i.e., if ve,s = xn,s, we would let
ve,s+1 = xn+1,s+1). Since each requirement only causes h to be re-defined finitely
often, ve will only be re-defined finitely often for this reason. If we notice that
we were wrong about our guess for xn (i.e., xn,s = xn,s+1), then we will drop
back down all the ve,s ≥ xn,s to be as small as possible.

We now give the formal construction.
We may assume without loss of generality that if Cs(v) = Cs(v′), and if

Φe(v) ↓ and Φe(v′) ↓ then Cs(Φe(v)) = Cs(Φe(v′)). This is because since G has
the computable reachability relation, Cs(v) = Cs(v′) ⇒ C(v) = C(v′), so if
Φe maps v and v′ to the same component in H then we immediately have Re
satisfied. We also assume that Φe,s(x) ↓⇒ (∀y < x)[Φe,s(y) ↓].
Stage 0: Let ve,0 = xe,0 for all e ∈ ω. Let h0(0) = 0. Let H0 have the single
vertex 0 and no edges.

Stage s+ 1:

Step 1: Choose the least e such that Φe,s+1(ve,s) ↓ and Cs+1(ve,s) ∼= Cs+1(Φe,s+1

(ve,s)), and such that xn,s+1 = xn,s, where n is such that xn,s = ve,s. If no such e
exists, move to Step 2. If h−1 or h have already been re-defined at earlier stages
by higher priority requirements on Φe,s+1(ve,s) or h−1(Φe,s+1(ve,s)), respectively,



Computable Categoricity of Graphs with Finite Components 145

then set ve,s+1 = xn+1,s+1. For i > e, let vi,s+1 = xn+1+i−e,s+1. For i < e, let
vi,s+1 = xm,s+1, where m is such that xm,s = vi,s. Move to stage s+ 2.

Otherwise, speed up the enumeration of G and the approximation of X until
we either find some t > s such that ve,t = ve,s (more precisely, xn,t = xn,s,
where ve,s = xn,s), or we find some t > s such that there exists v ∈ Gt,
v ∈ dom(hs), and Ct(ve,s+1) ≺ Ct(v). In the first case, move to step 2. In the
second case, re-define H setting hs+1(v) = Φe,s+1(ve,s) and expand the compo-
nent of Φe,s+1(ve,s) to be isomorphic to Ct(v). Also introduce a new component
isomorphic to Ct(h−1

s (Φe(ve,s))) intoHs+1, and define hs+1 on Ct(h−1
s (Φe(ve,s)))

accordingly.

Step 2: Let n be least such that xn,s+1 = xn,s. For e such that ve,s = xm,s with
m < n, let ve,s+1 = ve,s. Let e be least such that ve,s = xm,s with m ≥ n. For
i ≥ e, let vi,s+1 = xn+i−e,s+1.

Step 3: For all new vertices v introduced into Gs+1 (there may be more than 1
since we sped up the enumeration in step 1), if not already done so in step 1,
introduce corresponding new vertices into Hs+1. Extend hs+1 accordingly.

This completes the construction.
The correctness of the construction is based on the following observations.

Firstly, for each e, ve = lims ve,s exists; this tells us that each requirement Re is
met and is eventually satisfied. Secondly, for each v ∈ G, h(v) = lims hs(v) exists,
and that for each w ∈ H, h−1(w) = lims h

−1
s (w) exists. These together with the

fact that at each stage s, hs : Gs ∼= Hs show that h establishes an isomorphism
between G and H. Thus G ∼= H, but G is not computable isomorphic to H, and
hence G is not computably categorical. ��
We note that with essentially the same proof Theorem 2 can be strengthened
by removing the assumption that the reachability relation is computable. We
also note that since every infinite Σ0

2 set has an infinite Δ0
2 subset, we need only

assume there exists an infinite Σ0
2 set of such vertices.

4 Infinite Chains of Embedded Components

From the two theorems above, one may suggest that the existence of an infinite
chain of properly embedded components in a graph may imply that the graph is
not computably categorical. One may also suggest that the Δ0

2-bound in Theo-
rem 2 could be replaced with a Δ0

3-bound. The main result of this section is to
refute these two suggestions and outline of a proof for the following result:

Theorem 3. There is a strongly locally finite computably categorical graph that
possesses an infinite chain of properly embedded components. In fact, the set
{v | C(v) is properly embedded into ω many components} is computable in 0′′.

Proof. Let Φ0, Φ1, . . . be a standard enumeration of all partial computable func-
tions from ω2 to {0, 1}. Based on this, one builds an effective enumeration of
all computable graphs G0,G1,G2, . . . uniformly. On i at stage t we have: (1)



146 B.F. Csima, B. Khoussainov, and J. Liu

Vi,t ⊆ Vi,t+1, Ei,t ⊆ Ei,t+1 for t ∈ ω; (2)
⋃
t Gi,t = Gi, where Gi,t = (Vi,t, Ei,t);

(3) Vi,t = {0, . . . , ki,t} where ki,t is the maximal j ≤ t such that for all n,m ≤ j
the values Φi,t(n,m) are defined.

Our goal is to construct a graph G = (ω,E) such that G has an infinite
sequence C0 ≺ C1 ≺ C2 ≺ . . . of properly embedded components, and the
construction of G meets the following requirements:

Re : If Ge ∼= G then Ge is computably isomorphic to G
Here we show how to satisfy just one requirementRe. The general construction

(that we omit in this paper due to space limitations) is based on putting all
strategies forRe on a priority tree. The general construction produces a true path
through the tree, the true path is computable in 0′′, and all the requirements
Re are satisfied along the path. The general construction is somewhat similar to
and simpler than the constructions in [1], [2], and [13] .

The rest of the proof will handle one requirement Re. We need some notation
and definitions. We use cycles as defined in the previous section.

Let H be a graph and v be its vertex. To attach a cycle Cn to v means to
extend the graph H by adjoining to H the graph Cn and adding the edge {v, 1}.

The graph G that we construct will be strongly locally finite such that each
component of G will consist of a vertex v together with finitely many cycles
attached to v. We call such components special-cyclic components.

We approximate Ge as Ge,0 ⊆ Ge,1 ⊆ Ge,2 ⊆ . . . such that every component
of Ge,t is special-cyclic. During the construction we guarantee the following. If
Ge,t provides a component C that cannot be embedded into Gt then C will never
be embedded into G. In this case Re is satisfied, and we ensure that G has an
infinite sequence of properly embedded components. Thus, we can always assume
that Ge,t is embedded into G currently built. During the construction we also
guarantee that no two components of G are isomorphic.

The graph Gt denotes approximation to G at stage t. Components of Gt are
denoted by Hj,t, and we assume a natural order between the components (e.g.
H1 < H2 if the minimum vertex in H1 is less than the minimum vertex in H2).

At stage t, the function ft denotes a partial isomorphism from Ge,t into Gt that
we build. We will also have finitely many selected components in Gt. We say Hj,t

(a component of Gt) is covered if there is a component He,j,t of Ge such that
ft maps He,j,t into Hj,t. We say that Re is in the waiting state (at stage t) if
there are selected and uncovered components of Gt. We say that Re recovers (at
stage t) if for every selected component H in Gt there is a (necessarily) unique
component H ′ in Ge,t such that H ′ embeds into H and H ′ can not be embedded
into any other component of Gt and f has not been defined on H ′. Now we
describe our stagewise construction of G against one Re.

Stage 0. Set G0 to contain two special-cyclic components such that one com-
ponent has a cycle of length 3 attached and the other has a cycle of length 4
attached. Select both components. Mark the first component. Re is now in the
waiting state. The function f0 is empty.

Stage t+ 1. Compute Ge,t+1. Assume Re is in the waiting state. Build a new
component H in Gt such that the unselected components built in the previous



Computable Categoricity of Graphs with Finite Components 147

stage properly embedded into H , and such that none of the selected components
embed into H . This builds Gt+1.

Assume Re has recovered. Let H1 be the marked component. Let H2 be
the first selected component such that H2 is not marked. For every selected
component H , consider H ′ in Ge,t+1 such that H ′ embeds into H , ft is not
defined on H ′, and H ′ does not embed into any other component of Gt. Extend
ft to ft+1 by mapping all such H ′ into H . Extend Gt to Gt+1 as follows:

1. Let t′ be the last recovery stage before stage t+ 1. To all components built
between stages t′ + 1 and t + 1 attach new and distinct cycles of distinct
unused lengths. This makes these components non-embeddable into each
other. Declare these components newly selected.

2. Declare all the components selected at stage t′ unselected.
3. Consider H1 and H2. To H2 attach a cycle of length n if H1 has a cycle of

length n attached to it and H2 has no cycle of length n attached. Remove
the mark from H1 and mark the newly extended H2. Declare H2 selected.

4. Construct a new component with a new cycle of unused length in Gt+1.

This finishes the description of stage t+ 1. Set G =
⋃
t Gt. Now we show that

G is a desired graph.

Lemma 4. Suppose there is a stage t after which Re never recovers. Then G
has an infinite chain of properly embedded components and Re is satisfied.

Proof. After stage t, the construction builds an infinite chain of properly em-
bedded components. Also, Ge ∼= G′ and hence Re is satisfied. ��
Lemma 5. If Ge ∼= G then

⋃
t ft effectively extends to an isomorphism.

Proof. It must be the case that Φe is total. Let H1 be a component of G.
Case 1. The component H1 is never marked. In this case, by construction,

H1 must contain a cycle of length n such that no other component of G has
a cycle attached of the same length. Assume H1 is selected at stage t′. In the
next recovery stage t + 1, ft+1 maps H ′

1,t+1 into H1,t+1. Since H ′
1 is the only

component that contains a cycle of length n, we will have H1
∼= H ′

1.
Case 2. Assume H1 is marked at stage t′ and let t + 1 be the next recovery

stage after t′. We can assume that ft′ maps H ′
1 to H1.

At stage t+ 1 we have H2 (see stage t+ 1). H2 contains a cycle of length m
such that no other component has a cycle of length m. At stage t + 1 we also
have a mapping ft+1 such that ft+1 maps H ′

1,t+1 to H1,t+1 and H ′
2,t+1 to H2,t+1

and ft′ ⊆ ft+1. Let t1 be the next recovery stage after t + 1. Again it must be
the case that ft+1 ⊆ ft1 as otherwise Ge contains two components containing
cycles of length m (after which the construction guarantees that G contains no
two components with cycles of length m). ��
Lemma 6. Assume Ge ∼= G. Then G contains an infinite chain of properly em-
bedded components.

Proof. The components marked at recovery stages form the desired chain. ��



148 B.F. Csima, B. Khoussainov, and J. Liu

These lemmas prove that the construction is correct to satisfy one Re. In the
general construction our priority T will be the binary tree over the alphabet r, w
with the order r < w, where r represents recovery and w represents the waiting
state. The nodes of length e in T will be devoted to satisfy Re. ��

References

1. Cholak, P., Goncharov, S., Khoussainov, B., Shore, R.A.: Computably categorical
structures and expansions by constants. J. Symbolic Logic 64(1), 13–37 (1999)

2. Cholak, P., Shore, R.A., Solomon, R.: A computably stable structure with no Scott
family of finitary formulas. Arch. Math. Logic 45(5), 519–538 (2006)

3. Crossley, J.N. (ed.): Aspects of effective algebra, Vic., 1981. Upside Down A Book
Co. Yarra Glen.

4. Dzgoev, V.D., Gončarov, S.S.: Autostability of models. Algebra i Logika 19, 45–58
(1980)

5. Yu., L., Ershov, S.S., Goncharov, A., Nerode, J.B.: Handbook of recursive mathe-
matics. Studies in Logic and the Foundations of Mathematics, vol. 1, 138. North-
Holland, Amsterdam (1998); Recursive model theory

6. Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.):
Handbook of recursive mathematics. Studies in Logic and the Foundations of Math-
ematics, vol. 2, 139, pp. 621–1372. North-Holland, Amsterdam (1998); Recursive
algebra, analysis and combinatorics

7. Ershov, Y.L., Goncharov, S.S.: Constructive models. Siberian School of Algebra
and Logic. Consultants Bureau, New York (2000)

8. Gončarov, S.S.: Autostability of models and abelian groups. Algebra i Logika 19(1),
23–44 (1980)

9. Gončarov, S.S.: The problem of the number of nonautoequivalent constructiviza-
tions. Algebra i Logika 19(6), 621–639, 745 (1980)

10. Goncharov, S.S.: Limit equivalent constructivizations. In: Mathematical logic and
the theory of algorithms, “Nauka” Sibirsk. Otdel., Novosibirsk. Trudy Inst. Mat.,
vol. 2, pp. 4–12 (1982)

11. Goncharov, S.S.: Computability and computable models. In: Mathematical prob-
lems from applied logic. II. Int. Math. Ser (N. Y.), vol. 5, pp. 99–216. Springer,
New York (2007)

12. Goncharov, S.S., Lempp, S., Solomon, R.: The computable dimension of ordered
abelian groups. Adv. Math. 175(1), 102–143 (2003)

13. Hirschfeldt, D.R.: Degree spectra of relations on structures of finite computable
dimension. Ann. Pure Appl. Logic 115(1-3), 233–277 (2002)

14. Lempp, S., McCoy, C., Miller, R., Solomon, R.: Computable categoricity of trees
of finite height. J. Symbolic Logic 70(1), 151–215 (2005)

15. Malćev, A.I.: Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)), 3–60 (1961)
16. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.

Trans. Amer. Math. Soc. 95, 341–360 (1960)
17. Remmel, J.B.: Recursively categorical linear orderings. Proc. Amer. Math. Soc. 83,

387–391 (1981)



P Automata:

Membrane Systems as Acceptors

Erzsébet Csuhaj-Varjú

Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13-17, 1111 Budapest, Hungary
csuhaj@sztaki.hu

The concept of a membrane system (a P system) was introduced by Gheorghe
Păun in 1998 [9,10], with the aim of formulating a computational device ab-
stracted from the architecture and the functioning of the living cell. Since that
time, the theory of membrane systems has proved to be a successful area in
bio-inspired computing.

The main ingredient of a P system is a hierarchically embedded structure of
membranes. Each membrane encloses a region that contains objects and might
also contain other membranes. The outmost membrane is called the skin mem-
brane. There are rules associated to the regions describing the evolution of the
objects which represent chemical substances. The evolution rules correspond
to chemical reactions, and the evolution of the system to a computation. The
main features of P systems include the transformation (rewriting) of objects,
their moving among the different regions (communication), and possibly other
additional capabilities such as, for example, a dynamically changing membrane
structure, or special constraints added to the sets of rules. At any moment in
time, the membrane system can be described by its configuration (its state)
which consists of the actual membrane structure and the contents of the regions.

Membrane systems can be considered as computational devices: starting from
an initial configuration, the system evolves by passing from one configuration
to another one and if it halts, i.e., no rule can be applied anymore, then the
computation is successful. When changing the configuration, the rules can be
applied in a sequential manner or in a maximally parallel manner. When they
are applied in the sequential manner, one rule is applied in each region in each
derivation step, and when they are applied in the maximally parallel manner, as
many rules are applied simultaneously in each region as it is possible. For more
information on P systems, the reader may consult the monograph [11] and the
publications listed at the P systems webpage [12].

The generic model of P systems, briefly described above, restricts its func-
tioning to the dynamics of the contents of the regions and the membrane struc-
ture: no feature is provided for modeling the interaction of the cell and its
surrounding environment. Since membrane systems attempt to provide a formal
framework for describing living cells and the cells are in interaction with their

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 149–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



150 E. Csuhaj-Varjú

biological environments, those variants of membrane systems where the P system
communicates with its environment are subjects of a well-motivated, important
research area.

One approach to modelling P systems which communicate with their envi-
ronments is the framework called P automata. In this case, the environment is
represented by an infinite (or finite) supply of objects from which multisets of ob-
jects are imported by the skin membrane in the system during the computation.
These P systems resemble acceptors, since the P system consumes input, and the
change of its state (configuration) depends on both the imported objects and its
actual configuration. Furthermore, the sequences of imported multisets of objects
can be distinguished as accepted or rejected input sequences. The language ac-
cepted by the P automaton is determined by the set of multiset sequences that
are imported by an accepting computation, i.e., a computation starting from
the initial configuration and ending in an accepting state. (Accepting states are
configurations specified together with the system.)

The first variant of P automata, called one-way P automaton, having only
communication rules, was introduced in [4,5]. Almost at the same time, a closely
related notion, the analyzing P system was defined in [7]. Both one-way P au-
tomata and analyzing P systems are able to describe any recursively enumerable
language, even having a very small number of membranes. In [4], it was shown
that any recursively enumerable language can be obtained as a mapping of the
language of a one-way P automaton, where the P automaton has seven mem-
branes. Later, the result was improved in [6] by reducing the number of necessary
membranes to two.

Since the introduction of the generic notion, several variants of P automata
have been defined and studied, different from each other in the following features:
the way of defining the acceptance/rejection of the input (defined by accepting
states or by halting), the type of communication with the environment (one-
way or two-way communication), the types of communication rules used by the
regions, the way of functioning of the membrane system (whether or not it has
evolution rules), and whether or not the membrane structure changes in the
course of the computation. For more information the reader is referred to the
summary [1], the PhD dissertation [8], and the articles listed in the on-line
bibliography at the P systems webpage [12].

P automata can be studied from many points of view. In addition to investigat-
ing them as computational models of cells interacting with their environments,
comparisons of models from classical automata theory and from P automata
theory are also of particular interest, since these accepting P systems combine
properties of both conventional automata and unconventional computational de-
vices. Notice, for example, that unlike a conventional automaton, a P automaton
does not have a separate set of states, its actual state is identified by its actual
configuration. Similarly, while in the case of conventional automata the whole
input can be found on the input tape at the beginning of the computation, P
automata variants allow the input to be determined step by step in the course
of the computation.



P Automata: Membrane Systems as Acceptors 151

In this talk we give an overview on the computational power and size of the
main variants of P automata, and demonstrate how some well-known language
classes as, for example, the class of context-sensitive languages can be repre-
sented by these constructs in a very natural manner. We also discuss similarities
and differences between P automata and some well-known types of conventional
automata and close the talk by proposing some open problems for future re-
search.

To give a flavor of the results, in [2,3] it was shown that if the rules of the P au-
tomata (using so-called antiport rules with promoters and inhibitors) are applied
sequentially, then the accepted language class is strictly included in the class of
languages accepted by one-way Turing machines with a logarithmically bounded
workspace, while if the rules are applied in the maximally parallel manner, then
these P automata determine the class of context-sensitive languages.

References

1. Csuhaj-Varjú, E.: P automata. In: Mauri, G., Păun, G., Pérez-J́ımenez, M.J.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35.
Springer, Heidelberg (2005)

2. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of P
Automata. In: Ferretti, C., et al. (eds.) Preliminary Proceedings of DNA10. Tenth
International Meeting on DNA Computing, Milan, June 7-10, 2004, pp. 97–106.
University of Milano-Bicocca, Italy (2004)

3. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Complexity of P Automata.
Natural Computing 5(2), 109–126 (2006)

4. Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-
Proceedings of the Workshop on Membrane Computing, Curtea de Arges, Roma-
nia, August 19-23, 2002, pp. 117–192 (2002); MolCoNet-IST-2001-32008

5. Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P
systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002.
LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

6. Freund, R., Mart́ın-Vide, C., Obtu�lowicz, A., Păun, G.: On Three Classes of
Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710,
pp. 292–303. Springer, Heidelberg (2003)

7. Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the
EATCS 78, 231–236 (2002)

8. Oswald, M.: P Automata. PhD dissertation, Technical University of Vienna (2003)
9. Păun, G.: Computing with membranes. TUCS Report 208, Turku Centre for Com-

puter Science (1998)
10. Păun, G.: Computing with membranes. Journal of Computer and System Sci-

ences 61(1), 108–143 (2000)
11. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
12. The P systems web page at http://psystems.disco.unimib.it

http://psystems.disco.unimib.it


On the Processing Power of Protozoa

Mark Daley

Departments of Computer Science and Biology
The University of Western Ontario

daley@csd.uwo.ca

The ciliated protozoa are a diverse, and ubiquitously occuring, group of unicel-
lular eukaryotic organisms of striking complexity. Almost all ciliates are binucle-
ated; that is, unlike other eukaryotes, they have two types of nuclei: micronuclei
and macronuclei. The macronuclei behave functionally as one would typically ex-
pect of a eukaryotic nucleus: they express proteins and take care of the general
“housekeeping” functions of the cell. Ciliate macronuclei are ampliploid1 and
contain very little non-coding DNA. The diploid micronuclei, arranged much
more like a typical eukaryotic nucleus, are inert during the “day-to-day” func-
tioning of the cell and serve instead as a storehouse for germline information.

Ciliates reproduce asexually, through fission, but also engage in the sexual
process of conjugation. During conjugation, haploid micronuclear genomes are
exchanged between ciliates, and post-conjugation, both ciliates destroy their old
macronuclei and generate new macronuclei from the new micronucleus. Com-
paring the micronuclear version of a gene to the macronuclear version one notes
several segments of the micronuclear gene that have been eliminated in the
macronucleus. Segments of micronuclear genes that are so eliminated are called
Internal Eliminated Sequences, or IESs, while the segments which remain are
called Macronuclear Destined Sequences or MDSs. The process of IES elimina-
tion during macronuclear development is quite complex and has been studied
extensively in several ciliate genera [6].

In most ciliates studied thus far, MDSs occur in the micronucleus in the
same order (denoted the “orthodox order”) as they do in the macronucleus,
though they may be separated by IESs. In the stichotrichous ciliates, however,
several genes have been observed in which the MDSs occur in a scrambled or-
der in the micronucleus relative to the orthodox macronuclear order [9]. In or-
der to produce a functional macronucleus, the ciliate must have some form of
information-processing mechanism that allows scrambled micronuclear genes to
be descrambled into functional macronuclear genes.

The computational nature of this descrambling process has attracted the in-
terest of computer scientists who, together with ciliate biologists, have proposed
a series of models for gene descrambling. The two earliest proposed models
were based on simple sets of intramolecular [4] and intermolecular [7] recombi-
nation events guided by so-called pointer sequences flanking IESs and MDSs.
1 Macronuclei contain many copies of each gene, ranging from tens of copies (e.g. 45

for most genes in Tetrahymena thermophila) to tens of thousands (e.g., β-tubulin in
Euplotes crassus) or more.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 152–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Processing Power of Protozoa 153

Although recent experimental results have not proven consistent with these
models, they still provide higher-level metrics for assessing the complexity of
scrambled genes [5].

More recently, descrambling models based on the template-guided recombina-
tion of DNA molecules [10] or DNA-RNA hybrids [1] have been proposed. These
models are strongly biologically motivated and are not only consistent with ob-
served biological data, but have very recently been successfully directly tested
[8]. Given that it has now been demonstrated that we can co-opt the descram-
bling mechanism to perform somewhat arbitrary descramblings, the question of
the computational power of this process becomes natural.

Viewing these biological models as formal computing systems, a wide range
of computational powers have been demonstrated varying from very weak (e.g.,
simple template-guided recombination is no more powerful than a finite-state
machine [3]) to universal (e.g., the intermolecular model [7], TGR with context
[2]).

In this talk we will give a high-level overview of models for gene descrambling
along with an exposition of computability results. We will conclude with the pre-
sentation of a new knot-theoretic extension to the TGR model which addresses
the issue of the thermodynamic unfavourability of the current model through an
appeal to the topological properties of the molecules undergoing recombination.

References

1. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.F.: RNA-guided DNA assem-
bly. Journal of Theoretical Biology (in press, corrected proof, 2007)

2. Daley, M., McQuillan, I.: On computational properties of templated-guided DNA
recombination. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 27–37. Springer, Heidelberg (2006)

3. Daley, M., McQuillan, I.: Template-guided DNA recombination. Theor. Comput.
Sci. 330(2), 237–250 (2005)

4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells: Gene Asssembly in Ciliates. Springer, Heidelberg (2003)

5. Harju, T., Li, C., Petre, I., Rozenberg, G.: Complexity measures for gene assembly.
Knowledge Discovery and Emergent Complexity in Bioinformatics, 42–60 (2007)

6. Jahn, C.L., Klobutcher, L.A.: Genome remodeling in ciliated protozoa. Annual
Review of Microbiology 56(1), 489–520 (2002)

7. Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Winfree,
E., Landweber, L.F. (eds.) Evolution as Computation. Springer, Heidelberg (1999)

8. Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K., Doak, T.G., Landweber, L.F.:
RNA-mediated epigenetic programming of a genome-rearrangement pathway. Na-
ture (advanced online publication) (November 2007)

9. Prescott, D.M.: Genome gymnastics: unique modes of DNA evolution and process-
ing in ciliates. Nat. Rev. Genet. 1(3), 191–198 (2000)

10. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination
for IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology 222(3), 323–330 (2003)



Computing Equilibria in Large Games We Play

Constantinos Daskalakis�

Computer Science, U. C. Berkeley
costis@cs.berkeley.edu

Abstract. Describing a game using the standard representation requires
information exponential in the number of players. This description com-
plexity is impractical for modeling large games with thousands or mil-
lions of players and may also be wasteful when the information required
to populate the payoff matrices of the game is unknown, hard to de-
termine, or enjoy high redundancy which would allow for a much more
succinct representation. Indeed, to model large games, succinct repre-
sentations, such as graphical games, have been suggested which save in
description complexity by specifying the graph of player-interactions.
However, computing Nash equilibria in such games has been shown to
be an intractable problem by Daskalakis, Goldberg and Papadimitriou,
and whether approximate equilibria can be computed remains an im-
portant open problem. We consider instead a different class of succinct
games, called anonymous games, in which the payoff of each player is
a symmetric function of the actions of the other players; that is, every
player is oblivious of the identities of the other players. We argue that
many large games of practical interest, such as congestion games, several
auction settings, and social phenomena, are anonymous and provide a
polynomial time approximation scheme for computing Nash equilibria in
these games.

Game Theory is important for the study of large competitive environments, such
as the Internet, the market, and even social and biological systems. However, due
to the scale of such systems, many natural computational problems within game
theory, e.g. computing a Nash equilibrium, require complexity considerations. In
fact, these considerations originate at the game-representation itself: Describing
a game using the standard normal form requires information exponential in the
number of players, since one needs to specify the payoff of each player for every
selection of strategies by the players of the game. This exponential description
complexity is forbidding for games of many players, and, in any case, the required
details to fill in the payoff tables might be either hard to determine, or exhibit
high redundancy which would allow for more succinct representations.

An important class of succinct representations is that of graphical games, in
which a graph of player-interactions is specified, and a player’s payoff only de-
pends on the strategies of her neighbors in the graph. If the strategic environment
� Supported by a Microsoft Research Fellowship, NSF grant CCF – 0635319, a gift

from Yahoo! Research, and a MICRO grant.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 154–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Computing Equilibria in Large Games We Play 155

that is being considered exhibits a sparse structure of player-interactions the
graphical game representation results in large savings in description complexity;
in particular, an interaction-graph of constant degree results in polynomial (in
the number of players) description complexity, which renders computational
questions for these games practically meaningful. However, computing Nash
equilibria in sparse graphical games has been shown to be computationally in-
tractable [4], and interest has been shifted recently towards computing approxi-
mate Nash equilibria, that is randomized strategies for the players of the game
such that no player has more than some small incentive to change her strategy
if the other players do not. Approximate equilibria of any desired approximation
can be computed efficiently provided that the treewidth of the player-interactions
is bounded [7]; but, whether there exists a polynomial time approximation
scheme for the general case remains an important open problem.

In this paper, we propose the study of another class of succinct games, called
anonymous games [2,3]. In an anonymous game, every player is different, that
is, she has her own payoff function, but this function is symmetric with respect
to the strategies of the other players; in other words, the players are oblivious
of the identities of the other players. Several important classes of multi-player
games fall in the class of anonymous games, e.g., auction settings in which the
payoff of a bidder is only affected by the distribution of the other bids and not
on the identities of the other bidders. Anonymous games also capture congestion
games where the delay incurred by a driver for choosing a route only depends on
the number of other cars on her route, but not on the identities of the drivers.
Finally, anonymous games have been suggested for modeling social phenomena,
e.g., social pressure related to veiling in Islamic societies [2].

We also consider generalizations of the model, e.g., typed anonymous games
in which the players are partitioned into types and the payoff function of every
player is symmetric with respect to the strategies of the other players within
each type. A typed anonymous game with n players, s strategies per player, and
t types of players requires description size of the order of nst, which is polyno-
mial in n, if s and t are constants. We present positive approximation results for
anonymous games, both for pure strategy equilibria and mixed strategy equilib-
ria; in particular, we show the following:

Theorem 1 ([5]). In any anonymous game with s strategies per player there
exists an O(s2λ)-approximate pure Nash equilibrium, where λ is the Lipschitz
constant of the utility functions of the players (assumed to be such that, for
any partitions x and y of the players into the s strategies, every player’s utility
function u satisfies |u(x)−u(y)| ≤ λ||x−y||1). Such an approximate equilibrium
can be found in linear time.

Theorem 2 ([5,6]). There is a Polynomial Time Approximation Scheme (PTAS)
for the mixed Nash equilibrium problem for anonymous games with a constant num-
ber of strategies per player.



156 C. Daskalakis

Our pure Nash equilibrium result follows from a discretized version of Brouwer’s
fixed point theorem. A discrete function is defined over the signatures of the
pure strategy profiles of the game, that is the set of partitions of n− 1 players
(without identities) into s strategies. The function maps a partition into another
if the latter is derived from the former after a best response move by each of
the first n − 1 players of the game conditioned on their environment being the
former partition. This discrete function of Nash dynamics is interpolated into a
continuous function and Brouwer’s fixed point theorem guarantees the existence
of a fixed point of that function. The challenge is to show that, close to the fixed
point of the continuous function, there exists a discrete point which gives rise to
an approximate pure Nash equilibrium of the game.

Our polynomial time approximation scheme for mixed Nash equilibria is based
on deep results in probability theory regarding the approximation of sums of
multinomial distributions by other distributions [1]. To discretize the search
space for mixed Nash equilibria, we consider mixed strategy profiles where every
player’s mixed strategy is restricted so that each pure strategy is played with
probability which is an integer multiple of some small constant δ < 1. Searching
the space of discretized mixed strategy profiles can be done efficiently in time
O

(
n(1/δ)s)

; hence the question arises of what δ is required to guarantee that at
least one of the discretized mixed strategy profiles is an ε-approximate mixed
Nash equilibrium. We show that the required δ is a function of ε and s only which
implies a polynomial time approximation scheme for the mixed Nash equilibrium
problem in anonymous games. To establish the bound on δ we need to bound the
total variation distance between a sum of multinomial distributions and a sum
of (appropriately rounded) discretized multinomial distributions. In particular,
we show the following:

Theorem 3 ([6]). Let {pi}i∈[n] be a set of probability vectors, where pi ∈ Δs
1,

Δs
1 is the standard (s − 1)-simplex, and let {Xi}i∈[n] be a set of independent

s-dimensional random unit vectors, such that Pr[Xi = e�] = pi,�, where e� is the
unit vector along dimension �, � ∈ [s]. Let z > z0 be a positive integer, where
z0 is some absolute constant. Then there exists another set of probability vectors
{p̂i}i∈[n], where p̂i ∈ Δs

1, such that

1. |p̂i,� − pi,�| = O(1
z ), for all i ∈ [n], � ∈ [s];

2. p̂i,� is an integer multiple of 1
2s

1
z , for all i ∈ [n], � ∈ [s];

3. if pi,� = 0, then p̂i,� = 0, for all i ∈ [n], � ∈ [s];
4. if {X̂i}i∈[n] are independent random vectors such that Pr[X̂i = e�] = p̂i,�,

� ∈ [s], then ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

i

Xi −
∑

i

X̂i
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
TV

= O

(

f(s)
log z
z1/5

)

where f(s) is a function of s only.

The above theorem states, roughly, that, for any constant c > 5, there is a way
to quantize any set of n mixed strategies into another set of mixed strategies,
whose probabilities of choosing each pure strategy are integer multiples of δ,



Computing Equilibria in Large Games We Play 157

δ ∈ [0, 1], so that the total variation distance between the (random) number of
players playing each pure strategy before and after the quantization is bounded
by O(f(s)2s/cδ1/c), which does not depend on n. This bound, which is of more
general interest, immediately implies a polynomial time approximation scheme
for finding mixed Nash equilibria in anonymous games with a constant number
of strategies per player. The result can be generalized for typed anonymous
games and several extensions of the model, e.g., settings where the players are
partitioned into neighborhoods and the payoff function of a player is symmetric
with respect to the actions of her neighbors and symmetric with respect to the
actions of her non-neighbors. As no other polynomial time approximation scheme
is known for finding mixed Nash equilibria in large games (except for graphical
games with bounded treewidth [7]), this algorithm furthers our understanding
of mixed Nash equilibrium computation. It also offers a surprising structural
property of the space of mixed Nash equilibria with regards to approximation.

References

1. Barbour, A.D., Chen, L.H.Y.: An Introduction to Stein’s Method. In: Barbour,
A.D., Chen, L.H.Y. (eds.). Lecture Notes Series, vol. 4, Institute for Mathematical
Sciences, National University of Singapore, Singapore University Press and World
Scientific, Singapore (2005)

2. Blonski, M.: The women of Cairo: Equilibria in large anonymous games. Journal of
Mathematical Economics 41(3), 253–264 (2005)

3. Blonski, M.: Anonymous Games with Binary Actions. Games and Economic Behav-
ior 28(2), 171–180 (1999)

4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing
a Nash Equilibrium. In: The 38th ACM Symposium on Theory of Computing, STOC
2006 (2006); SIAM Journal on Computing special issue for STOC 2006 (to appear,
2006)

5. Daskalakis, C., Papadimitriou, C.H.: Computing Equilibria in Anonymous Games.
In: the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2007 (2007)

6. Daskalakis, C., Papadimitriou, C.H.: Discretizing the Multinomial Distribution and
Nash Equilibria in Anonymous Games. ArXiv Report (2008)

7. Daskalakis, C., Papadimitriou, C.H.: Computing Pure Nash Equilibria via Markov
Random Fields. In: The 7th ACM Conference on Electronic Commerce, EC 2006
(2006)



A Week-End Off:

The First Extensive Number-Theoretical
Computation on the ENIAC

Liesbeth De Mol1,� and Maarten Bullynck2,��

1 Center for Logic and Philosophy of Science, University of Ghent, Blandijnberg 2,
9000 Gent, Belgium

elizabeth.demol@ugent.be
2 IZWT, Gaussstrasse 20, 42119 Wuppertal, Germany and REHSEIS, Paris, France

bullynck@uni-wuppertal.de

Abstract. The first extensive number-theoretical computation run on
the ENIAC, is reconstructed. The problem, computing the exponent of
2 modulo a prime, was set up on the ENIAC during a week-end in July
1946 by the number-theorist D.H. Lehmer, with help from his wife Emma
and John Mauchly. Important aspects of the ENIAC’s design are pre-
sented and the reconstruction of the implementation of the problem on
the ENIAC is discussed in its salient points.

Keywords: ENIAC, Derrick H. Lehmer, number theory, Fermat’s little
theorem, early programming, parallelism, prime sieve.

1 Introduction

Just too late to help win the Second World War, just in time to start off the
computer age, the first digital electronic general-purpose computer (See e.g. [2]),
the ENIAC, was presented to the public February 15, 1946 at Penn University.
The Ballistic Research Laboratories (Aberdeen Proving Ground) had “assem-
bled a ‘Computations Committee’ to prepare for utilizing the machine after its
completion” [1, p. 693], and the ENIAC was extensively test-run during its first
months.

One of the members of this committee was the number-theorist Derrick H.
Lehmer who spent a Fourth-of-July weekend testing the ENIAC. The Lehmer
family – Derrick, Emma and two teenage kids – arrived at the Moore school on
Friday 5 p.m. where they met John Mauchly, who was, together with Presper Jr.
Eckert, the father of the ENIAC-design. He helped them set up the ENIAC for the
implementation of an interesting number-theoretical problem and stayed on as an
operator through the week-end [10, p. 451]. Lehmer’s computation was important
to the post-war reputation of electronic computers among mathematicians.

� Postdoctoral Fellow of the Fund for Scientific Research – Flanders (FWO).
�� Postdoctoral Research Grant, Alexander-von-Humboldt-Stiftung.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 158–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Week-End Off: The First Extensive Number-Theoretical Computation 159

The ENIAC was an electronic and highly parallel machine. As a consequence
it was revolutionary fast in its time. However, setting up a program on the
ENIAC was time-consuming. The original control system of the ENIAC was de-
centralized, its elements were distributed over the different units of the machine.
The programming had to be done “directly”, i.e., there was no converter code,
let alone a programming language available to set up a ‘program’. Instead, one
had to connect the different parts of the machine through cables and adaptors.
Only in 1948 was the ENIAC rewired into a serial computer that could be set
up using a converter code that selected subroutines from a function table, thus
simulating a stored-program computer [11]. The original “local programming”
method can best be described “as analogous to the design and development of
a special-purpose computer out of ENIAC component parts for each new appli-
cation.” [3, p. 31] Or as Jean Bartik, one of the ENIAC’s female programmers,
put it: ‘The ENIAC was a son-of-a-bitch to program.’

The particularities of programming the ENIAC make it interesting for present-
day computer scientists. As W.B. Fritz, one of the ENIAC-operators remarks:
“Anyone now doing research in parallel computing might take a look at ENIAC
during this first time period, for indeed ENIAC was a parallel computer with
all of the problems and opportunities this entails.” [3, p. 31] More importantly
even, ‘programming’ the ENIAC invites one to question many things taken for
granted nowadays, amongst them the relation between the user and the machine.

In this paper, we will present Lehmer’s problem and show how to set it up
on the ENIAC. Given the complexity of ‘programming’ (actually wiring) the
ENIAC, we will not be able to provide all details here. Instead we will merely
outline our reconstruction, providing details only for certain aspects of the set-
up.1

1.1 How a Number-Theorist Got Involved with Computers

Derrick H. Lehmer (1905-1991) was born into number theory. His father, Derrick
N. Lehmer, was a reputed number-theorist, best known for his factor table up to
10,000,000 and his stencil sheets to find factors of large numbers. Already as a
young boy D.H. devised a way, using bicycle chains, to mechanize these stencils,
building the first electro-mechanical number sieve in 1926, the first photo-electric
sieve in 1932. Given this lasting interest in making mathematical tables (always
a time-consuming job) and particularly in mechanizing sieves, it is clear that
D.H. Lehmer perfectly fitted into the ‘Computations Committee’.

Lehmer also contributed in other ways to the advance of the computer age.
He helped R.C. Archibald’ to publish the important journal Mathematical Ta-
bles and other Aids to Computation (known as MTAC) from 1943 to 1950, and
served as the editor-in-chief himself until 1959. This journal was an important
channel of publication during the early years of computing, offering a fast way of

1 We want to thank Martin Carlé (Humboldt University Berlin) for his stimulation to
get involved into the ENIAC’s technical details and wirings. This reconstruction is
intended as a contribution to the ENIAC NOMOI project.



160 L. De Mol and M. Bullynck

getting new results in print, and it reads like the diary-like records of advances
in hardware and computing techniques from 1943 to 1959. Lehmer also often
ventilated his strong opinions on computing in this journal, making a case for
seeing mathematics (especially number theory) as an observational science for
which data had to be gathered through computation. Lehmer argued strongly
and convincingly that the computer would change the world of mathematics.

1.2 The Structure of the ENIAC

The Electrical Numerical Integrator And Computer (ENIAC) was first described
in a proposal John Mauchly submitted to Penn University, and was ultimately
built with U.S. Army money by a team of engineers under the direction of Presper
Eckert Jr. It used about 18,000 vacuum tubes and 1,500 relays. From 1945 to
1947 this was a highly parallel computer, though its parallelism was hardly ever
used [2, p. 376] one of the notable exceptions being Lehmer’s program.

The ENIAC had a modular architecture. It comprised 20 accumulators, a
multiplier, a divider and square rooter, a constant transmitter, 3 function ta-
bles, a master programmer, a cycling unit, an initiating unit and also a card
reader and a printer. The constant transmitter and the function tables are the
ENIAC’s main memory storage units. Function tables had to be set manually
with switches, the constant transmitter could store upto 16 numbers read from
a punched card (before or during the computation) and 4 numbers that had to
be set manually with switches.

The ENIAC had two kinds of electronic circuits: the numerical circuits for
storing and processing electric signals representing numbers and programming
circuits for controlling the communication between the different parts of the
machine. Most of the units had both kind of circuits, except for the master pro-
grammer and the initiating unit which consisted only of programming circuits.
All units had to be programmed locally. The program switches, located on the
front face of the units, had to be set before a computation started to specify
which operations had to be performed. It will become clearer in the remainder
of the paper how to control the order of the operations.

Of crucial importance in the ENIAC was the central programming pulse
(CPP), emitted by the cycling unit once every 1/5000th of a second, mark-
ing the beginning and end of a computation cycle. These pulses synchronized
the operations of the units. When a unit completed an operation it emitted one
of these as a program output pulse, stimulating the next operation. All the units
required an integral number of cycles. E.g. an accumulator required 1/5000th of
a second for an addition, so we speak also of an addition time instead of a cycle.

We will now detail the design of the accumulator and the master programmer
and explain how to set up some basic processes such as branching and iteration.
For more details we refer to [2,5] and especially the detailed Report on the ENIAC
by Adèle Goldstine [4].2

2 We would also like to refer to Till Zopke’s Java-applet ENIAC simulation [12], that
proved handy for testing some easy cablings.



A Week-End Off: The First Extensive Number-Theoretical Computation 161

The accumulator. The accumulators were the main arithmetic units of the
ENIAC and could be used to add or subtract. Each accumulator held a 10-
place decimal number and a sign, stored in ten decade ring counters and a PM
counter. It had 5 input channels ( α to ε) to receive a number. It had two output
channels (A and S) to transmit a number n (through A) or its complement
1010−n (through S). In one addition time, the accumulator could either receive
a number n adding (if n ≥ 0) or subtracting (if n < 0) it to/from its content, or
transmit the number it stored through one or both of its outputs. The program
part of the accumulator consisted of 16 program controls: 4 receivers and 12
transceivers. A transceiver had a program pulse input and output terminal, a
clear-correct switch (to clear or not clear its content after a cycle; it could also
be used to round off numerical results), an operation switch (to be set to α to ε,
A, S, AS or 0, determining whether the accumulator should receive or transmit
a number, or do nothing) and a repeat switch (with which it could either receive
or transmit up to 9 times). When a transceiver received a program pulse through
a program cable at addition time r, the operations set on the program switch
associated with that transceiver were executed. When these had been finished
after n (1 ≤ n ≤ 9) addition times, a program pulse was transmitted through
the output of the transceiver at addition time r + n. A receiver differs from a
transceiver in that it has no output terminal and no repeater switch.

The master programmer. The master programmer provided a certain amount
of centralized programming memory. It consisted of 10 independently functioning
units, each having a 6-stage counter (called the stepper), 3 input terminals (the
stepper input, direct input and clear input), and 6 output terminals for each stage
of the stepper. Each such stage s was associated with a fixed number ds by man-
ually setting decade switches, and with 1 to 5 decade counters.

If a pulse arrived at the stepper input (SI) of a stepper, one was added to the
counter of stage s. If this number equaled the preset number ds, it cleared the
counter of stage s and cycled to the next stage s+ 1. In both cases, a program
pulse was emitted through the output terminal of stage s. A pulse at the direct
input (DI) cycled immediately to the next stage, and a pulse at the clear input
(CI) reset the stepper to its initial configuration. In neither case a program pulse
was emitted. In this way the master programmer could be used, among other
things, to sequence operations and to iterate a given subroutine.

Branching. The ENIAC was capable of discriminating between program se-
quences by examining the magnitude of some numerical result. This “magnitude
discrimination” or “branching” was possible because 9 digit pulses were trans-
mitted for sign indication M and none for sign indication P. The fact that digit
pulses were transmitted for every digit except for 0 could be exploited in a sim-
ilar manner. The digit pulse corresponding to the sign (or a digit) could then
be converted into a program pulse by connecting the PM lead (or another digit
lead) of the A and/or S output terminal of an accumulator to the program pulse
input terminal of an otherwise unused ‘dummy (program) control’ by using a
special adaptor [4, Sec. 4.5].



162 L. De Mol and M. Bullynck

Fig. 1. Wiring schemes for each of the branching methods. The if-routine is started
when a program pulse is received at the first program cable. Depending on the sign of
the number in the accumulator, either subroutine S1 or S2 will be executed.

There were basically two ways to do this branching: either by using the two
output channels A and S of an accumulator and two dummy program controls,
or, by using only one output channel, A or S, one dummy control and the master
programmer. Fig. 1 shows possible implementations of these two ‘if’ methods.
They were reconstructed on the basis of the (limited) information on branching
in [2,4].

2 Lehmer’s ENIAC ‘Program’

2.1 The Mathematical Problem

Primality tests and factoring methods belong to the most important topics in
number theory. One class of primality tests are (partial) converses of Fermat’s
little theorem. Unfortunately, the direct converse of the theorem is false in gen-
eral: If ap−1 ≡ 1 mod p for an arbitrary a (not dividing p), then p is often though
not always a prime. A way out of the failing general converse is to list all excep-
tions, i.e., all composite p for which ap−1 ≡ 1 mod p is true. Taking a equal to 2
is computationally the most advantageous choice. To compute the composite p’s
for which 2p−1 ≡ 1 mod p one needs a table of all exponents e of 2 modulo the
prime p, e being the least value n such that 2n ≡ 1 mod p and e is some divisor of
p− 1 = ef . Kräıtchik published such an exponent table in 1924 for p < 300000,
but it contained quite some errors [6]. D.H. Lehmer now proposed to use the
ENIAC to compute a table of exponents correcting and extending Kräıtchik’s
table to p < 4.5 · 106. The results of Lehmer’s calculation on the ENIAC were
published as a list of corrigenda to Kräıtchik’s table in 1947 (MTAC 2 (19)
p. 313). In 1949 an article discussing some computational details of setting up
this ‘program’ on the ENIAC appeared [7].



A Week-End Off: The First Extensive Number-Theoretical Computation 163

2.2 Description of the Main Steps of the Computation

As Lehmer remarks right at the beginning of his description of the ENIAC set-
up: “The method used by the ENIAC to find the exponent of 2 modulo p differs
greatly from the one used by human computers” [7, p. 301]. A number-theorist
knows that the exponent e of 2 so that 2e ≡ 1 mod p (p prime) is either a divisor
of or equal to p − 1, and can thus restrict himself to doing trial divisions with
suitable divisors of p− 1 only. On the ENIAC, however, it is more expeditive to
compute 2t for all t < p− 1. This ‘idiot approach’ takes, in the worst case, “less
than 2.4 seconds, less time than it takes to copy down the value of p”, whereas
the sophisticated method requires “much outside information via punched cards
[...] to be prepared by hand in advance.” [7, p. 302]

Lehmer’s flow-diagram [7, p. 303] gives the following main steps of the ENIAC
computation:

Step 1. Initiation and preliminary set-up, go to Step 2.
Step 2. Increase p by 2, goto Step 3.
Step 3. Sieve on p: Is p divisible by a prime ≤ 47? Yes/No, goto Step 2/Step 4.
Step 4. Exponent routine to find e. Is e > 2, 000? Yes/No, goto Step 7/Step 5.
Step 5. Does e divide p− 1? Yes/No, goto Step 6/Step 7.
Step 6. Punch p, e and f (p− 1 = ef), goto Step 7.
Step 7. Erase exponent calculation, goto Step 2.

The sieve set-up (step 3) can take advantage of the parallelism of the ENIAC’s
hardware. Thus implemented, this becomes a fast method for minimizing the
chance that p = 2n + 1 is not a prime. The sieve implemented on the ENIAC
sieved out all numbers p = 2n+ 1 having prime factors ≤ 47. As Lehmer notes
[7, p. 302], about 86 percent of the composites were eliminated after step 3
(sieve). The remaining 24 percent were required to pass a further test: namely
p − 1 must be divisible by e (step 5). This requirement is so strict that the
remaining number of composites is very small. Finally, these were eliminated by
hand through comparison with D.N. Lehmer’s list of primes.

The exponent e is calculated by a simple recursive routine (step 4), building
up a sequence of positive integers rk, where rk is nothing but the remainder on
division of 2k by p. The start value r1 is set to 2. Given rk, the next value rk+1

is set to 2rk − p. If 2rk − p < 0, rk+1 is set to 2rk. If 2rk − p > 0 then the
ENIAC checks whether rk+1 - 2 is negative. If the reply is yes, then rk+1 is 1
and e = k+ 1. If no, then the ENIAC checks whether k+ 1 = 2001. If not, then
rk+2 is the next value computed. If yes, then the ENIAC gives up the search for
e and tries the next value of p.

2.3 Outline of the Set-Up of the Computation on the ENIAC

We will now give an outline of how to wire the ENIAC to perform Lehmer’s
computation. Due to lack of space not all details can be given. We will focus on
the parallel set-up of the sieve and then give a sketch of the complete reconstruc-
tion. The reconstruction is based upon the 7-step-diagram (sec. 2.2) and some



164 L. De Mol and M. Bullynck

implementational details given in Lehmer’s [7,8,9]. Important to note: Lehmer’s
description does not completely determine the actual machine implementation,
the design of the ENIAC, however, seriously limits the possibilities.

Wiring a sieve. Sieves check for every subsequent number of a specific sequence
if the number fulfills j conditions/congruences. If it fulfills one or more congru-
ences, it is sieved out, if not, the number is let through. The best known sieve,
Eratosthenes’s, checks for every natural number n if it is divisible by a prime
(n ≡ 0 mod pj?), the numbers that pass are relative prime to the primes pj .

Our sieve implementation uses an accumulator Apj for each prime pj ≤ 47,
(1 ≤ j ≤ 14 ) except for 2 (See sec. 2.2). To begin (step 1), each Apj is set to
the complement of pj − 1. E.g. Ap14 will contain M 9999999954. An initiating
pulse is sent to the first transceiver (T1) of all Apj ’s, its operation switch (OS) is
set to α and the repeat switch (RS) to 1, as well as to the constant transmitter
(CT) such that it will transmit the number 2. This results in the addition of 2
in all 14 accumulators. The CT then transmits a program pulse (PP), finishing
the first cycle of the computation. The next steps of the computation check for
each of the Apj in parallel whether the number P = 2r + 1 (the first P being
3) is or is not divisible by one of the pj. This is done with the second branching
method (See Sec. 1.2), by connecting the PM lead of the S output of each of
the Apj to 14 dummy controls (T2). This works because if P is divisible by pj ,
the number contained in Apj will be P 0000000000 and thus positive, while it
will be negative in all other cases (this is why we use complements). If a given
Apj stores P 0000000000, and P is thus divisible by pj, Apj has to be reset
to the complement of 2pj.3 This was a difficult problem to solve, because only
those accumulators that store P 0000000000 should receive a value, and each of
these must receive a different number. The problem for the ENIAC to decide
which accumulators should receive and which should not, was solved by directly
connecting the program pulse output terminal of each of the dummy controls
of the Apj to the program pulse input terminal of one of the transceivers (T3)
of each of the Apj . This could be done by using a loaded program jumper [4,
11.6.1]. Each T3 of an Apj is set to receive once through input channel α, β
or γ depending on the group Apj belongs to. The transmission of 14 different
numbers to the 14 Apj ’s is done by using the three function tables and special
digit adaptors. The 14 Apj ’s are divided into three groups: Ap1 – Ap5 , Ap6 –
Ap10 , Ap11 – Ap14 . In each group, the PP output terminal of T1 of rsp. Ap1 , Ap6
and Ap11 is connected to three different program cables. The first of these cables
sends a PP to function table 1, the second to function table 2 and the last to
function table 3. The argument clear switch of each of the tables is set to O.
Without going into the details of this setting, it is important to know that in this
specific wiring, the switch is set to O so that the function table will transmit the
value f(0) to the input channel it is connected to. Each of the function tables
contains rsp. one of the following values: M 610142226, M 3438465862 and M
64828694 at place 0 (function value f(0)). These numbers are nothing but the

3 We use 2pj since only numbers of the form 2r + 1 are sent through the sieve.



A Week-End Off: The First Extensive Number-Theoretical Computation 165

concatenation of the values 2pj which have to be sent to those Apj for which pj
divides 2r + 1 (Apj stores P 0000000000). Five addition times after each of the
function tables has received a program pulse, each of these values will be sent
through the respective input channels α, β and γ.

Now, if e.g. accumulator Ap1 has been set to receive through α by its dummy
control it will receive the value M 610142226 through α. A special adaptor is
inserted at the input terminal α of Ap1 . It is used to combine a shifter adaptor
– which is used to shift the digit lines a certain number of times to the left or to
the right – and a deleter adaptor – which makes it possible to select only those
digits needed. Setting both deleter and shifter in the correct way for Ap1 , the
number M 0000000006 (instead of M 610142226) will be subtracted from the
content of Ap1 . After this, Ap1 will contain M 9999999994 which is the value
needed for the sieve to work properly.

Figure 2 shows the details of the wiring of this sieve for Ap1 . Note that
two stepper counters plus two extra transceivers are used to let ENIAC decide
whether 2r+1 passes the sieve test. The first transceiver, situated in Accumulator
Ap1 is needed to delay this decision through the second stepper counter (waiting
until the function tables have sent their values f(0)). The second transceiver
(situated right next to one of the stepper counters) is used to send a program
pulse to the direct input of a second stepper, thus “making” the decision. The
whole sieve process takes 12 addition times and is thus very fast. Fundamental
in this wiring was the synchronization of all the different steps.

Fig. 2. Parallel Implementation of the sieve for Ap1 , p1 = 3



166 L. De Mol and M. Bullynck

Outline of the complete program. We will now provide an outline of our
reconstruction of the complete computing-the exponent-of-2-modulo-p-program
(Sec. 2.2). Steps 2 and 3 were already discussed in the previous paragraph.

Step 1.The setting of the Apj ’s as well as the three function tables has already
been discussed. The numbers + 2, -2 and -1 are set manually on the constant
transmitter (CT). An accumulator AP used to store the number P = 2r+ 1 be-
ing processed, should be set to store the number 1. The computation is started
by an initiating pulse sent to the 14 accumulators and the CT.

Step 2. This was already discussed. Besides the Apj ’s also the transceiver of AP ,
as well as a transceiver of one other accumulator used in step 4 (Ae1 ), should be
set to receive through α.

Step 3. This was already discussed.

Step 4. In this subroutine 5 accumulators are used, i.e. Ae1 , Ae2 , Ae3 ,AP and
AE (which is used to count the number of iterations done before 2rk

− p = 1 or
k > 2000 and thus to determine the exponent). Three stepper counters are used.
One is used to check whether k > 2000 and receives a PP with each iteration of
the subroutine. The others are used in combination with dummy controls: one
to check whether 2rk

− p > 0 and one to check whether 2rk
− p = 1. We do not

have the space here to give the details of the wiring.

Step 5. For this routine 4 accumulators are used, including AP , AE and the
cleared Ae1 (which is used to store f). Besides these three the last unused accu-
mulator A20 is introduced into the computation. Again we cannot provide details
here. It is important that at the start of the subroutine, A20 receives P from AP
and next -1 from the CT. At the end of the computation, Ae1 will contain f ,
the number of times e can be subtracted from p− 1.

Step 6. There are several ways to wire this routine. One way is to use for AP ,
Ae1 and AE accumulators for which there is a static output to the printer.

Step 7. This can be done by using the clear-correct switch for the accumulators
involved (except for AP ).

3 Discussion

Our proposed reconstruction of one of the first extensive computer ‘programs’,
executed 1946 on the ENIAC, cannot be said to be complete nor definitive yet,
but we project to present the complete wiring with discussion of difficult points
in another, more extended paper in the near future. Already our outline brings
out some salient points.

It is clear that ‘programming’ the ENIAC is perhaps sometimes nearer to
engineering than to programming as we know it today. The ‘if’s are intricate
digit-pulse-to-program-pulse conversions, which, in combination with the step-
pers of the master programmer, can be used to sequence the computation; differ-
ent adaptors have to be inserted at the appropriate places, and the parallelism



A Week-End Off: The First Extensive Number-Theoretical Computation 167

has to handled subtly by synchronizing the numerical and the program parts of
the wiring. This polymorphy of combining the units, cables and adaptors of the
ENIAC allows for many small tricks to be implemented in the ‘program’, but
forbids a general approach to setting up the ENIAC. Such a general approach
only arrived with the ENIAC’s rewiring into a serial machine, using the function
tables for ‘indexing’ the subroutines.

Concluding, we would like to encourage research on early computer programs
on the ENIAC or on other early computers. Their study and analysis might con-
tribute to understand the beginnings and achievements of the computer age. It
might especially clarify the development of programming techniques and compu-
tational methods in correlation with the development of the hardware, as well as
the evolution of the interaction and interface between the operator/programmer
and the computer.

References

1. Alt, F.: Archaeology of computers – reminiscences, 1945–1947. Comm. ACM 15(7),
693–694 (1972)

2. Burks, A.W., Burks, A.R.: The ENIAC: First general-purpose electronic computer.
IEEE Ann. Hist. Comp. 3(4), 310–399 (1981)

3. Fritz, W.B.: Eniac – A problem solver. IEEE Ann. Hist. Comp. 16(1), 25–45 (1994)
4. Adele, K.: Goldstine. Report on the ENIAC, Technical report I. Technical report,

Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia
(June 1946), Published in 2 vols

5. Goldstine, H.H., Goldstine, A.: The electronic numerical integrator and computer
(ENIAC). Math. Tables Aids Comp. 2(15), 97–110 (1946)

6. Lehmer, D.H.: On the converse of Fermat’s theorem. Amer. Math. Monthly 43(6),
347–354 (1936)

7. Lehmer, D.H.: On the converse of Fermat’s theorem II. Amer. Math. Monthly 56(5),
300–309 (1949)

8. Lehmer, D.H.: The sieve problem for all-purpose computers. Math. Tables Aids
Comp. 7(41), 6–14 (1953)

9. Lehmer, D.H.: The influence of computing on research in number theory. In: Proc.
Sympos. Appl. Math., vol. 20, pp. 3–12. Amer. Math. Soc. (1974)

10. Lehmer, D.H.: A history of the sieve process. In: Howlett, J., Metropolis, N.,
Rota, G.-C. (eds.) A History of Computing in the Twentieth Century, pp. 445–
456. Academia Press, New York (1980)

11. Neukom, H.: The second life of ENIAC. IEEE Ann. Hist. Comp. 28(2), 4–16 (2006)
12. Zoppke, T., Rojas, R.: The virtual life of ENIAC: Simulating the operation of the

first electronic computer. IEEE Ann. Hist. Comp. 28(2), 18–25 (2006)



Phase Transitions for Weakly Increasing

Sequences

Michiel De Smet� and Andreas Weiermann

Ghent University
Building S22 - Krijgslaan 281

9000 Gent - Belgium
{mmdesmet,weierman}@cage.ugent.be

Abstract. Motivated by the classical Ramsey for pairs problem in re-
verse mathematics we investigate the recursion-theoretic complexity of
certain assertions which are related to the Erdös-Szekeres theorem. We
show that resulting density principles give rise to Ackermannian growth.
We then parameterize these assertions with respect to a number-theoretic
function f and investigate for which functions f Ackermannian growth
is still preserved. We show that this is the case for f(i) = d

√
i but not for

f(i) = log(i).

Keywords: Ackermann function, weakly increasing sequences, Erdös-
Szekeres, Dilworth, Ramsey theory, phase transitions.

1 Introduction

It is well known that every infinite sequence of natural numbers contains an
infinite subsequence which is weakly increasing. It is quite natural to ask, which
strength can be generated from this principle (which we call ISP) and for this
purpose we consider a miniaturization of ISP in terms of densities. This den-
sity approaches Paris’s original independence result for PA in terms of Ramsey-
densities, which one can find in [6]. As usual the density statement for ISP follows
from an application of König’s Lemma to ISP.

We consider phase transitions related to ISP. This contributes to a general
research program of the second author about phase transitions in logic and
combinatorics. For more information, see [8], [9], [10], [11], and [12].

Let f be a number-theoretic function and X a set of natural numbers. Then
a function F : X → N is called f -regressive if F (x) ≤ f(x), for all x ∈ X . We
define X to be 0-ISP-dense(f) if |X | > f(min(X)) and to be (n+1)-ISP-dense(f)
if for all f -regressive F : X → N there exists a Y ⊆ X such that F � Y is weakly
increasing and such that Y is n-ISP-dense(f). Then, due to König’s Lemma, for
any fixed f , every natural number n and every natural number a there exists a
natural number b := ISPf (n, a) such that the interval [a, b] is n-ISP-dense(f).

It is easy to see that for a constant function f the function n �→ ISPf (n, n) is
primitive recursive. Moreover, one could prove that the function n �→ ISPf (n, n)
� Aspirant Fonds Wetenschappelijk Onderzoek (FWO) - Flanders.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 168–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Phase Transitions for Weakly Increasing Sequences 169

is Ackermannian for f(i) = i. So in-between constant functions and the identity
function there will be a threshold region for f where the function n �→ ISPf (n, n)
switches from being primitive recursive to being Ackermannian. We show that for
f(i) = log(i) the function n �→ ISPf (n, n) remains primitive, even elementary,
recursive whereas for every fixed d and f(i) = d

√
i the function n �→ ISPf (n, n)

becomes Ackermannian. [Cf. Figure 1]

�

�

IΣ1 � ISPf

IΣ1 � ISPf

f(i) = d
√

i

threshold region

f(i) = log(i)

Fig. 1. Phase transitions for ISPf

Our results are intended to contribute partly to the RT2
2 problem in reverse

mathematics. One can find information on this problem in, for example, [3] and
[7]. We will need the well known Erdös-Szekeres theorem, which states that a
given sequence a0, . . . , an2 of real numbers contains a weakly increasing subse-
quence of length n+1 or a strictly decreasing subsequence of length n+1. CAC
is the assertion that a given infinite partial order has either an infinite chain or
an infinite antichain.

It is obvious that over RCA0, RT2
2 yields ISP and the related Erdös-Szekeres-

or CAC-principles. Moreover, over RCA0 RT2
2 also yields the infinitary Erdös-

Moser principle EM stating that every complete infinite directed graph has an
infinite transitive subgraph. Now EM and CAC are particularly interesting for
studying RT2

2 since RCA0 + EM + CAC prove RT2
2. Therefore classifying the

strength of EM and CAC may yield progress in classifying the strength of RT2
2.

It is somewhat surprising that even ISP generates all primitive recursive func-
tions with its miniaturization. But this should not be seen as an indication that
RCA0 + RT2

2 prove the totality of the Ackermann function.

2 Classifying Phase Transitions for Weakly Increasing
Sequences

Let us define the notion of ISP-density in a formal way.

Definition 1. Let f be a number-theoretic function. Then X is called 0-ISP-
dense(f) if |X | > f(min(X)). X is defined to be (n + 1)-ISP-dense(f) if for all
f -regressive F : X → N, there exists Y ⊆ X such that Y is n-ISP-dense(f) and



170 M. De Smet and A. Weiermann

y < y′ → F (y) ≤ F (y′),

for all y, y′ ∈ Y .

Given f : N → N, we define

F0(i) := i + 1;

Fk+1(i) := F
f(i)
k (i);

F (i) := Fi(i).

We have a look at the notion of ISP-density in the case of f(i) = �log(i)	, where
we set log(0) = 0. Thus, if log(i) is not a natural number, we consider the greatest
integer less than log(i), as f needs to be a number-theoretic function. Henceforth
we leave out the left and right floor symbols and write down f(i) = log(i), for
the sake of clarity.

In the following proof we need the Erdös-Szekeres theorem, which is given in
the introduction.

Theorem 1. IΣ1 
 (∀n)(∀a)(∃b)([a, b] is n-ISP-dense(log)).

Proof. If a = 0 and n ≤ 3, the Σ1-completeness of IΣ1 yields that one can
prove the existence of an appropriate b. Now assume that a > 0 and n > 3. Put
b := 22(n+1)·(n+a+1)

. We claim that any Y ⊆ [a, b] with |Y | > 22(k+1)·(n+a+1)
is

k-ISP-dense(log). Proof by induction on k. Assume the assertion holds for k −1.
Assume that F : Y → N, such that F (y) ≤ log(y) for every y ∈ Y . Then there
exists by the Erdös-Szekeres theorem a set Z ⊆ Y such that F � Z is weakly
increasing or strictly decreasing and |Z| > 22(k+1−1)·(n+a+1)

. Remark that

F (min(Z)) ≤ log(min(Z))

≤ log(22(n+1)·(n+a+1) − 22k·(n+a+1)
)

≤ log(22k·(n+a+1)
· (22(n+1)·(n+a+1)−2k·(n+a+1)

− 1))
≤ 2k·(n+a+1) + 2(n+1)·(n+a+1) − 2k·(n+a+1)

= 2(n+1)·(n+a+1)

< 22k·(n+a+1)

< |Z|.

So if F is strictly decreasing on Z, then F (max (Z)) < 0, a contradiction. Thus F

is weakly increasing on Z. Since |Z| > 22(k+1−1)·(n+a+1)
the induction hypothesis

yields that Z is (k−1)-ISP-dense(log), which implies that Y is k-ISP-dense(log).
If k = 0 then |Y | > 22(n+a+1)

> log(b) ≥ log(min(Y )). ��

Thus f(i) = log(i) yields a lower bound. We now consider this result with regard
to the function ISPf , mentioned in the introduction. Let us first give a formal
definition.



Phase Transitions for Weakly Increasing Sequences 171

Definition 2. Let f be a number-theoretic function. Define ISPf : N → N by
ISPf (n) := ISPf (n, n), where ISPf (n, a) is the least natural number b, such that
[a, b] is n-ISP-dense(f).

Theorem 1 states that ISPlog is a provably total function of IΣ1. As explained
in [7], this is equivalent with ISPlog being primitive recursive.

To obtain an upper bound, we consider an arbitrary natural number d and the
number-theoretic function f(i) = � d

√
i	. Thus, if d

√
i is not a natural number, we

consider the greatest integer less than d
√

i, since f needs to be a number-theoretic
function. As done in the previous case, we will leave out the left and right floor
symbols, for the sake of clarity. Using this f , the function F is Ackermannian,
which is demonstrated in [5].

Lemma 1. Assume that [a, b] is n-ISP-dense( d
√ ). Then there exists Y ⊆ [a, b]

such that Y is (n−1)-ISP-dense( d
√ ) and such that for all i such that F i+1

1 (a) ≤ b

we have that Y ∩ [F i
1(a), F i+1

1 (a)[ contains exactly one element.

Proof. Define G0 : [a, b] → N as follows. G0(F i
1(a) + j) := d

√
F i

1(a) − j where
j ∈ N, such that F i

1(a) ≤ F i
1(a) + j < F i+1

1 (a). Remark that

F i
1(a) + j < F i+1

1 (a)
= F1(F i

1(a))

= F
d
√

F i
1(a)

0 (F i
1(a))

= F i
1(a) + d

√
F i

1(a) ,

which implies j < d
√

F i
1(a), and so G0(x) > 0, for every x ∈ [a, b]. Then G0(x) ≤

d
√

x for every x ∈ [a, b]. Since [a, b] is n-ISP-dense( d
√ ), we can choose Y ⊆

[a, b] which is (n − 1)-ISP-dense( d
√ ) and on which G0 is weakly increasing.

On every interval [F i
1(a), F i+1

1 (a)[ the function G0 is strictly decreasing. Hence
Y ∩ [F i

1(a), F i+1
1 (a)[ contains at most one element. If

Y ∩ [F i
1(a), F i+1

1 (a)[ = ∅ ,

then add F i
1(a) to Y . Since supersets of (n − 1)-ISP-dense( d

√ ) sets are again
(n − 1)-ISP-dense( d

√ ), we are done. ��

Lemma 2. Suppose n ≥ k > 0. Assume that a nonempty Y ⊆ [a, b] is (n − k)-
ISP-dense( d

√ ) and that Y ∩ [F i
k(a), F i+1

k (a)[ contains exactly one element for
all i such that F i+1

k (a) ≤ b. Then there exists a nonempty Z ⊆ Y such that Z
is (n − k − 1)-ISP-dense( d

√ ) and for all i such that F i+1
k+1(a) ≤ b we have that

Z ∩ [F i
k+1(a), F i+1

k+1(a)[ is a singleton.

Proof. Define Gk : Y → N by Gk(yi
j) := d

√
F i−1

k+1(a) − j for that yi
j ∈ Y with

yi
j ∈ [F i−1

k+1(a), F i
k+1(a)[



172 M. De Smet and A. Weiermann

and
yi

j ∈ [F j
k (F i−1

k+1(a)), F j+1
k (F i−1

k+1(a))[.

Remark that

F j
k (F i−1

k+1(a)) < F i
k+1(a)

= Fk+1(F i−1
k+1(a))

= F
d
√

F i−1
k+1(a)

k (F i−1
k+1(a)),

which yields j < d

√
F i−1

k+1(a), and so Gk(y) > 0, for every y ∈ Y . Furthermore, it
is obvious that Gk(y) ≤ d

√
y, for every y ∈ Y . Since Y is (n − k)-ISP-dense( d

√ ),
we can choose a nonempty Z ⊆ Y which is (n − k − 1)-ISP-dense( d

√ ) and
on which Gk is weakly increasing. On every interval Y ∩ [F i−1

k+1(a), F i
k+1(a)[ the

function Gk is strictly decreasing. Hence Z ∩ [F i−1
k+1(a), F i

k+1(a)[ contains at most
one element. If

Z ∩ [F i−1
k+1(a), F i

k+1(a)[ = ∅ ,

then add F i−1
k+1(a) to Z. Since supersets of (n − k − 1)-ISP-dense( d

√ ) sets are
(n − k − 1)-ISP-dense( d

√ ), we are done. ��

Lemma 3. If Y ⊆ [a, b] is n-ISP-dense( d
√ ) and a ≥ 1, then max (Y ) ≥

Fn+1(a).

Proof. Assume Y ⊆ [a, b] is n-ISP-dense( d
√ ). Then by the preceding two lemmas

there exists a nonempty Z ⊆ [a, b] which is 0-ISP-dense( d
√ ) and such that

[F i
n+1(a), F i+1

n+1(a)[∩Z is a singleton for all i with F i+1
n+1(a) ≤ b. Since a ≥ 1 and

Z is 0-ISP-dense( d
√ ), Z contains at least two elements and the second one is

greater than Fn+1(a). ��

If we put a = n + 1, then Lemma 3 yields that ISP d
√ (n) ≥ F (n + 1), for every

n ∈ N. Since F is Ackermannian, so is ISP d
√ .

Theorem 2. Let d ∈ N. Then

IΣ1 � (∀n)(∀a)(∃b)([a, b] is n-ISP-dense( d
√ )).

Proof. The provably total functions of IΣ1 are exactly the primitive recursive
functions. Thus, if IΣ1 would prove the existence of an appropriate b for all n
and all a, it would prove the existence of such b for all n and all a ≥ 1. Hence
ISP d

√ would be primitive recursive, which is a contradiction. ��

Combining Theorem 1 and Theorem 2, we can sharpen the range of the threshold
region in comparison with our first estimation. Indeed, instead of claiming that
the phase transition occurs for a function f in-between constant functions and
the identity function, we now can say that the threshold region for f is in-between
log and d

√ . Moreover, as we have recently found out, one can do even better. Let
Ad be the dth approximation of the Ackermann function Ack. Following claims
will be proved in a future paper.



Phase Transitions for Weakly Increasing Sequences 173

Claim 1. Let d be a natural number and f(i) = i
1

A
−1
d

(i) . Then

IΣ1 
 (∀n)(∀a)(∃b)([a, b] is n-ISP-dense(f)).

Claim 2. Let f(i) = i
1

Ack−1(i) . Then

IΣ1 � (∀n)(∀a)(∃b)([a, b] is n-ISP-dense(f)).

Hence we will have obtained a precise threshold region. One can also investigate
ISP-density, allowing small ordinals in the range of the functions F under con-
sideration. To do so, it is necessary to extend the notion of ISP-density. Assume
l is a natural number and ωl-n-ISP-density-(f) is defined in an appropriate way,
then we can prove similar results for the threshold region as obtained above.

3 The Erdös-Szekeres Theorem and the Dilworth
Decomposition Theorem

As we have already seen in the introduction, the Erdös-Szekeres theorem consid-
ers only a finite amount of elements. However, there also exists a corresponding
infinitary statement, which states that a given infinite sequence a0, . . . , an, . . . of
real numbers contains an infinite weakly increasing subsequence or an infinite
strictly decreasing subsequence.

These two results are related via an appropriate density notion which we call
ES-density (Erdös-Szekeres-density). In fact we consider ES-density with respect
to a parameter function f : N → N.

The well known Dilworth theorem states that a given partial order with dis-
tinct elements a0, . . . , an2 contains a chain of length n + 1 or an antichain of
length n + 1. The corresponding infinitary statement, which is called CAC, has
already been given in the introduction. It states that a given infinite partial
order contains an infinite chain or an infinite antichain.

Also these two results are related via an appropriate density notion which
we call D-density (Dilworth-density) and which depends on a number-theoretic
parameter function f .

Considering ES-density and D-density, one can prove similar results about
the according phase transitions, as obtained in the case of the weakly increasing
sequences.

The following problem arises. If we combine IΣ1 with D-density in an appro-
priate way, then do we obtain the same provably recursive functions as given by
RCA0 + CAC?

The idea is to approximate Ramsey for pairs here. CAC would be a first
step. Studying CAC we encounter the Erdös-Moser (EM) result, which is given
in the introduction. EM states that every complete infinite directed graph has
an infinite transitive subgraph. It is easy to see that RT2

2 proves CAC and EM.
But we also have a reversal, namely RCA0+EM+CAC 
 RT2

2. See, for example,



174 M. De Smet and A. Weiermann

[1] and [7] for more information. We notice that EM can not be proved within
RCA0, since there exists a recursive complete infinite directed graph for which
there is no recursive infinite transitive subgraph.

References

1. Bovykin, A., Weiermann, A.: The strength of infinitary ramseyan principles can be
accessed by their densities. In: Annals of Pure and Applied Logic (preprint, 2005),
http://logic.pdmi.ras.ru/∼andrey/research.html

2. Cholak, P., Marcone, A., Solomon, R.: Reverse mathematics and the equivalence
of definitions for well and better quasi-orders. J. Symbolic Logic 69(3), 683–712
(2004)

3. Cholak, P.A., Jockusch, C.G., Slaman, T.A.: On the strength of Ramsey’s theorem
for pairs. J. Symbolic Logic 66(1), 1–55 (2001)

4. Kojman, M., Lee, G., Omri, E., Weiermann, A.: Sharp thresholds for the phase
transition between primitive recursive and Ackermannian Ramsey numbers. Jour-
nal of Combinatorial Theory, Series A (in press); available online March 7, 2008

5. Omri, E., Weiermann, A.: Classifying the phase transition threshold for Ackerman-
nian functions. Ann. Pure Appl. Logic (to appear)

6. Paris, J.B.: Some independence results for Peano arithmetic. J. Symbolic
Logic 43(4), 725–731 (1978)

7. Simpson, S.G.: Subsystems of second order arithmetic. In: Perspectives in Mathe-
matical Logic, Springer, Berlin (1999)

8. Weiermann, A.: Analytic combinatorics, proof-theoretic ordinals, and phase tran-
sitions for independence results. Ann. Pure Appl. Logic 136(1-2), 189–218 (2005)

9. Weiermann, A.: Phasenübergänge in Logik und Kombinatorik. Mitt. Dtsch. Math.-
Ver. 13(3), 152–156 (2005)

10. Weiermann, A.: An extremely sharp phase transition threshold for the slow growing
hierarchy. Math. Structures Comput. Sci. 16(5), 925–946 (2006)

11. Weiermann, A.: Phase transition thresholds for some natural subclasses of the
recursive functions. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.)
CiE 2006. LNCS, vol. 3988, pp. 556–570. Springer, Heidelberg (2006)

12. Weiermann, A.: Phase transition thresholds for some Friedman-style independence
results. MLQ Math. Log. Q. 53(1), 4–18 (2007)

http://logic.pdmi.ras.ru/~andrey/research.html


Succinct NP Proofs from an Extractability Assumption

Giovanni Di Crescenzo1 and Helger Lipmaa2

1 Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 University College London, London, UK

Abstract. We prove, using a non-standard complexity assumption, that any lan-
guage in NP has a 1-round (that is, the verifier sends a message to the prover,
and the prover sends a message to the verifier) argument system (that is, a proof
system where soundness holds against polynomial-time provers) with communi-
cation complexity only polylogarithmic in the size of the NP instance. We also
show formal evidence that the nature of the non-standard complexity assumption
we use is analogous to previous assumptions proposed in the cryptographic liter-
ature. The question of whether complexity assumptions of this nature can be con-
sidered acceptable or not remains of independent interest in complexity-theoretic
cryptography as well as complexity theory.

1 Introduction

A conventionalNP proof system requires a single message from prover to verifier and
communication at most polynomial in the length of the instance to the NP language.
Several variants of this proof system have been proposed in the literature, motivated
by various theoretical and practical applications. In particular, interactive proof sys-
tems [4,12] added two major ingredients: interaction between prover and verifier, and
randomization in messages exchanged, so that the traditional completeness and sound-
ness were allowed not to hold with some very small probability. In this paper we focus
on simultaneously minimizing the round complexity and the communication complex-
ity of the messages exchanged between prover and verifier.

History and previous work. In [15], the author proposed a 2-round (or, 4-message) ar-
gument system for NP with polylogarithmic communication complexity under stan-
dard intractability assumptions; here, an argument system [7] is a proof system where
soundness holds against all polynomial-time provers. (For related constructions see also
universal arguments of [5] and CS proofs of [20].) It has long been an open question
whether one can build a 1-round argument system forNP with even sublinear commu-
nication complexity. The impressive communication-efficiency property of both PCP
schemes and PIR protocols motivated the authors of [1,6] to propose some combination
of both tools to obtain such an argument system. As an example of how to combine
these two tools, define a database equal to the PCP-transformed witness for the state-
ment x ∈ L; then, the verifier’s message contains multiple PIR queries for random
and independent positions in this database, and the prover’s message contains answers
to these queries according to the PIR protocol; finally, the verifier can compute the

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 175–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



176 G. Di Crescenzo and H. Lipmaa

database content with respect to the queried positions, and can apply the PCP verifier
to accept or not the common input. (This is the protocol proposed in [6]; the proto-
col proposed in [1] is a variation of it, in that it adds some randomization steps to the
verifier’s message). As described, this protocol satisfies the completeness property, and
would seem to only require a polylogarithmic (in n) number of queries to satisfy sound-
ness, under an appropriate assumption about the privacy property of the PIR protocol
used. (The intuition here being that the PIR privacy property implies that the prover
cannot guess the random indices queried by the verifier, and therefore can only meet
the verifier’s checks with probability only slightly larger than the PCP error probability
for inputs not in the language.) Unfortunately, this protocol was proved to be not sound
in [11], one main technical reason being that a prover can use different databases to an-
swer to each query by the verifier. Furthermore, the authors in [11] suggest the intuitive
reasoning that the PIR privacy alone might be too weak to imply the soundness for a
resulting argument system along these lines.

Our result and assumption. In this paper we break through the linear-size barrier for
1-round argument systems for NP languages, and in fact, achieve polylogarithmic com-
munication complexity. Our departure point is again the 1-round protocol from [6]
based on PIR schemes and PCP systems, but we add to it some crucial modifica-
tions based on hash function families and Merkle trees, bearing some similarities to
the 2-round (4-message) protocol from [15] and to another 2-round protocol from [17]
proposed for 2-party private computation. As we cannot use similar proofs as for 2-
round protocols, we prove the soundness of our 1-round argument system using a non-
black-box but non-standard assumption. However, we give formal evidence that our
assumption is of similar nature to certain assumptions that were recently introduced in
the cryptographic literature. Very roughly speaking, our assumption can be described as
follows: the only way for a prover to send a ‘correct’ PIR answer to a PIR query from the
verifier, along with a compression of the database and a proof that the answer belongs
to the compressed database, is to actually know a “correct” database. Assumptions of
this nature have been used to solve various problems, including long-standing ones, in
cryptography (starting with [9]) and zero-knowledge (starting with [14]). While using
these assumptions, researchers warned that they are very strong and suggested that their
validity is further studied. Recently, in [10], these assumptions were abstracted into a
class of “extractability-assumptions”, and several variants of this class were defined,
the strongest variants being proved to be false (assuming intractability assumptions of-
ten used in the cryptography literature and believed to be true), and the weakest variants
(including the one we use here) remaining unsettled. All proofs are omitted due to space
restriction.

2 Definitions and Tools

We recall formal definitions for the main tools and protocols used in our main construc-
tion: 1-round argument systems, PCP proofs, private information retrieval schemes,
collision-resistant function families, and Merkle trees. We assume some familiarity



Succinct NP Proofs from an Extractability Assumption 177

with properties of these tools and with various other notions of proof systems for NP
languages. We use the notation y ← A(x) to denote the probabilistic experiment of
running (the possibly probabilistic) algorithm A on input x, and denoting its output
as y.

Definition 1 (One-round argument systems). LetL be a language inNP . Let (P, V )
be a pair where V = (V1, V2), and P , V1, V2 are probabilistic algorithms running in
time polynomial in their first input. We say that (P, V ) is a 1-round argument system
with parameters (δc, δs) for L if the following properties hold:

Completeness. ∀x ∈ L, and all witnesses w for x, it holds that V2(x, s, vmes, pmes) =
accept with probability≥1−δc(n), where (vmes, s)←V1(x), pmes←P (x,w, vmes).
Soundness. ∀x �∈ L, for all probabilistic polynomial time algorithms P ′, it holds that
V2(x, s, vmes, pmes) = accept with probability ≤ δs(n), where (vmes, s)← V1(x)
and pmes←P ′(x, vmes).

(P, V ) is a 1-round argument system for L if there exists negligible functions δc, δs
such that (P, V ) is a 1-round argument system with parameters (δc, δs) for L.

Probabilistically Checkable Proof (PCP) Systems. In this paper we consider PCP
systems [2,3] that are non-adaptive and have efficient generation (as essentially all such
systems in the literature). In the formal definition of PCP systems, by πi we denote the
bit at location i of m-bit string π.

Definition 2. Let L be a language in NP . Let (P, V ) be a pair where V = (V1, V2),
and P , V1, V2 are probabilistic algorithms running in time polynomial in their first
input. We say that (P, V ) is a (non-adaptive) probabilistically checkable proof system
with parameters (q, δc, δs) for L if for some polynomial p the next properties hold:

Completeness. ∀x ∈ L such that |x| = n, for all witnesses w certifying that x ∈ L,
P (x,w) returns with probability ≥ 1 − δc(n) a proof tape π = π1| · · · |πp(n) such that
V2(x, (i1, πi1 ), . . . , (iq, πiq )) = accept, where (i1, . . . , iq)←V1(x).
Soundness. ∀x �∈ L, for all proof tapes π′, V2(x, (i1, π′

i1), . . . , (iq, π
′
iq )) = accept holds

with probability≤ δs(n), where (i1, . . . , iq)←V1(x).

We say that (P, V ) is a (non-adaptive) probabilistically checkable proof system for L
if there exists a polynomial q and negligible functions δc, δs such that (P, V ) is a (non-
adaptive) probabilistically checkable proof system with parameters (q, δc, δs) for L.

In this paper we use PCP systems with slightly superlogarithmic query complexity
and negligible soundess error; that is, having parameters (q, 1−o(1/poly(n)), o(1/poly
(n)), for q = (logn)1+ε, for some constant ε > 0. PCP systems in the literature having
such parameters include [22].

Private Information Retrieval (PIR) Schemes. We review the formal definition of
PIR schemes in the single-database model [16].

Definition 3. Let D, Q, R be algorithms running in polynomial time in the length
of their first input (Q,R may be probabilistic). Let n be a security parameter, m be



178 G. Di Crescenzo and H. Lipmaa

the length of the database and � the bit length of the database elements. We say that
(D,Q,R) is a (single-database) PIR scheme with parameters (n,m, �, δc, δp) if:

Correctness: For any m-element database db of �-bit strings and any location i ∈ [m],
with probability ≥ 1 − δc(n) it holds that R(1n, 1m, 1�, i, (q, s), a) = db[i], where
(q, s)←Q(1n, 1m, 1�, i), and a←D(1n, 1�, db, q).
Privacy: For any family of probabilistic circuits {An}n∈N

running in time t(n) and
any i, j ∈ [m], it holds that |pi − pj | ≤ δp(n), where for h = i, j, it holds that
ph = Prob

[
(q, s)←Q(1n, 1m, 1�, h) : An(1n, q) = 1

]
,

PIR schemes with communication complexity only polylogarithmic in the size m of
the database, have been proposed, under hardness assumptions about number-theoretic
problems, in [8,13,18]. We can use any of these schemes in our main result.

Collision-resistant (CR) hash function families. This popular cryptographic primitive
can be informally described as a family of compression functions for which it is hard
to compute two preimages of the same output. We recall the formal definition of a
CR hash function secure against adversaries that run in time superpolynomial in the
hash function’s security parameter. This will allow us to use CR hash functions with a
security parameter polylogarithmic in another, global, security parameter.

Definition 4. LetH = {Hu} be a family of functionsHu : {0, 1}2v → {0, 1}v, where
u is a function index satisfying |u| = n. We say that H is a collision-resistant function
family with parameters (n, 2v, v, t, ε) if for any algorithm A running in time t(n), it
holds that Prob [u←{0, 1}n; (x1, x2)←A(u) : Hu(x1) = Hu(x2) ] ≤ ε(n). We say
that H is a superpolynomial-time collision-resistant function family if it is a collision-
resistant function family with parameters (n, 2v, v, t, ε), for some v polylogarithmic in
n, some ε negligible in n and some t superpolynomial in n.

Merkle trees. Starting from any collision-resistant hash function family, with hash
functions Hu mapping 2�-bit inputs to �-bit outputs, Merkle defined in [19] the fol-
lowing tree-like construction to compress a polynomial numberm = 2t of �-bit strings
x0, . . . , xm−1 into a single �-bit string y. The output MTree(Hu;x0, . . . , xm−1) is re-
cursively defined as Hu(MTree(Hu;x0, . . . , xm/2−1),MTree(Hu;xm/2, . . . , xm−1)),
where MTree(Hu;x) = x, for any �-bit string x. In the rest of the paper, we will use
the following notation: the output computed as y =MTree(Hu;x0, . . . , xm−1) is also
denoted as root; for any �-bit string xi associated to the i-th leaf of the tree, we define
the i-th certification path as the sequence of values that are necessary to certify that xi
is a leaf of the Merkle tree with root y. This construction has been often used in several
results in complexity theory and interactive proofs, including [5,15,20].

3 An Extractability Assumption

We now present the assumption that will be used in the rest of the paper, and prove that
it is an extractability assumption, a notion recently introduced in [10] which generalizes



Succinct NP Proofs from an Extractability Assumption 179

assumptions studied in various papers (starting with [9]). We start by recalling defini-
tions from [10].

Extractability Hardness Assumptions. Informally speaking, an extractability assump-
tion considers any probabilistic polynomial time algorithm A that, on input a security
parameter in unary and an index, returns a secret output and a public output. Then,
the assumption states that if A satisfies certain efficiency or hardness properties (to be
defined later), then for any adversary algorithm Adv trying to simulate A, there exists
an efficient algorithm Ext that, given the security parameter, the index, Adv’s public
output and random bits, can compute a matching secret output. Actually, it is more ap-
propriate to talk about a class of extractability assumptions, varying over the specific
algorithms A, and the algorithms that generate the index taken as input by A. To-
wards formal definitions, we first note that the problem of generating an extractability
assumption may not be well-defined for all probabilistic polynomial-time algorithms
(for instance, some algorithms may not have a secret output at all), but, instead, has
to be defined for algorithms with very specific properties. This motivates the following
definition of an extractable-algorithm candidate.

Definition 5. Let Ind be a set samplable in polynomial time whose elements we also
call indices. LetA be a probabilistic polynomial time algorithm (or, alternatively,A is a
deterministic algorithm that takes as input a sufficiently long and uniformly distributed
string R). On input a security parameter 1n, random string R and an index ind ∈ Ind,
A returns a triple (s,m, h) in time polynomial in n. Let Setup = (Sample,Verify) be
a pair of probabilistic polynomial time algorithms such that Sample, on input 1n, gen-
erates pairs (ind, sind), where ind ∈ Ind, and Verify, on input (1n, ind, sind,m, h),
returns accept with probability 1 if ∃R, s such that A(1n, R, ind) = (s,m, h) or with
probability negligible in n otherwise. We say that (A, Ind, Setup) is an extractable-
algorithm candidate if there exists a polynomial r such that:

Efficient public output computation. There exists an efficient algorithm Eval that, on
input ind ∈ Ind and s, returns values (R,m, h) such that (s,m, h) = A(1n, R, ind)
Secret output hardness. For any efficient algorithmAdv the probability ps that ∃R′ such

thatA(1n, R′, ind) = (s′,m, h) is negligible in n. Here,R←{0, 1}r(n), (ind, sind)←
Sample(1n), (s,m, h)←A(1n, R, ind), and s′←Adv(ind,m, h).
Hard-core output hardness. For any efficient algorithm Adv, the probability ph that

∃R′ such that A(1n, R′, ind) = (s,m, h′) is negligible in n. Here, R ← {0, 1}r(n),
(ind, sind)←Sample(1n), (s,m, h)←A(1n, R, ind), and h′←Adv(ind,m).

Towards recalling the formal definition of the class of extractability assumptions, we
note that even if an adversary A succeeds in generating m without any knowledge of
s, then the hard-core output hardness requirement would make it hard for this spe-
cific adversary to generate h. The latter fact of course does not imply a proof that any
A returning m,h actually knows s, but this class of assumptions postulates that this
is indeed the case, by allowing s to be efficiently extracted from A, given the ran-
domness used in computing ‘valid’ outputs m,h (for any algorithm A that satisfies



180 G. Di Crescenzo and H. Lipmaa

the above three properties). In the formalization, we also need a pair of algorithms
Setup = (Sample,Verify), where Sample generates the index ind taken as input by A,
and Verify checks whether the output (m,h) returned by A has the correct form, by
returning accept with probability 1 if ∃R, s such that A(1n, R, ind) = (s,m, h) or
with probability negligible in n otherwise.

Assumption 1 [EA assumption]. Let (A, Ind, Setup), be an extractability assumption
candidate, where Setup = (Sample,Verify) and Ind is a set that is samplable in poly-
nomial time. For any polynomial-time algorithm Adv, there exists a polynomial time
algorithm Ext, called the A-extractor, such that, denoting by aux a polynomial-length
auxiliary-input (modelingA’s history), the probability that Verify(1n, ind, sind,m, h)
= accept and � ∃R′ ∈ {0, 1}r(n) such that A(1n, R′, ind) = (s′,m, h), is negligible in
n, where R←{0, 1}r(n), (ind, sind)← Sample(1n), (m,h)←Adv(1n, R, ind, aux)
and s′←Ext(1n, R, ind,m, h, aux).

3.1 Our EA Assumption

We now formally describe the EA assumption that we will use in this paper, which
is based on PIR schemes and Merkle trees based on CR hash functions. Informally
speaking, we consider an extractable-algorithm candidate that randomly chooses a large
string r and compresses into a much shorter string root using Merkle trees, and defines
a database db as follows: the i-th record dbi is set equal to the i-th bit ri of string
r, concatenated with the logarithmic number of strings that are used to compute root
from ri within the Merkle tree computation. The index ind is generated as a PIR query
to a random index j ∈ {1, . . . , |r|}, and the algorithm A returns, on input the security
parameter 1n and ind, a main output, computed as the string root associated with the
root of the Merkle tree, a hard-core output, computed as the PIR answer using ind as a
query and db as a database, and a secret output, computed as the string r.

Before proceeding more formally, we sketch why this construction of an extractable-
algorithm candidate satisfies Definition 5. First, it satisfies the efficient output compu-
tation requirement as the efficient computability of the main output follows from the
analogous property of the Merkle tree, and the efficient computability of the secret and
hard-core outputs follow from the analogous property of the answers in a PIR scheme.
Second, it satisfies the secret output hardness as an adversary able to compute the se-
cret output from the main output and the index can be used to contradict the collision-
resistance property of the hash function family. Third, it satisfies the hard-core output
unpredictability requirement as it is hard to compute a valid PIR answer only from the
PIR query and the root of the Merkle tree, as for database db, this would imply a way
to break the collision-resistance property of the hash function family used.

Formal description. We formally define set Ind, algorithm A and the pair of algo-
rithms Setup = (Sample,Verify), and then prove that (A, Ind, Setup) is an extractable-
algorithm candidate under appropriate assumptions. We will consider databases with
m = poly(n) records (the actual polynomial not being important for our result to hold).



Succinct NP Proofs from an Extractability Assumption 181

Set Ind: This is the set of CR hash functions indices and PIR queries on databases with
m records; formally: Ind = {(u, query) |u←{0, 1}k; (query, sq)←Q(1n, 1m, 1�, i)
for some i ∈ {1, . . . ,m} and some random string used by Q}.

Algorithm Sample: This is the querying algorithm in the PIR scheme; on input 1n, algo-
rithm Sample randomly chooses i ∈ {1, . . . ,m}, u ∈ {0, 1}k, computes (query, sq)←
Q(1n, 1m, 1�, i) and returns: ind = (1m, u, query) and sind = (i, sq).

Algorithm A: On input 1n, ind, algorithm A first randomly chooses an m-bit string r
and computes a Merkle tree compression of r, thus obtaining root and the i-th certifi-
cation path pathi from the i-th bit ri in r to root, for i = 1, . . . ,m. Then A defines
an m-record database db as follows: for i = 1, . . . ,m, the i-th record of db contains a
unique v-bit representation of bit ri, concatenated with the i-th certification path pathi.
Then, A computes

1. the main output as main = root;
2. the hard-core output h equal to the PIR answer to the query from ind using db as a

database; that is, h = D(1n, 1m, 1�, db, query), where ind = (1m, u, query);
3. the secret output s equal to the m-bit string r.

Algorithm Verify: This is the retrieving algorithm in the PIR scheme; formally, algo-
rithm Verify(1n, ind, sind,main, h) is defined as follows:

1. rewrite ind as ind = (1m, query), sind as sind = (i, sq), main as main = root;
2. compute db[i] = R(1n, 1m, 1�, i, (query, sq), h) and rewrite db[i] as ri|pathi;
3. check that pathi is a valid i-th certification path from ri to root using hash function
Hu; if yes, then return: accept otherwise return: reject.

We obtain the following theorem.

Theorem 1. Let n be a security parameter. Assume the existence of a family of CR
hash functions with parameters (n′, 2v, v, t, ε), such that n′, v are polylogarithmic in
n and t is superpolynomial in n but subexponential in v. Also, assume there exists a
(single-database) PIR scheme having parameters (n,m, �, δc, δp), with communication
complexity polylogarithmic in n, where m is polynomial in n, � is polylogarithmic in
n and δc is negligible in n. Then the above triple (A, Ind, Setup) is an extractable-
algorithm candidate with parameters (n, ps, ph), where: (1) ps is negligible in n; (2) if
δp is negligible in n then so is ph; (3) if (s, h,m) denotesA’s output on input (1n, ind),
then |s|+ |h|+ |m| is at most polylogarithmic in n.

4 A Low-Communication 1-Round Argument for NP

We are now ready to present the main result of the paper.

Theorem 2. Let L be a language in NP and let (A, Ind, Setup) be the triple pro-
posed in Section 3, and proved to be an extractable-algorithm candidate assuming the



182 G. Di Crescenzo and H. Lipmaa

existence of PIR schemes and CR hash functions. If (A, Ind, Setup) satisfies the EA
assumption, then there exists a 1-round argument system (P, V ) for L such that: if the
assumed PIR scheme has communication complexity polylogarithmic in the database
size then (P, V ) has communication complexity polylogarithmic in n, the length of the
common input to the argument system.

We once again caution the reader that this result is based on a quite non-standard hard-
ness assumption. Preliminary studies on variants of this assumption [10] indicate that
the strongest variants are actually false (under intractability assumptions that are often
used in the cryptography literature and believed to be true) no matter what is the specific
extractable-algorithm candidate. Luckily, the variant used here seems significantly dif-
ferent and it is still open whether it can be proved to be false for all extractable-algorithm
candidates (under some conventional intractability assumption) or can be considered a
reasonable assumption for at least one of them.

Informal Description of (P, V ). Our argument system is obtained as an appropriate
combination of the following tools: PIR schemes with efficient communication com-
plexity, PCP systems, CR hash function families and Merkle trees. As in [1], the start-
ing point is the protocol from [6]: the verifier asks to receive some random entries in
the PCP-transformed witness through some random PIR queries; the prover computes
the PCP-transformed witness and uses it as a database from which to compute and send
the PIR answers to the verifier; finally, the latter can check that the indices retrieved
from the database corresponding to entries that would be accepted by the PCP verifier.
As this protocol was shown to be not sound from [11], we attempt to modify it so that
it achieves soundness under the EA assumption for the extractable-algorithm candidate
presented in Section 3. Consequently, we modify the prover so that for every PIR query,
it also computes a Merkle-tree compression of the PCP-transformed witness and defines
each database record to contain not only a bit of the PCP-transformed witness but also
the certification path to the Merkle-tree root. We then note that this modification, while
enabling us to use the EA assumption, may still not be very helpful as a cheating prover
might choose to apply the Merkle-tree compression algorithm to a new string πj for
every query queryj made by the verifier. (In essence, this is a variant of the main objec-
tion raised by [11] about the protocol in [1].) In our protocol such attacks are avoided
by modifying prover and verifier so that the prover only computes a single Merkle-tree
root and the verifier can efficiently check that, for each of the verifier’s PIR queries, the
prover uses certification paths that refer to the same root (and thus to the same single
database containing them).

Formal Description. By x we denote the n-bit common input to our argument system
(P, V ). Protocol (P, V ), formally described in Figure 1, uses the following tools:

1. A collision-resistant hash function family H = {Hu}, such that Hu : {0, 1}2v →
{0, 1}v, where |u|, v are polylogarithmic in n.

2. The Merkle tree construction Mtree defined in Section 2, based on the collision-
resistant hash function familyH.



Succinct NP Proofs from an Extractability Assumption 183

3. A (non-adaptive) PCP system (pcpP,pcpV), where pcpV=(pcpV1,pcpV2), with pa-
rameters (q, δc, δs), where q is polylogarithmic in n; δc, δs are negligible in n.

4. A (single-database) PIR scheme (D,Q,R) with parameters (n,m, �, δc, δp) with
communication complexity polylogarithmic in m, and where m is polynomial in
n, � is polylogarithmic in n and δc, δp are negligible in n.

We now prove that (P, V ) (formally described at the end of the section) satisfies Theo-
rem 2. We start by noting that V runs in polynomial time. This follows since algorithms
Q,R from the assumed PIR scheme and algorithm pcpV from the assumed PCP scheme
run in polynomial time; and, furthermore, since checking whether a given string is an
i-th certification path in a Merkle tree can be done in polynomial time.

Communication complexity: The communication complexity of (P, V ) is polylog(n)
as: both the value u and each PIR query sent by V have length polylogarithmic in n;
the number q of PIR queries sent to P is also polylogarithmic in n; since the database
record length � is O(v logm), and v is chosen to be polylogarithmic in n, then so is �
and so is the length of each of the PIR answers sent by P .

Completeness. Assume x ∈ L. Then the completeness (with δc negligible in n) follows
from the correctness property of the PIR scheme used and the completeness of the PCP
proof system used.

Soundness (main ideas). Assume that x �∈ L and that there exists a cheating prover
making V accept with non-negligible probability. Then with the same probability this
prover produces a main outputmain and q corresponding hard-core outputs h1, . . . , hq
of algorithm A, in correspondence of the PIR queries from V , from which one can ob-
tain indices ind1, . . . , indq forA. Now, we distinguish two cases, according to whether,
after applying the EA assumption to triple (indi,main, hi) and thus extracting string
Wi, for i = 1, . . . , q, the extracted strings W1, . . . ,Wq are all equal or not.

Case (a): there exists a, b ∈ {1, . . . , q} such that Wa �= Wb. In this case we can
derive an efficient algorithm that breaks the collision-resistance of the hash function
familyH. Even in this case, as while proving the secret output hardness in the proof of
Theorem 1, we need to use the extractable algorithm assumption to extract two different
strings Wa,Wb such that MTree(Hu;Wa) = MTree(Hu;Wb).

Case (b): W1 = · · · = Wq . In this case, we can derive an efficient algorithm that
distinguishes which among two q-tuples of random values in {1, . . . ,m} was used to
compute V ’s PIR queries (by a simple hybrid argument, this is then used to efficiently
break the privacy of the PIR scheme used). Very roughly speaking, this is done by ob-
serving the following. First, for the q-tuple actually used by V ’s PIR queries, the prover
is able to provide entries from the PCP-transformed witness that would be accepted by
the PCP verifier. Instead, the q-tuple not used by V ’s PIR queries has distribution uni-
form and independent from the exchanged communication. Then the probability that
the string W1 used by the prover contains entries from the PCP-transformed witness
that would be accepted by the PCP verifier in correspondence with this q-tuple can be
showed to be negligible using the soundness of the PCP proof system used.



184 G. Di Crescenzo and H. Lipmaa

Common input: n-bit instance x
P ’s private input: a witness w certifying that x ∈ L.

V (message 1):
1. Randomly choose an index u for a hash function Hu fromH;
2. for j = 1, . . . , q,

randomly and independently choose database index ij ∈ {1, . . . ,m};
compute PIR query (queryj , auxj) = Q(1n, 1m, 1�, ij);

3. send u, query1, . . . , queryq to P .
P (message 2):

1. Run the PCP prover on input instance x and witness w and let
π =pcpP(x,w);

2. compute root = Mtree(Hu;π) and send root to V ;
3. for i = 1, . . . ,m;

let pathi be the i-th certification path for the i-th bit ρi of π,
define the content of the i-th record of database db as (πi|pathi);

4. for j = 1, . . . , q,
compute ansj = D(1n, 1m, 1�, db, queryj) and send ansj to V .

V (decision):
1. For j = 1, . . . , q,

compute dbij = R(1n, 1m, 1�, ij, (queryj , auxj), ansj);
rewrite dbij as dbij = (pathij |πij );
check that pathij is an ij-th certification path for πij and root;

2. check that pcpV2(x, (i1, πi1), . . . , (iq, πiq )) =accept;
3. if all verifications are satisfied then accept else reject.

Acknowledgements. The second author was partially supported by the the Estonian
Science Foundation, grant 6848.

References

1. Aiello, W., Bhatt, S.N., Ostrovsky, R., Rajagopalan, S.R.: Fast Verification of Remote pro-
cedure Calls: Short Witness-Indistinguishable One-Round Proofs for NP . In: Welzl, E.,
Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853. Springer, Heidelberg
(2000)

2. Arora, S., Safra, S.: Probabilistic Checking of Proofs: A New Characterization of NP. Journal
of the ACM 45(1), 70–122 (1998)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hard-
ness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

4. Babai, L., Moran, S.: Arthur-Merlin Games: a Randomized Proof System, and a Hierarchy
of Complexity Classes. Journal of Computer and System Sciences 36, 254–276 (1988)

5. Barak, B., Goldreich, O.: Universal Arguments and Their Applications. In: Proc. of IEEE
Conference on Computational Complexity (2002)

6. Biehl, I., Meyer, B., Wetzel, S.: Ensuring the Integrity of Agent-Based Computation by Short
Proofs. In: Proc. of Mobile Agents 1998. LNCS. Springer, Heidelberg (1998)



Succinct NP Proofs from an Extractability Assumption 185

7. Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. Journal
of Computer and System Sciences 37(2), 156–189 (1988)

8. Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval with
Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592.
Springer, Heidelberg (1999)

9. Damgård, I.: Towards Practical Public-key Systems Secure against Chosen Ciphertext At-
tack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576. Springer, Heidelberg (1992)

10. Di Crescenzo, G.: Extractability Complexity Assumptions (August 2006) (unpublished
manuscript)

11. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct NP Proofs and
Spooky Interactions (December 2004) (unpublished manuscript)

12. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-
Systems. SIAM Journal on Computing 18(1) (1989)

13. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Com-
munication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580. Springer, Heidelberg (2005)

14. Hada, S., Tanaka, T.: On the existence of 3-round Zero-Knowledge Protocols. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)

15. Kilian, J.: A note on Efficient Zero-knowledge Proofs and Arguments. In: Proc. of ACM
STOC 1991 (1991)

16. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single Database, computationally-
private information retrieval. In: Proc. of 38th IEEE FOCS 1997 (1997)

17. Laur, S., Lipmaa, H.: Consistent Adaptive Two-Party Computations, Cryptology ePrint
Archive, Report 2006/088 (2006)

18. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou,
J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650. Springer, Heidelberg
(2005)

19. Merkle, R.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435. Springer, Heidelberg (1990)

20. Micali, S.: CS proofs. In: Proc. of 35th IEEE FOCS 1994 (1994)
21. Russell, A.: Necessary and Sufficient Conditions for Collision-Free Hashing. J. Cryptol-

ogy 8(2), 87–100 (1995)
22. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with Optimal Amortized

Query Complexity. In: Proc. of the 32nd ACM STOC 2000 (2000)



Describing the Wadge Hierarchy for the

Alternation Free Fragment of μ-Calculus (I)

The Levels Below ω1

Jacques Duparc1 and Alessandro Facchini1,2,�

1 University of Lausanne, Faculty of Business and Economics - ISI,
University of Lausanne, CH-1015 Lausanne

2 LaBRI, University of Bordeaux 1, 351 cours de la Libération,
FR-33405 Talence cedex

{jacques.duparc,alessandro.facchini}@unil.ch

Abstract. The height of the Wadge Hierarchy for the Alternation Free
Fragment of μ-calculus is known to be at least ε0. It was conjectured
that the height is exactly ε0. We make a first step towards the proof of
this conjecture by showing that there is no Δμ

2 definable set in between
the levels ωω and ω1 of the Wadge Hierarchy of Borel Sets.

Keywords: μ-calculus, Wadge games, topological complexity, parity
games, weakly alternating automata.

1 Introduction

Propositional modal μ-calculus extends basic modal logic by adding two fixpoint
operators. It is a very expressive and interesting formal system. Indeed, when
considering binary trees, it is as expressive as S2S, monadic second order logic
of two successors, and therefore it is very well suited for specifying properties of
transition systems. However, altough much studied, the μ-calculus remains very
difficult to understand. This can already be seen when considering the alternation
free fragment. Indeed, the languages definable by a formula of this sublogic are
exactly the ones recognized by a weakly alternating automaton. Since the class
of weakly recognizable languages corresponds to the intersection of Büchi and
co-Büchi languages, this fragment captures some languages not recognized by a
deterministic automaton.

We are interested in the analysis of the topological complexity of non-determi-
nistic tree languages. Very little is known from this perspective, but what con-
cerns the rather small class of weakly recognizable languages. In particular, in
[DM07] the authors show that the Wadge hierarchy of this class has height at
least ε0, and they conjecture that the bound is tight. By showing that the de-
gree of a tree language definable by an alternation free formula is either below

� Research supported by a grant from the Swiss National Science Foundation, n.
200021-116508: Project “Topological Complexity, Games, Logic and Automata”.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 186–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Describing the Wadge Hierarchy for the Alternation Free Fragment 187

ωω or above ω1, we make a first step towards the proof of this fundamental
conjecture. Indeed, we think that by adapting the very same strategy used in
this paper, it would be possible to prove a generalization of our main result: if
a set definable by an alternation free formula is Wadge equivalent to a set of
the form

∑0
i=k Bi • βi +E • α, with every Bi and E initializable sets, if α < ω1

then α < ωω. The next, harder, final step towards the complete answer to the
conjecture would then be to prove that if the degree of a set corresponding to
the exponentiation of the class of models of an alternation free formula is ωα1 ,
where α < ω1, then in this case too α < ωω holds.

Due to space limitations, we omit some of the proofs. They can be found in
[DF∞].

2 The Propositional Modal μ-Calculus

2.1 Syntax and Semantics

The μ-calculus Lμ is the logic resulting of the addition of greatest and least
fixpoint operators to propositional modal logic. More precisely, given a set P,
the collection Lμ of fixpoint formulas is defined as follows:

ϕ ::= p | ¬p | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ | μx.ϕ | νx.ϕ

where p, x ∈ P and x occurs only positively in ηx.ϕ (η = ν, μ).
Let W be a non empty alphabet. A tree over ℘(P) is a partial function t :

W ∗ → ℘(P) with a prefix closed domain. Those trees can have infinite and finite
branches. A tree is called binary if W = {0, 1}. In the sequel we only consider
binary trees over ℘(P).

Let Tω℘(P) denote the set of full binary trees over ℘(P). Given v ∈ dom(t),
by t ↓v we denote the subtree of t rooted in v. By n{0, 1} we denote the set of
words over {0, 1} of length n, and by t[n] we denote the finite initial binary tree
of height n+ 1 given by the restriction of t over

⋃
0≤i≤n

i{0, 1}.
Throughout the paper, μ-formulas will be interpreted over full binary trees

over ℘(P).
Given a binary tree t, the set ||ϕ||t of nodes satisfying a formula ϕ is de-

fined inductively by the usual conditions for propositional modal logic, plus the
conditions for the fixpoint operators specified by:

||μx.ϕ(x)||t =
⋂
{A ⊆ {0, 1}∗ : ||ϕ(A)||t ⊆ A}

||νx.ϕ(x)||t =
⋃
{A ⊆ {0, 1}∗ : A ⊆ ||ϕ(A)||t}

We say that a tree t is a model of a μ-formula iff the root ε of the tree is such
that ε ∈ ||ϕ||t. Clearly if v ∈ ||ϕ||t, then t ↓v is isomorphic to a model of ϕ. In
this case we simply say that t ↓v is a model of ϕ. We denote by ||ϕ|| the class of
all models of ϕ.



188 J. Duparc and A. Facchini

Fixpoint operators can be viewed as quantifiers. Therefore we use the standard
terminology and notations as for quantifiers. For instance free(ϕ) denotes the
class of all propositional variables occurring free in ϕ.

If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write ψ < ϕ when ψ is a proper
subformula. We denote by sub(ϕ) the set of all subformulas of ϕ.

A formula ϕ of Lμ is said to be well-named if no two distincts occurrences
of fixpoint operators in ϕ bind the same variable, and no variable has both free
and bound occurrences in ϕ.

A propositional variable p is guarded in a formula ϕ of Lμ if every occurrence
of p in ϕ is in the scope of a modal operator. A formula ψ of Lμ is said to be
guarded iff for every subformula of ψ of the form ηx.δ, x is guarded in δ.

It is easy to check that every fixpoint formula is equivalent to a well-named
and guarded μ-formula. From now on we consider that every μ-formula is well-
named and guarded.

Because ϕ is well named, if x is not free in ϕ then there is exactly one sub-
formula ηx.δ ≤ ϕ which bounds x. This formula is denoted by ϕx.

Suppose ψ < φ and that {x1, . . . , xn} is the set of free variables of ψ which are
bounded in φ. Then, following [ES89], we say that the closure of ψ with respect
to φ, denoted by clφ(ψ), is the formula obtained by substituing in ψ every xi
with its binding formula φxi in φ. The closure of a μ-formula ϕ, denoted by
cl(ϕ), is given by

cl(ϕ) =
⋃

φ≤ϕ
clϕ(φ)

Note that cl(ϕ) is finite.
Given ϕ ∈ Lμ , we say that ϕ is reduced if there is no ψ < ϕ such that ψ ≡ ⊥

or ψ ≡ �. Since every μ-formula is equivalent to a reduced μ-formula, we also
suppose that every μ-formula is reduced.

2.2 The Alternation Free Fragment

Let Φ ⊆ Lμ. For η ∈ {ν, μ}, η(Φ) is the smallest class of formulas such that:

– Φ,¬Φ ⊂ η(Φ);
– If ψ(x) ∈ η(Φ) and x occurs only positively, then ηx.ψ ∈ η(Φ);
– If ψ, ϕ ∈ η(Φ), then ψ ∧ ϕ, ψ ∨ ϕ,♦ψ,�ψ ∈ η(Φ);
– If ψ, ϕ ∈ η(Φ) and x is bound in ψ, then ϕ[x/ψ] ∈ η(Φ)

With the help of this definition, we introduce the syntactical hierarchy for the
modal μ-calculus. For all n ∈ N, we define the class of μ-formulas Σμ

n and Πμ
n

inductively as follows:

– Σμ
0 = Πμ

0 - formulas without fixpoints;
– Σμ

n+1 = μ(Πμ
n );

– Πμ
n+1 = ν(Σμ

n).



Describing the Wadge Hierarchy for the Alternation Free Fragment 189

Δμ
n := Σμ

n ∩Πμ
n

The fixpoint alternation depth (ad) of a formula is the number of non-trivial
nestings of alternating least and greatest fixpoints. Formally, the alternation
depth of ϕ ∈ Lμ is given by

ad(ϕ) = n iff n = inf{k : ϕ ∈ Δμ
k+1}

All Σμ
n and Πμ

n form the syntactical modal μ-calculus hierarchy, which is strict.
The fixpoint alternation free fragment corresponds to the class Δμ

2 .

3 Evaluation Game for the μ-Calculus

In this section, given ϕ ∈ Lμ and a binary tree t, we characterize the correspond-
ing parity game, keeping in mind that by ad(ψ) we denote the alternation depth
of the μ-formula ψ.

We define the game’s arena 〈V0, V1, E〉, and the corresponding parity game as
follows. The set V of vertices corresponds to pairs of μ-formulas of the closure
of ϕ and members of dom(t). Then we can split V into V0 and V1 in order to
define the locations of Player 0 and Player 1. We say that some vertex 〈ψ, v〉 ∈ V
belongs to V0 iff one of the following conditions holds:

1. ψ = ⊥;
2. ψ = p and p /∈ t(v);
3. ψ = ¬p and p ∈ t(v);
4. ψ = δ1 ∨ δ2;
5. ψ = ♦δ.

Every other vertex belongs to V1.
The moves E are defined as follows:

1. if ψ = ⊥,�, p,¬p no moves are possible ;
2. from 〈φ1 ∨φ2, v〉 player 0 can move to 〈φi, v〉, and from 〈φ1 ∧φ2, v〉 player 1

can move to 〈φi, v〉, i = 1, 2;
3. from 〈♦φ, v〉 player 0 can move to 〈φ,w〉, with w = v0, v01, and from 〈�φ, v〉

player 1 can move to 〈φ,w〉, with w = v0, v1;
4. from 〈ηx.φ(x), v〉, the only available move leads to 〈φ(x/ηx.φ(x)), v〉, with
η = μ, ν.

In order to complete the definition, we define the (partial) priority function
Ω : V → ω. Let 〈ψ, s〉 ∈ V . Then, if ψ = ηX.δ, η = μ, ν, we have that:

Ω(〈ψ, s〉) =

⎧
⎪⎪⎨

⎪⎪⎩

ad(ηX.δ) if η = μ and ad(ψ) is odd, or
η = ν and ad(ψ) is even;

ad(ηX.δ)− 1 if η = μ and ad(ψ) is even, or
η = ν and ad(ψ) is odd.



190 J. Duparc and A. Facchini

Thus, if the play π is finite, Player 0 wins iff the last vertex of the play belongs
to V1, and if the play π is infinite, Player 0 wins iff the greatest priority appearing
infinitely often is even.

We denote by E(ϕ, t) the parity game associated to ϕ ∈ Lμ and the tree t,
starting at 〈ϕ, ε〉.

Proposition 1 ([ES89]). t ∈ ||ϕ|| iff Player 0 has a winning strategy for
E(ϕ, t). �

This result can be seen as the “game-theoretical version” (restricted to full binary
trees) of what is usually called the fundamental theorem of the semantic of the
modal μ-calculus.

We will be mainly interested on the “infinitary” part of a parity game E(ϕ, t).
Given a parity game E(ϕ, t), its infinitary reduction, denoted by E∞(ϕ, t), is the
parity game defined as follows:

if there is no leaf in the game tree of E(ϕ, t), then E∞(ϕ, t) = E(ϕ, t), otherwise
we modify the game tree of E(ϕ, t) recursively from the leaves to the root as
follows:

1. for every leaf 〈φ, v〉 of the game tree of E(ϕ, t), if v ∈ ||φ||t, then we substitute
〈�, v〉 to the node 〈φ, v〉 into the tree. Otherwise we substitute 〈⊥, v〉 to the
node 〈φ, v〉 into the tree,

2. if in the resulting tree, the node we are considering is a conjuctive node,
that is of the form 〈φ ∧ ψ, v〉, then we erase the subtree starting from the
conjuctive node and then:
(a) we change 〈φ ∧ ψ, v〉 into 〈ϕ, v〉 iff the node is such that

〈φ ∧ ψ, v〉

������������

������������

〈ϕ,w1〉 〈�, w2〉
or

〈φ ∧ ψ, v〉

������������

������������

〈�, w1〉 〈ϕ,w2〉
Dually in the case of a disjunctive node, that is of a node of the form
〈φ ∨ ψ, v〉;

(b) we change 〈φ ∧ ψ, v〉 into 〈⊥, v〉 iff the node is such that

〈φ ∧ ψ, v〉

������������

������������

〈ϕ,w1〉 〈⊥, w2〉



Describing the Wadge Hierarchy for the Alternation Free Fragment 191

or

〈φ ∧ ψ, v〉

������������

������������

〈⊥, w1〉 〈ϕ,w2〉
Dually in the case of a disjunctive node;

3. if in the resulting tree, the node we are considering is an existential node,
that is of the form 〈♦φ, v〉, then we erase the subtree starting from the
existential node and then
(a) we change 〈♦φ, v〉 into 〈⊥, v〉 iff the existential node is such that every

successor is of the form 〈⊥, w〉. Dually in the case of a universal node,
that is of the form 〈�φ, v〉;

(b) we change 〈♦φ, v〉 into 〈�, v〉 iff the node is such that there is a successor
of the form 〈�, w〉. Dually in the case of a universal node;

4. if in the resulting tree the considered node is a fixpoint node, that is of
the form 〈ηx.φ, v〉, with η = μ, ν, then we erase the subtree starting from
the fixpoint node and we change the fixpoint node into 〈ψ, v〉 iff the only
successor 〈ψ,w〉 of 〈ηx.φ, v〉 is such that ψ = �,⊥ or ηx.φ � ψ.

At the end of the process, the game tree reduces to a single node 〈φ, ε〉. Then
we set

E∞(ϕ, t) = E(φ, t)

By construction, Player 0 has a winning strategy for E(ϕ, t) iff Player 0 has a
winning strategy for E∞(ϕ, t).

4 The Wadge Hierarchy

Consider the space TωB equipped with the standard Cantor topology. Then, if
T, U ⊆ TωB , we say that T is continuously reducible to U , if there exists a contin-
uous function f such that T = f−1(U). We write T ≤w U iff T is continuously
reducible to U . This particular order is called the Wadge ordering. If T ≤w U
and U ≤w T , then we write T ≡w U . If T ≤w U but not U ≤w T , then we write
T <w U .Thus, the Wadge hierarchy is the partial order induced by <w on the
equivalence classes given by ≡w.

Let T and U be two arbitrary sets of full binary trees. The Wadge game
Gw(T, U) is played by two players, player I and player II. Both player build a
tree, say tI and tII . At every round, player I plays first, and both players add
a finite number of children to the terminal nodes of their corresponding tree.
Player II is allowed to skip its turn, but not forever.

We say that player II wins the game iff tI ∈ T ⇔ tII ∈ U . This game was
designed precisely in order to obtain:

Lemma 1 (Wadge). Let T, U ⊆ TωP . Then T ≤w U iff Player I has a winning
strategy in the game GW (T, U). �



192 J. Duparc and A. Facchini

Recall that a language L is called self dual if it is equivalent to its complement,
otherwise it is called non-self dual.

By Borel determinacy, we have that, if T, U ⊆ TωB are Borel, then GW (T, U)
is determined. As a consequence, a variant of Martin-Monk’s result shows that
<w is well-founded. Thus, we can define by induction the Wadge degree for sets
of finite Borel rank:

– dw(∅) = dw(∅�) = 1
– dw(L) = sup{dw(M) + 1 : M is non self dual,M <w L} for L >W ∅.
Weakly recognizable tree languages are all Borel. Moreover, in [DM07], by

showing that the family of tree languages recognized by weak alternating au-
tomata is closed under the set-theoretical counterpart of ordinal sum (+), mul-
tiplication (•) by ordinals < ωω, and pseudo-exponentiation with base ω1. It
was proved that the Wadge hierarchy of this class of tree languages has height
at least ε0. The authors conjecture that, in fact, the height is ε0. Because the
weakly recognizable languages are the Δμ

2 definable tree languages, the preced-
ing results and conjecture apply also to the fixpoint alternation free fragment of
the μ-calculus.

5 Main Result

In this section we show that there is no Δμ
2 definable set whose level is between

ωω and ω1. This means that if L is Δμ
2 definable, then dw(L) < ωω or dw(L) ≥ ω1.

Recall that we suppose that models of μ-formulas are infinite binary trees.
First of all, we have to modify the construction of the arena of the infinitary
reduction of the evaluation game of a μ-formula to the case of a finite initial
segment of a model. More precisely, apply the procedure previously described
in section 3 to the subset {〈φ, v〉 : v ∈ ⋃

0≤i≤n
i{0, 1} ∧ φ ∈ cl(ϕ)}, by consid-

ering that a node 〈φ, v〉 is a leaf of the restriction iff it is a leaf in the original
game graph. Suppose that the results of the procedure is the node 〈ξ, ε〉 and
that ξ /∈ {�,⊥}, otherwise the case is trivial. Then, the reduction of ϕ to t[n] is
the bipartite graph 〈V ∗

0 , V
∗
1 , E

∗〉 defined as follows. The set V ∗ of vertices corre-
sponds to pairs of μ-formulas of the closure of ξ and members of

⋃
0≤i≤n

i{0, 1}.
The moves E∗ are defined as expected. However, we now modify the splitting of
V ∗ into V ∗

0 and V ∗
1 . We say that some vertex 〈ψ, v〉 ∈ V ∗ belongs to V ∗

0 iff it is
a disjunctive or an existential node and E(〈ψ, v〉) �= ∅.

We are now ready to define the class of reaching games of ϕ over t[n]. Such
a reaching game is played by two players, player 0 and player 1, over the
arena 〈V ∗

0 , V
∗
1 , E

∗〉. Let {S1, . . . , Sn} be an enumeration of all the subsets of⋃
0≤i≤n

i{0, 1}. Given a subset Sj , we say that Player 0 wins the reaching game
of ϕ over t[n] with respect to Sj iff a position 〈ψ, v〉 ∈ V ∗

1 can be reached where
Player 1 cannot move and v ∈ Sj . This game is denoted by R(ϕ, t[n], Sj).

Whitout loss of generality, we can suppose that for every v ∈ dom(t), t(v) \⋃
w∈dom(t)\{v} t(w) �= ∅. Therefore, for every v ∈ t[n], there is a μ-formula φv

without fixpoint and p ∈ free(φv)\t(v) such that for every ψ ∈ Lμ, t ∈ ||φv(p/ψ)||



Describing the Wadge Hierarchy for the Alternation Free Fragment 193

iff t ↓v∈ ||ψ||. We can read φv as the formula describing the only way to reach
the node v starting from the root of the tree t. Moreover, for every n, there is a
formula φt[n] which completely describes this initial tree of height n+ 1, that is,
for every tree s, if s ∈ ||φt[n]||, then s[n] and t[n] are bisimilar.

Note that, for very Sj , the number of winninig strategies for Player 0 in the
reaching game R(ϕ, t[n], Sj) is finite. Let {f1, . . . , fk} be an enumeration of the
winning strategies for player 0 in R(ϕ, t[n], Sj). Fix a winning strategy fi. Let
Fi ⊆ Sj be the set of nodes such that, v ∈ Fi iff there exists a final winning
position having as second component v if player 0 plays according to fi. Clearly
Fi is finite. Suppose Fi = {vi,1, . . . , vi,k}. Then, for every vi,l ∈ Fi, consider the
finite set Φi,l ⊆ cl(ϕ) such that ψ ∈ Φi,l iff 〈ψ, vi,j〉 is a possible final winning
position when player 0 plays according to fi. Suppose Φi,l = {ψ(i,1l), . . . , ψ(i,nl)},
for vi,l ∈ Fi. Thus, the formula

τi := φvi,1

(
p/(ψ(i,11) ∧ . . . ∧ ψ(i,n1))

) ∧ . . . ∧ φvi,k

(
p/(ψ(i,1k) ∧ . . . ∧ ψ(i,nk))

)

can be seen as describing the tree corresponding to the winning strategy fi for
player 0 in the reaching game R(ϕ, t[n], Sj).

More generally, given
σj :=

∨

1≤i≤l
τi

and assuming that t ∈ ||ϕ||, Player 0 has a winning strategy in the reaching
game R(ϕ, t[n], Sj) iff t ∈ ||σj ||.

Consider now the set MR(ϕ,t[n]) ⊆ {S1, . . . , Sn} given by the following condi-
tions:

for every Si ∈MR(ϕ,t[n]):

1. Player 0 has a winning strategy in R(ϕ, t[n], Si);
2. There is no Sk ⊂ Si such that Player 0 has a winning strategy inR(ϕ, t[n]Sk)

By construction, for every tree s we obtain that:

s ∈ ||ϕ ∧ φt[n]|| iff s ∈ ||
∨

Sj∈MR(ϕ,t[n])

σj ||

This terminates the “μ-calculus” part of the proof of the main result, the
other half of it being the following descriptive set theoretical result1:

Lemma 2 ([D03]). Let A ⊆ TωA be an initializable set of trees; λ, δ be some
countable ordinals and B ⊆ TωB , if A • (δ + 1) ≤w B ≤w A • λ then there is a
finite tree t such that ⎧

⎨

⎩

Bt ≡w A • (δ + 1),
or

Bt ≡w −(A • (δ + 1)).

where Bt denotes the set of members of B extending t. �
1 Note that originally this lemma was stated for infinite words. We adapt it for full

binary trees in a straightforward manner.



194 J. Duparc and A. Facchini

The core of the proof of our main result relies on finding a “reasonable” upper
bound for the degrees of conjunctive and disjunctive formulas. It is not difficult
to verify that:

Lemma 3. Let ϕ1, . . . ϕn ∈ Δμ
2 . Suppose for every 1 ≤ i ≤ n, ||ϕi|| non self

dual, dw(||ϕi||) < ω1. Then:

1. dw(||ϕ1 ∧ · · · ∧ ϕn||) ≤ sup{dw(||ϕi||) : 1 ≤ i ≤ n} � n;
2. dw(||ϕ1 ∨ · · · ∨ ϕn||) ≤ sup{dw(||ϕi||) : 1 ≤ i ≤ n} � n. �

From this lemma, it is then possible to prove that:

Proposition 2. Let ϕ ∈ Δμ
2 , ||ϕ|| non self dual and 1 < dw(||ϕ||) < ω1. Let t

be a full binary tree such that for a certain n it holds that ||ϕ ∧ φt[n]|| <w ||ϕ||.
Then there exists k ∈ N:

dw(||ϕ ∧ φt[n]||) = dw(||
∨

Sj∈MR(ϕ,t[n])

σj ||) ≤ λ � k

where λ = sup{dwξ : ξ ∈ ⋃
Sj∈MR(ϕ,t[n])

⋃
i

⋃
vi,j∈Fi

Φi,j}. �

Note that in the last proposition, k is given by considering the number of final
winning positions for player 0 in the reaching games R(ϕ, t[n], Sj).

By proposition 2 we can prove that:

Corollary 1. Assume ϕ ∈ Δμ
2 non self dual, 1 < dw||ϕ|| < ω1 and B ⊂ TωB

satisfying both B ≤w ||ϕ|| and cof(dwB) = ω, then, for every n, there is λ < dwB
such that for every tree t and every n:

if ||ϕ∧φt[n]|| <w B then dw(||ϕ∧φt[n]||) < λ�ω �

This almost immediately leads to:

Theorem 1. Let ϕ ∈ Δμ
2 . Let α > 1 be a countable ordinal, and suppose

dw||ϕ|| = α. Then α < ωω.

Proof of theorem 1: Towards a contradiction, we assume that α ≥ ωω, and apply
corollary 1. Consider B a canonical set of Wadge degree ωω. By corollary 1, there
exists λ < dw(B) such that for every tree t and every n:

if ||ϕ ∧ φt[n]|| <w B then dw(||ϕ ∧ φt[n]||) < λ � ω

Fix such a λ. Since dw(B) = ωω, we have that λ < ωω. Therefore, there is
n < ω such that λ < ωn. Hence λ � ω < ωn+1 holds.

By lemma 2, there is a tree t, an integer n and � ∈ {−,+} such that ||ϕ||t ≡w
�(∅•(ωn+1 +1)). Finally, since ωn+1 +1 < ωω, dw(||ϕ||t) < λ �ω holds, we obtain
the following contradiction:

λ�ω < ωn+1 < ωn+1+1 = dw(||ϕ||t) < λ�ω �

This theorem proves that there is no Δμ
2 definable set in between the levels

ωω and ω1 of the Wadge Hierarchy of Borel Sets, an enthusiastic first step in
proving the whole conjecture about the Wadge Hierarchy of weakly recognizable
tree languages.



Describing the Wadge Hierarchy for the Alternation Free Fragment 195

6 Conclusion

We have seen how, with the help of reaching games of a μ-formula over an initial
segment of a model, it is possible to determine upper bounds for the Wadge
degree of disjunctive and conjunctive alternation free formulas. This result is one
of the key step in order to verify that in between levels ωω and ω1 of the Wadge
hierarchy of Borel sets there is no tree language definable by an alternating free
formula.

The main result of our paper constitute a first step towards the proof of the
fundamental conjecture stating that the height of Wadge hierarchy of weakly
recognizable tree languages is exactly ε0 and that the set of ordinals involved is
the smallest one that contains 1 and is closed under ordinal sum, multiplication
by ω and exponentiation of base ω1.

References

[AN01] Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. Studies in Logic, vol. 146.
Elsevier, Amsterdam (2001)

[BGL07] Berwanger, D., Grädel, E., Lenzi, G.: The variable hierarchy of the μ-calculus
is strict. Theory of Computing Systems 40, 437–466 (2007)

[D01] Duparc, J.: Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite
Rank. Journal of Symbolic Logic 66(1), 56–86 (2001)

[D03] Duparc, J.: A Hierarchy of Deterministic Context-Free ω-languages. Theo-
retical Computer Science 290, 1253–1300 (2003)

[DF∞] Duparc, J., Facchini, A.: Describing the Wadge Hierarchy for the Alternation
Free Fragment of μ-Calculus (I) - The Levels Below ω1. Draft version,
http://www.hec.unil.ch/logique/recherche/travaux/

[DM07] Duparc, J., Murlak, F.: On the Topological Complexity of Weakly Recogniz-
able Tree Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS,
vol. 4639, pp. 261–273. Springer, Heidelberg (2007)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree Automata, μ-Calculus and Determinacy
(Extended Abstract). In: FOCS 1991, pp. 368–377 (1991)

[ES89] Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for
the propositional μ-calculus. Information and Computation 81(3), 249–264
(1989)

http://www.hec.unil.ch/logique/recherche/travaux/


Subrecursive Complexity of Identifying the

Ramsey Structure of Posets

Willem L. Fouché

Department of Decision Sciences,
University of South Africa, P.O. Box 392, 0003 Pretoria, South Africa

fouchwl@unisa.ac.za

Abstract. We show that finite ordinal sums of finite antichains are
Ramsey objects in the category of finite posets and height-preserving
embeddings. Our proof yields a primitive recursive algorithm for con-
structing the finite posets which contain the required homogeneities. We
also find, in terms of the classical Ramsey numbers, best possible upper
bounds for the heights of the posets in which the homogeneous structures
can be found.

Mathematics Subject Classification (2000): 03D20, 68Q17, 06A07,
05D10.

Keywords: subrecursive hierarchy, partially ordered sets (posets), struc-
tural Ramsey theory.

1 Introduction

In [3] the author studied the structural Ramsey theory of finite posets. The paper
[3] makes substantial use of the Graham-Rothschild theorem [6]. The proof of
the latter result requires an Ackermann-type recursion and is consequently not
a proof in primitive recursive arithmetic.

In this paper we establish, by means of primitive recursive constructions,
Ramsey properties of posets with respect to height-preserving embeddings. Our
main theorem is a generalisation of the results in [2]. The methods of the present
paper can also be used to find a primitive recursive proof of the main result in
[3]. This will be discussed in a sequel to this paper. A proof of Theorem 2 in this
paper for h = H = 2 is established in [4] and applied to determining the Ramsey
structure of bipartite graphs. In this connection see also [5]. Results of this type
have important applications to model theory [1] and the topological dynamics of
automorphism groups of countably categorical structures as was demonstrated
in the decisive recent paper by Kechris, Pestov and Todorcevic [9].

In the seventies, largely because of the work by Nešetřil, Rödl [11], [12] and,
independently by Abramson, Harrington [1], remarkable progress was made with
the problem of determining the Ramsey objects in various classes of combinato-
rial configurations. During the second half of the eighties the proofs were sim-
plified by Nešetřil and Rödl [14] by introducing new amalgamation techniques.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 196–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Subrecursive Complexity of Identifying the Ramsey Structure of Posets 197

(See also the survey [10] for a clear exposition of these techniques.) A variation
of these techniques will play an important role in the proof of main theorem of
this paper. (See Theorem 2.)

In this paper, unless otherwise stated, all the structures referred to will be
finite. If P is a poset, then the height of an element x of P, denoted by ht x, is the
largest size of any chain in P having x as the maximum element. The height of
P, denoted by ht P, is the maximum value of ht x as x varies over the elements
of P. If P and Q are posets, then an embedding of P into Q is an injective
mapping λ from the underlying set of P into the underlying set of Q, such that
for elements x, y of P, it is the case that x < y iff λ(x) < λ(y). If, moreover,
ht λ(x) = ht λ(y) whenever ht x = ht y, we say that the embedding is height-
preserving. We write [Q,P]h for the set of copies of P under height-preserving
embeddings of P in Q. A poset is said to be complete if it is the ordinal sum of
finitely many antichains. Hence a poset P is complete iff for elements x, y of P,
it is the case that x < y, whenever ht x < ht y.

For natural numbers s, h,H , we write R(s, h,H) (the associated Ramsey num-
ber [17]) for the smallest natural number N , such that for any s-colouring of the
h-subsets of a set X consisting of N elements, there is an H-subset Y of X such
that all the h-subsets of Y are of the same colour. In [2] the author proved.

Theorem 1. Suppose C is a chain of size h and Q is a poset of height H. Then,
for every natural number s, there is a poset R of height R(s, h,H) such that, for
any s-colouring χ of the copies of C in R, there is an embedding λ of Q into R
such that χ is monochromatic on the set of copies of C in Q′, where Q′ is the
image of Q under λ.

In this paper we generalise this theorem to arbitrary complete posets.

Theorem 2. Suppose P is a complete poset of height h and Q is a poset of height
H. Then, for every natural number s, there is a poset R of height R(s, h,H) such
that, for any colouring χ : [R,P]h → [s], there is a height-preserving embedding λ
of Q into R such that χ is monochromatic on [Q′,P]h where Q′ is the image of Q
under λ.

The proof will show that one can find a poset R that satisfies the conclusion of
the theorem such that its size depends primitive recursively on s, h,H and the
sizes of P and Q, respectively. Moreover, the problem of constructing R from
P,Q and s has a time complexity which also depends primitive recursively on the
parameters P,Q and s. It follows that there is a primitive recursive algorithm
for yielding R from s, h,H,P and Q.

In the standard Erdös-notation we can express the theorem as follows: For
posets P and Q with P complete and of heights h,H , respectively, there is, for
any s ≥ 1, a poset R of height R(s, h,H) such that

R −→ (Q)Ps . (1)

We shall show that the theorem is the best posssible as far as the height of R in
(1) is concerned. Indeed, for any complete poset P of height h, say, there is, for



198 W.L. Fouché

any H ≥ h, a poset Q of height H , such that, if R satisfies (1), then the height
of R will be at least the Ramsey number R(s, h,H).

For given natural numbers s, h,H and for posets P,Q as above, let P (s,P,Q)
be the smallest natural number r, such that, for some poset R of heightR(s, h,H)
and size r, the relation (1) holds. The size of P (s,P,Q) can be estimated in terms
of the so-called loop complexity l(P ) of the primitive recursive function P . With
every primitive recursive function g, one can associate a natural number,L(g), the
loop complexity of g. (See, for example,[19] for a discussion). Roughly speaking,
one saysL(g) ≤ n, if, starting with addition, one can find a program for computing
g which involves at most n nested loops. For example, the loop complexity of the
function computing the well-known Ramsey numbers is at most three while, as was
shown by Shelah [18], for the Jales-Hewitt function, the loop complexity is at most
four. Our proof will yield a loop complexity of at most seven for the function P .

2 Preliminaries

If P is a poset of height h and if σ ⊂ [h], we write P(σ) for the induced subposet
spanned by the subset {x ∈ P : ht x ∈ σ}. We shall make frequent use of the
following result, a proof of which can be found on pp 256-259 of [2].

Theorem 3. If P is any poset of height h, say, then for any H ≥ h, there is
a graded poset Q of height H, such that, for each h-subset σ of [H ], there is a
copy of P in Q(σ).

An easy consequence of this result is that Theorem 2 is the best possible as far
as the height of R is concerned. For given P of height h, let Q be a poset of
height H satisfying the conclusion of Theorem 3. Suppose R is any poset such
that (1) holds. If R = ht R, consider any s-colouring of the h-subsets of [R].
This induces an s-colouring of [R,P]h by giving each copy P ′ the colour of the
set of heights of the elements of P ′. To find a monochromatic Q′ , is a stronger
requirement than that of finding a monochromatic H-subset of [R]. It follows
that the inequality R ≥ R(s, h,H) must hold.

If A is set and n ≥ 1, we write A[n] for the set of n-subsets of A. For integers
n1, . . . , nh ≥ 1 and m,n, s ≥ 1, we write

n =⇒ [m, (n1, . . . , nh)]s (2)

when the following holds:

For sets Y1, . . . , Yh with |Yi| ≥ n, and an s-colouring χ :
∏h
i=1 Y

[ni]
i → [s],

there is, for each i ∈ [h], some subset Zi of Yi, each set Zi having m

elements, such that χ is monochromatic on
∏h
i=1 Z

[ni]
i .

The existence of n, for given ni,m and s is a well-known result (the so-called
product Ramsey theorem, see for example [7]).

Let A be a finite alphabet and let λ be a symbol which does not occur in A.
A 1-parameter word over A is a word w = w(λ) over the alphabet A∪ {λ} such



Subrecursive Complexity of Identifying the Ramsey Structure of Posets 199

that there is at least one occurrence of λ in w. For a ∈ A we denote by w(a) the
word that we obtain from w by replacing all occurences of λ by a. The following
theorem is well-known and is due to Hales-Jewitt [8].

Theorem 4. For r, s ≥ 1, there is a number HJ(s, r) such that for any s-
colouring of the words of length HJ(s, r) over an alphabet A consisting of r
letters, there is a 1-parameter word w(λ) over A such that all the words w(a), a ∈
A are of the same colour.

A primitive recursive bound for the number HJ(s, r) was found by Shelah [18].
For other expositions of Shelah’s proof, see for example [7] and [16].

3 Layered Posets

In this section we prove a technical lemma on partitions of a class of struc-
tures which we shall call layered posets. We begin by introducing the following
notation: Let A be a finite set of natural numbers and let

σ = σ1| . . . |σh|
be a partition into h blocks of a finite set A of natural numbers such that, if
1 ≤ i < j ≤ h, each element of σi is less than each element of σj . We call such a
partition an ordered partition of A. For a given ordered partition σ of the finite
set A into h blocks, a σ-layered poset is a pair M = (P, �) where P is a poset of
height h and � is a surjection from the underlying set of P onto A such that the
following condition is satisfied:

– If x < y(P) and i, j ∈ [h] are such that �(x) ∈ σi and �(y) ∈ σj , then i < j.

We refer to the sets Li := �−1({i}) with i ∈ A, as the layers of the poset. The
layers are partitioned into h blocks Σ1, · · · , Σh which are “controlled” by the
partition σ, i.e., each block of layers is of the form Σk = {Lj : j ∈ σk}, for some
1 ≤ k ≤ h. Finally, it is required that if x < y in P, then the layer containing
x will be in a block that precedes the block in which the layer containing y lies.
If x is in some layer in Σk we say that x is in the kth block of the σ-layered
poset. Note that in this case ht x ≤ k for if C is any chain in P having x as the
maximum element, the elements of C will be in different blocks of (P, �).

If M = (P, �) and N = (Q, k) are σ-layered posets, then an embedding μ
from M into N is a poset embedding μ : P → Q which is layer-preserving in
the sense that �(x)) = k(μ(x)) for all x in the underlying set of M. (We do not
require that μ be height-preserving.) A σ-layered poset is said to be transversal
if each of its layers consists of exactly one point and, moreover, if an element
has height j, say, then it will be in the jth block of the σ-layered set. Note that
an embedding of a transversal σ-layered set into an arbitrary σ-layered set will
always be height-preserving since all elements of a given height will be in the
same block, a property which must be preserved by any embedding.

Let P be a poset and let L be total order on its underlying set such that

ht x < ht y ⇒ x < y(L). (3)



200 W.L. Fouché

With (P, L) we can associate the following transversal layered poset structure:
Let a be the size and h the height of P. Set A = [a] and let σ = σ1| · · · |σh| be
the ordered partition such that the number of elements in σj is the number of
elements of P of height j, for j = 1, . . . , h. We define � : P→ [a] by the require-
ment that, if x ∈ P is the kth element of the underlying set of P with respect
to the total ordering L, then �(x) = k. Note that, if x < y(P, then ht x < ht y
and, therefore, �(x) < �(y) on account of (3). It follows that the layers in Σi are
the singleton sets corresponding with the elements of P of height i. The poset
structure remains unchanged. We denote this associated σ-layered poset also by
(P, L).

Example. Let P be the poset on {a, b, c} such that a < c (P) and b is an
isolated point. Let L be the total order a < b < c (L). Then the correspond-
ing layers L1, L2, L3 are {a}, {b}, {c}, respectively and the blocks Σ1, Σ2 are
{L1, L2} and {L3}, respectively. Only the first and third layers are connected
by a relation in P. If, however, the total order is given by b < a < c (L), then
the sequence of layers are given by {b}, {a}, {c} and in this case only the second
and third layers are connected by a relation in P.

In general, one can associate many transversal layered structures with a poset
P (by varying over L). The complete posets, however, can carry exactly one
transversal layered poset structure. In this case, any two elements in distinct
blocks are connected by a relation in the underlying poset. This observation
plays a crucially important role in what follows.

Proposition 1. Let σ be an ordered partition of some finite set A of natural
numbers. For s ≥ 1 and σ-layered posets M and A, where A is the transversal
σ-layered poset corresponding to a complete poset, there is a σ-layered poset N
such that

N −→ (M)As .

Proof. Let a denote the number of layers of M. Let L1, . . . , La be the layers of
M and let A1, . . . , Ar be an enumeration (without repetition) of the copies of A
in M. Set

m := HJ(s, r),

the corresponding Hales-Jewitt number (see Theorem 4). We next define the
σ-layered poset N which will satisfy the conclusion of the proposition. The un-
derlying set of N is N := ∪ai=1Ni, where each

Ni = Li × · · · × Li︸ ︷︷ ︸
m

.

The Ni will be the layers of N and are arranged into blocks by σ. Write P for
the poset structure of M. We define the a poset structure Q on N as follows: If
x = (x1, . . . , xm) ∈ Ni and y = (y1, . . . , ym) ∈ Nj , then

x < y(Q)⇔ xk < yk(P), k = 1, . . . ,m.



Subrecursive Complexity of Identifying the Ramsey Structure of Posets 201

It is clear that if x < y(Q) then the index i, respectively j, of the block in N
containing x, respectively y, are the same as of x1, respectively y1, in M so that
we can conclude that i < j. Hence N is indeed a σ-layered poset.

Let w(λ) be a 1-parameter word of length m over the alphaber [r]. (Recall that
r is the number of copies of A in M.) For 1 ≤ i ≤ m and 1 ≤ k ≤ r we denote
by a(i, k) the element of Ak on the layer Li of M. For the given parameter word
w(λ) we now define a mapping ν : M→ N as follows: Suppose w = w1 · · ·wm. If
b ∈M then ν(b) = (y1, . . . , ym) where, if b belongs to the ith layer Li, we have,
yj = b when λ appears in the jth position of w(λ) and yj = a(i, wj), otherwise.
We now show that

b1 < b2(P)⇔ ν(b1) < ν(b2)(Q).

If the left-hand inequality holds and b1, respectively b2, belongs to the block
Σu, respectively Σv, then u < v. Since each Ak is complete, each element of Ak
belonging to Σu is less that every element of Ak belonging to Σv. We conclude
that ν(b1) < ν(b2). The converse follows directly from the fact that there is at
least one occurrence of λ in w(λ). It is also clear that the mapping ν is injective
and is layer-preserving. We conclude that it is an embedding. In this way we
can associate with a 1-parameter word of length m over [r] an embedding of M
into N.

Write [N,A] for the set of copies of A in N. We next define a mapping

φ : [r]m −→ [N,A].

Informally, φ(w1 · · ·wm) is the a ×m array with columns Aw1 , . . . , Awm . That
is, its intersection with the ith layer Ni is the element (a(i, w1), . . . , a(i, wm)).
It follows from our constructions that if w(λ) is a 1-parameter word of length m
over [r], then, for a ∈ [r]:

ν(Aa) = φ(w(a)),

where ν is the embedding corresponding to w(λ).
An s-colouring χ of [N,A] induces via φ an s-colouring χ1 of [r]m and hence,

by the Hales-Jewitt theorem, there is a 1- parameter word w(λ) such that χ1

assumes a constant value on w(1), . . . , w(r). By our preceding constructions, this
means that there is a copy M′ of M, namely M′ = ν(M), where ν is the embed-
ding associated with w(λ), such that χ assumes a constant value on the copies
φ(w(1)), . . . , φ(w(r)) of A in M′. Since ν(A1), · · · , ν(Ar) are pairwise distinct
and since [M′,A] has exactly r elements, we conclude that χ is monochromatic
on [M′,A]. This concludes the proof of the proposition.

4 The First Amalgamation

In this section, we prove Theorem 2 for the case when both P and Q are of the
same height.

Lemma 1. Suppose P and Q are posets of the same height h where P is com-
plete. Then, for every s ≥ 1, there is a poset R of height h such that

R −→ (Q)Ps .



202 W.L. Fouché

Proof. We first introduce the following notation: If τ and σ are ordered set
partitions into h blocks, we write σ ≺ τ if the jth block of σ is a subset of the
the jth block of τ for j = 1, . . . , h. If M is a τ -layered poset and if σ ≺ τ , a
σ-layered poset carried by σ is by definition a σ-layered poset spanned by some
of the elements of M, each such element being on a level belonging to a block
which appears in σ.

For j = 1, . . . , h, let αj , respectively βj , be the number of elements of height
j of P, respectively Q. Set

b = max{βj : j = 1, . . . , h}.

Let N be so large that
N =⇒ [b, (α1, . . . , αh)]s.

(See (2).) We fix total orders L1, L2 on P and Q respectively, such that (3) holds
when L = L1 and when L = L2. In the sequel we shall view these two posets as
transversal layered posets, with the layered structures induced by L1 and L2.

Let τ = τ1| · · · |τh| be the ordered partition of [Nh] having h blocks each of
length N . Let Q0 be a τ -layered poset of height h such that, if σ is an ordered
partition with σ ≺ τ where the blocks of σ have sizes β1, . . . , βh, respectively,
then σ will carry a copy of the transversal (Q, L2). (This can be easily arranged
by taking suitably many disjoint copies of Q.)

Let s1, . . . , st be an enumeration (without repetition) of the elements of

τ
[α1]
1 × · · · × τ [αh]

h .

Note that we can view each sj as an ordered partition of an appropriate set in
such a way that sj ≺ τ . We shall inductively construct a sequence Q1, . . . ,Qt of
τ -layered posets in terms of the sj in such a way that the underlying poset R,
say, of Qt will satisfy the conclusion of the lemma.

Suppose 0 ≤ k < t and Qk has been constructed. LetDk+1 be the sk+1-layered
subposet of Qk carried by sk+1. Apply Proposition 1 to find an sk+1-layered
poset Ek+1 such that

Ek+1 −→ (Dk+1)(P,L1)
s .

Here, we view (P, L1) as an sk+1-layered poset. Attach a copy of Qk to each
copy of Dk+1 in Ek+1 in such a way that any two distinct copies meet only in
Ek+1. At this stage we have a structure with a layering and an ordering which
need not be transitive. Now take the transitive closure of this ordering and let
Qk+1 be the resulting structure. This is a τ -layered poset for if y covers x in
Qk+1, then x < y in some copy of Qk with its original structure, so that, if x,
respectively y, belongs to block τi, respectively τj , then i < j. It follows that for
any x, y ∈ Qk+1, if x < y in Qk+1 and if x, y belongs to τi, τj , then i < j.

We now show that every copy Qk of Qk attached to a copy of Dk+1 will retain
the original structure of Qk even after the transitive closure has been effected.
Suppose x < y in Qk+1, where both x and y are in Qk. Let C be a chain in
Qk+1 of the form x = x0 < x1 < . . . < xf = y, where for all i < f , we have



Subrecursive Complexity of Identifying the Ramsey Structure of Posets 203

xi < xi+1 in the structure Qk+1 prior to when the the transitive dclosure has
been effected. If this chain ever leaves Qk, it must do so via Ek+1 whereafter
it must again return to Ek+1. Denote the intersection points xi1 , · · · , xip , say,
where i1 < . . . < ip, of C with Ek+1 by y1, · · · , yp, respectively. If 1 ≤ j < p,
then yj < yj+1 in some copy of Qk with its original structure. Since both yj
and yj+1 are in Ek+1, we conclude that yj < yj+1 in Ek+1 with its original
structure. The final intersection point yp must be in Ek+1 ∩Qk because yp ≤ y
and one can finally reach y only via elements of Qk in Ek+1. We conclude that
x ≤ y1 ≤ yp ≤ y in Qk with its original structure.

Note that the height of Qk+1 is again h: Firstly, we may inductively assume
that ht Qk = h and since Qk+1 contains a copy of Qk, the former must have a
height which is at least h. Secondly, if x < y in Qk+1, then x and y will be on
layers belonging to different blocks. Since there are h blocks, we conclude that
the height of Qk+1 cannot be more than h.

Write R for the poset structure of Qt. Let χ be an s-colouring of [R,P]h. By
means of a downward induction one can now prove the following statement:

(†)k: For 0 ≤ k ≤ t there is a copy Qk of Qk in R such that the copies
of P carried by sj depends on j only, for every j = k + 1, . . . , t.

Suppose (†)k+1 holds, where k+ 1 ≤ t and let Qk+1 witness the truth of (†)k+1.
By our construction, there is a copy of Dk+1 in Qk+1 in which all the copies of
P are of the same colour. Write Qk for the copy of Qk that is attached to this
Dk+1. Then Qk witnesses the truth of (†)k.

Since (†)0 holds, there is a copy Q0 of Q0 such that any copy of P in Q0 will
have a colour that depends only on the ordered partition that carries the copy.
In this way we find that we have an induced s-colouring χ1 of

τ
[α1]
1 × · · · × τ [αh]

h .

By our choice of N , there is an ordered partition σ = σ1|σ2 . . . |σh having blocks
of sizes β1, . . . , βh such that χ1 is monochromatic on

σ
[α1]
1 × · · ·σ[αh]

h .

Take a copy of Q in Q0 carried by σ and we are done.

5 The Second Amalgamation

In this section we prove Theorem 2. Let P and Q be posets of heights h and H ,
respectively, and let s ≥ 1. Set R = R(s, h,H). Apply Theorem 3 to find a poset
Q0 of height R such that for each H-subset σ of [R], the poset Q0(σ) contains
a copy of Q. Let s1, . . . , st be an enumeration of the h-subsets of [R]. We now
inductively define a sequence of posets Qk, k = 1, . . . , t, each of height R, as
follows: Suppose Qk has been defined where k ≥ 0. Set Dk+1 = Pk(sk+1). This
is a poset of height h. Apply Lemma 1 to find a poset Ek+1 of height h such
that

Ek+1 −→ (Dk+1)Ps .



204 W.L. Fouché

Attach to each copy (image under a height-preserving embedding) of Dk+1 in
Ek+1 a copy of Qk such that, again, any two copies meet only in Ek+1 and take
the transitive closure. Call the resulting poset Qk+1.We note that an element of
Ek+1 will have the same height in each attached copy of Qk with the original
structure. Moreover, a criss-crossing argument as in the proof of Lemma 1 shows
that each attached copy will retain its original poset structure in Qk+1.

We now show that each y ∈ Qk+1 will have a height in Qk+1 which is the
same as its height in any copy Q′ of Qk which contains y: Let Q′ be a copy
of Qk and, for a fixed y ∈ Q′, let C be a saturated chain in Qk+1 of the form
x0 < . . . < xy = y. Denote the intersection points of C with Ek+1 by xi1 , · · · , xip ,
where i1 < . . . < ip. Set i0 = 0 and, for j < p, let Qj denote the copy of Qk such
that the subinterval [xij , xij+1 ] of C lies in Qj. Since the height of xi1 in Q0 and
Q1 (with their original structures) is the same, their is a chain of length i1 in
Q1 having xi1 as maximum element which can be continued to a chain in Q1 of
length i2 up to the point xi2 . Continuing in this way, we eventually find a chain
in Qp−1 of size ip up to the point xip . But the height of the latter point is the
same in Q′ and Qp−1. It follows that there is a chain in Q′ of size ip up to xip
which can be extended to a chain in Q′ of length f having y = xf as maximum
element.

We conclude that each attached copy Q′ is the image of Qk under a height-
preserving embedding of Qk into Qk+1. Another consequence is that ht Qk+1=R.

Set R = Qt. It again follows that for an s-colouring of [R,P]h, there will be a
copy Q0 of Q0 such that the colour of a copy of P in Q0 will only depend on its
set of heights. By our choice of R there will be an H-subset σ of [R] such that
all the copies in Q0 whose set of heights is contained in σ will be of the same
colour. Let Q be a copy of Q in Q0(σ). Then all the copies of P in Q will be of
the same colour. This concludes the proof of the theorem.

References

1. Abramson, F.G., Harrington, L.O.: Models without indiscernables. J. Symb.
Logic 43, 572–600 (1978)

2. Fouché, W.L.: Chain partitions of ordered sets. Order 13, 255–266 (1996)
3. Fouché, W.L.: Symmetry and the Ramsey degree of posets. Discrete Math. 167/168,

309–315 (1997)
4. Fouché, W.L.: Symmetry and the Ramsey degree of finite relational structures. J.

Comb. Theory Ser A 85, 135–147 (1999)
5. Fouché, W.L., Pretorius, L.M., Swanepoel, C.J.: The Ramsey degrees of bipartite

graphs: A primitive recursive proof. Discrete Math. 293, 111–119 (2005)
6. Graham, R.L., Rothschild, B.L.: Ramsey’s theorem for n-parameter sets. Trans.

Amer. Math. Soc. 159, 257–292 (1971)
7. Graham, R.L., Rothschild, B.L., Spencer, J.L.: Ramsey Theory. Wiley, New York

(1990)
8. Hales, A.W., Jewett, R.I.: Regularity and positional games. Trans. Amer. Math.

Soc. 106, 222–229 (1963)
9. Kechris, A.S., Pestov, V., Todorcevic, S.: Fräıssé limits, Ramsey theory, and topo-

logical dynamics of automorphism groups. GAFA 15, 106–189 (2005)



Subrecursive Complexity of Identifying the Ramsey Structure of Posets 205

10. Nešetřil, J.: Ramsey theory. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.)
Handbook of Combinatorics, vol. 2, pp. 1331–1403. North Holland, Amsterdam
(1995)

11. Nešetřil, J., Rödl, V.: Partitions of relational and set systems. J. Comb. Theory
Ser A 83, 289–312 (1977)

12. Nešetřil, J., Rödl, V.: Ramsey classes of set systems. J. Comb. Theory Ser A 34,
183–201 (1983)

13. Nešetřil, J., Rödl, V.: Combinatorial partitions of finite posets and lattices– Ramsey
lattices. Algebra Universalis 19, 106–119 (1984)

14. Nešetřil, J., Rödl, V.: The partite construction and Ramsey set systems. Discrete
Math. 75, 327–334 (1989)

15. Paoli, M., Trotter, W.T., Walker, J.W.: Graphs and orders in Ramsey theory and
in dimension theory. In: Rival, I. (ed.) Graphs and Order, Reidel (1984)

16. Prömel, H.J., Voigt, B.: Graham-Rothschild parameter sets. In: Nešetřil, J., Rödl,
V. (eds.) Mathematics of Ramsey Theory, pp. 113–149. Springer, Berlin (1990)

17. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264–286
(1930)

18. Shelah, S.: Primitive recursive bounds for van der Waerden numbers. J. Amer.
Math. Soc. 1, 683–697 (1988)

19. Sommerhalder, R., van Westhenen, S.C.: The Theory of Computability. Addison
Wesley, Reading (1988)



Solving Simple Stochastic Games�

Hugo Gimbert1 and Florian Horn2

1 LaBRI, Université Bordeaux 1, France
hugo.gimbert@labri.fr

2 LIAFA, Université Paris 7, France
florian.horn@liafa.jussieu.fr

Abstract. We present a new algorithm for solving Simple Stochastic
Games (SSGs), which is fixed parameter tractable when parametrized
with the number of random vertices. This algorithm is based on an ex-
haustive search of a special kind of positional optimal strategies, the
f-strategies. The running time is O( |VR|! · (log(|V |)|E| + |p|) ), where
|V |, |VR|, |E| and |p| are respectively the number of vertices, random ver-
tices and edges, and the maximum bit-length of a transition probability.
Our algorithm improves existing algorithms for solving SSGs in three
aspects. First, our algorithm performs well on SSGs with few random
vertices, second it does not rely on linear or quadratic programming,
third it applies to all SSGs, not only stopping SSGs.

Introduction

Simple Stochastic Games (SSGs for short) are played by two players Max and
Min in a sequence of steps. Players move a pebble along edges of a directed
graph (V,E). There are three type of vertices: VMax is the set of vertices of
player Max, VMin the set of vertices of player Min and VR the set of random
vertices. When the pebble is on a vertex of VMax or VMin, the corresponding
player chooses an outgoing edge and moves the pebble along it. When the pebble
is on a random vertex, the successor is chosen randomly according to some fixed
probability distribution: from vertex v ∈ VR the pebble moves towards vertex
w ∈ V with some probability p(w|v) and the probability that the game stops
is 0, i.e.

∑
w∈V p(w|v) = 1. An SSG is depicted on Figure 1, with vertices of

VMax represented as �, vertices of VMin represented as �, and vertices of VR

represented as ♦.
Player Max and Min have opposite goals, indeed player Max wants the pebble

to reach a special vertex t ∈ V called the target vertex, if this happens the play
is won by player Max. In the opposite case, the play proceeds forever without
reaching t and is won by player Min. For technical reasons, we assume that t
is a vertex of player Max and is absorbing. Strategies are used by players to
choose their moves, a strategy tells where to move the pebble depending on the
sequence of previous vertices, i.e. the finite path followed by the pebble from
the beginning of the play. The value of a vertex v is the maximal probability
� This research was partially supported by french project ANR ”DOTS”.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 206–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Solving Simple Stochastic Games 207

α

β

γ

δ ε

ζ

a

b

c

d

1 2 3 4 5 t

.3

.7 .4
.6

.3

.1
.4 .1

.1

.2
.8

.2
.6

.2

Fig. 1. A Simple Stochastic Game

with which player Max can enforce the play to reach the target vertex. When
player Max, respectively player Min, uses an optimal strategy he ensures reaching
the target with a probability greater, respectively smaller, than the value of the
initial vertex.

We are interesting in solving SSGs, that is computing values and optimal
strategies.

Existing algorithms for solving SSGs. The complexity of solving SSGs was first
considered by Condon [Con92], who proved that deciding whether the value of
an SSG is greater than 1

2 is in NP ∩ co-NP. The algorithm provided in [Con92]
consists in first transforming the input SSG in a stopping SSG where the prob-
ability to reach a sink vertex is 1. The transformation keeps unchanged the fact
that the initial vertex has value strictly greater than 1

2 but induces a quadratic
blowup of the size of the SSG. The algorithm then non-deterministically guesses
the values of vertices, which are rational numbers of linear size, and checks that
these values are the unique solutions of some local optimality equations.

Three other kinds of algorithms for solving SSGs are presented in [Con93].
These algorithms require transformation of the initial SSG into an equivalent
stopping SSG and are based on local optimality equations. First algorithm com-
putes values of vertices using a quadratic program with linear constraints. Second
algorithm computes iteratively from below the values of the SSGs, and the third
is a strategy improvement algorithm à la Hoffman-Karp. These two last algo-
rithms require solving an exponential number of linear programs, as it is the
case for the algorithm recently proposed in [Som05].

Finally, these four algorithms suffer three main drawbacks.
First, these algorithms rely on solving either an exponential number of linear

programs or a quadratic program, which may have prohibitive algorithmic cost
and makes the implementation tedious.

Second, these algorithms only apply to the special class of stopping SSGs.
Although it is possible to transform any SSG into a stopping SSG with arbitrar-
ily small change of values, computing exact values this way requires to modify



208 H. Gimbert and F. Horn

drastically the original SSG, introducing either |V |2 new random vertices or new
transition probabilities of bit-length quadratic in the original bit-length. This
also makes the implementation tedious.

Third, the running time of these algorithms may a priori be exponential
whatever be the number of random vertices of the input SSG, including the case
of SSGs with no random vertices at all, also known as reachability games on
graphs. However it is well-known that reachability games on graphs are solvable
in linear time.

Notice that randomized algorithms do not perform much better since the
best randomized algorithms [Lud95, Hal07] known so far run in sub-exponential
expected time eO(

√
n).

Our results. In this paper we present an algorithm that computes values and
optimal strategies of an SSG in time O( |VR|! · (log(|V |)|E| + |p|) ), where |VR|
is the number of random vertices, |V | is the number of vertices and |p| is the
maximal bit-length of transition probabilities.

The key point of our algorithm is the fact that optimal strategies may be
looked for in a strict subset of positional strategies, called the class of f -strategies.
The f -strategies are in correspondence with permutations of random vertices.
Our algorithm does an exhaustive search of optimal f -strategies among the |VR|!
available ones and check their optimality. Optimality is easy to check, it consists
in computing a reachability probability in a Markov Chain with VR states, which
amounts to solving a linear system with at most |VR| equations.

Comparison with existing work. We improve existing results by three aspects: our
algorithm performs better on SSGs with few random vertices, it is arguably much
simpler, and we provide new insight about the structure of optimal strategies.

Our algorithm performs much better on SSGs with few random vertices than
previously known algorithms. Indeed, its complexity is O( |VR|! · (log(|V |)|E| +
|p|) ), hence when there are no random vertices at all, our algorithm matches
the usual quadratic complexity for solving reachability games on graphs. When
the number of random vertices is fixed, our algorithm performs in polynomial
time, and on the class of SSGs such that |VR| ≤

√
|VMax| + |VMin| our algorithm

is sub-exponential.
Whereas the complexity is optimal when there are no random vertices, this is

no more the case when there are no vertices for player Max or Min. In that case,
there exists polynomial time algorithm, whereas the complexity of our algorithm
remains exponential in the number of random vertices.

Our algorithm is arguably simpler than previously known algorithms. Indeed,
it does not require use of linear or quadratic programming. Although linear
programs can be solved in polynomial time [Kac79, Ren88], this requires high-
precision arithmetic. By contrast, our algorithm is very elementary: it enumer-
ates permutations of the random vertices and for each permutation, it solves a
linear system of equations.

Our algorithm is also simpler because it applies directly to any kind of SSGs,
whereas previously known algorithms require the transformation of the input



Solving Simple Stochastic Games 209

SSG into a stopping SSG of quadratic size. As a consequence, we can use the
same algorithm for solving other types of infinite duration game; this is ongoing
work.

The full paper is available online [GH07].

Acknowledgments. We thank an anonymous referee for his very insightful and
helpful comments.

References

[Con92] Condon, A.: The complexity of stochastic games. Information and Computa-
tion 96, 203–224 (1992)

[Con93] Condon, A.: On algorithms for simple stochastic games. In: Advances in com-
putational complexity theory. DIMACS series in discrete mathematics and
theoretical computer science, vol. 13, pp. 51–73 (1993)

[Der72] Derman, C.: Finite State Markov Decision Processes. Academic Press, Lon-
don (1972)

[Dix82] Dixon, J.D.: Exact solution of linear equations using p-adic expansions. Nu-
merische Mathematik 40, 137–141 (1982)

[GH07] Gimbert, H., Horn, F.: Solving simple stochastic games with few random
vertices (2007), http://hal.archives-ouvertes.fr/hal-00195914/fr/

[Hal07] Halman, N.: Simple stochastic games, parity games, mean payoff games and
discounted payoff games are all LP-type problems. Algorithmica 49, 37–50
(2007)

[Kac79] Kachiyan, L.G.: A polynomial time algorithm for linear programming. Soviet
Math. Dokl. 20, 191–194 (1979)

[Lud95] Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation 117, 151–155 (1995)

[Ren88] Renegar, J.: A polynomial-time algorithm, based on newton’s method, for
linear programming. Mathematical Programming 40, 59–93 (1988)

[Sha53] Shapley, L.S.: Stochastic games. Proceedings of the National Academy of
Science USA 39, 1095–1100 (1953)

[Som05] Somla, R.: New algorithms for solving simple stochastic games. Electr. Notes
Theor. Comput. Sci. 119(1), 51–65 (2005)

http://hal.archives-ouvertes.fr/hal-00195914/fr/


The Shrinking Property for NP and coNP

Christian Glaßer1, Christian Reitwießner2, and Victor Selivanov2,�

1 Julius-Maximilians-Universität Würzburg, Germany
{glasser,reitwiessner}@informatik.uni-wuerzburg.de

2 A.P. Ershov Institute of Informatics Systems, Siberian Division of the Russian
Academy of Sciences, Russia

vseliv@nspu.ru

Abstract. We study the shrinking and separation properties (two no-
tions well-known in descriptive set theory) for NP and coNP and show
that under reasonable complexity-theoretic assumptions, both properties
do not hold for NP and the shrinking property does not hold for coNP.
In particular we obtain the following results.

1. NP and coNP do not have the shrinking property, unless PH is finite.
In general, ΣP

n and ΠP
n do not have the shrinking property, unless

PH is finite. This solves an open question from [25].
2. The separation property does not hold for NP, unless UP ⊆ coNP.
3. The shrinking property does not hold for NP, unless there exist NP-

hard disjoint NP-pairs (existence of such pairs would contradict a
conjecture by Even, Selman, and Yacobi [6]).

4. The shrinking property does not hold for NP, unless there exist
complete disjoint NP-pairs.

Moreover, we prove that the assumption NP �= coNP is too weak to
refute the shrinking property for NP in a relativizable way. For this we
construct an oracle relative to which P = NP ∩ coNP, NP �= coNP, and
NP has the shrinking property. This solves an open question by Blass
and Gurevich [2] who explicitly ask for such an oracle.

1 Introduction

The shrinking property and the separation property are well-known notions from
descriptive set theory. In this paper we study these notions with respect to
complexity classes like NP.

Definition 1. 1. A class C has the shrinking property, if for all A, B ∈ C there
exist disjoint sets A′, B′ ∈ C such that A′ ⊆ A, B′ ⊆ B, and A′∪B′ = A∪B.

2. A class C has the separation property, if for all disjoint A, B ∈ C there exists
an S ∈ C ∩ coC that separates A and B.

Both properties were introduced long ago in descriptive set theory (see e.g.
[16]) where they play an important role. A simple result states that the class
� Supported by RFBR grant 07-01-00543a.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 210–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Shrinking Property for NP and coNP 211

O of open subsets of the Baire space has the shrinking property but does not
have the separation property. Later the properties were studied in computability
theory (see e.g. [24]) and again it turned out that they are very important, in
particular due to their close relation to undecidability of first-order theories. In
particular, for many natural theories T the set of the sentences provable in T
and the set of the sentences false in a finite model of T are recursively (even
effectively) inseparable (see e.g. the survey [5] for additional details). Another
simple result states that the class RE of computably enumerable sets has the
shrinking property, but does not have the separation property. It turned out (see
e.g. [18]) that there is a deep and fruitful analogy between O (and more general
classes as e.g. levels of the Borel hierarchy) and RE (and more general classes
as e.g. levels of the arithmetical hierarchy). More recently it was shown [27,28]
that the shrinking and separation properties are also interesting for the theory
of finite automata on infinite words.

Note that the shrinking property is also known as the reduction property (see
e.g. [18,24]). We follow Blass and Gurevich [2] and use the first name in this
paper, because the word “reduction” has also a quite different meaning.

Since there is an analogy between NP and RE, complexity theorists started
to study the separation and shrinking properties for NP and coNP. While the
separation property was investigated rather comprehensively (see e.g. [10,11]),
the shrinking property was not considered systematically so far. In this respect,
Blass and Gurevich [2] and Selivanov [25] show some first results and identify
open questions. As one might expect, the status of both properties in the context
of complexity theory is not as clear as in computability theory or descriptive set
theory: they turn out to be closely related to some well-known conjectures.

In this paper we continue the study of the separation and shrinking proper-
ties in complexity theory, and we give evidence that NP does not have these
properties. We show that under reasonable complexity-theoretic assumptions
(like an infinite PH and UP �⊆ coNP) both properties do not hold for NP and
the shrinking property does not hold for coNP. Moreover, ΣP

n and ΠP
n do not

have the shrinking property, unless the PH is finite. This solves an open question
from [25]. We relate the shrinking and separation properties for NP to other well-
known notions. For example, we show that the shrinking property does not hold,
unless there exist NP-hard disjoint NP-pairs. The existence of such pairs contra-
dicts a conjecture that is related to security aspects of public-key cryptosystems
[6,12]. Moreover, the shrinking property does not hold for NP, unless there exist
complete disjoint NP-pairs. Such complete pairs are studied because of their re-
lations to the theory of propositional proof systems [22,23]. We will also see that
the shrinking property for NP is closely related to selectivity, nondeterministic
function classes and inverting polynomial-time computable functions [14].

Along with the above-mentioned oracle-independent results, we establish some
oracle separations. In particular, we prove that the assumption NP �= coNP is
too weak to refute the shrinking property for NP in a relativizable way. For
this we construct an oracle relative to which NP has the shrinking property and
(NP ∩ coNP) = P �= NP. It follows that relative to this oracle, NP ⊆ NPSV-sel



212 C. Glaßer, C. Reitwießner, and V. Selivanov

and NP �= coNP. Moreover, with our construction we solve an open problem by
Blass and Gurevich [2] who explicitly ask for such an oracle.

2 Preliminaries

2.1 Disjoint NP-Pairs

Even, Selman, and Yacobi [6,7] showed that the security of public-key cryptosys-
tems depends on the computational complexity of certain promise problems.
Such problems can be written as pairs of disjoint sets, and it turned out that
pairs of disjoint NP-sets are crucially important for the analysis of the cracking
problem for public-key cryptosystems.

A disjoint NP-pair is a pair of nonempty sets A and B such that A, B ∈ NP
and A ∩ B = ∅. Let DisjNP denote the class of all disjoint NP-pairs. Given a
disjoint NP-pair (A, B), a separator is a set S such that A ⊆ S and B ⊆ S (i.e.,
S separates (A, B)). Let Sep(A, B) denote the class of all separators of (A, B).

Fortnow and Rogers [9] investigated the existence of disjoint sets in NP (resp.,
coNP) that are P-inseparable. Grollman and Selman [12] showed that certain
one-way functions exist if and only if there exists a disjoint NP-pair (A, B) that
is P-inseparable (i.e., Sep(A, B) ∩ P = ∅).
Definition 2 ([12,23,17]). Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D), (A, B)≤pp
m (C, D),

if for every separator T ∈ Sep(C, D), there exists a separator S ∈ Sep(A, B)
such that S≤p

mT .
2. (A, B) is uniformly many-one reducible in polynomial-time to (C, D), (A, B)
≤pp

um(C, D), if there exists a polynomial-time computable function f such that
for every separator T ∈ Sep(C, D), there exists a separator S ∈ Sep(A, B)
such that S≤p

mT via f .
3. Analogously one defines Turing reducibility and uniform Turing reducibility.

Theorem 1 ([12,23,11]). For all disjoint pairs (A, B) and (C, D),

(A, B)≤pp
T (C, D) ⇔ (A, B)≤pp

uT(C, D)
(A, B)≤pp

m (C, D) ⇔ (A, B)≤pp
um(C, D)

⇔ there is a polynomial-time-computable total function f such
that f(A) ⊆ C and f(B) ⊆ D.

Razborov [23] and Pudlák [22] showed that disjoint NP-pairs are closely related
to propositional proof systems. For example, if optimal propositional proof sys-
tems exist, then there exist complete disjoint NP-pairs. A disjoint pair (A, B) is
≤pp

m -complete (resp., ≤pp
T -complete) for the class DisjNP if (A, B) ∈ DisjNP and

for all disjoint pairs (C, D) ∈ DisjNP, (C, D)≤pp
m (A, B) (resp., (C, D)≤pp

T (A, B)).

Definition 3. Let (A, B) ∈ DisjNP and let ≤r be from {≤pp
m ,≤pp

T ,≤pp
um,≤pp

uT}.

1. X ≤r (A, B)
df⇐⇒ (X, X) ≤r (A, B).



The Shrinking Property for NP and coNP 213

2. (A, B) is ≤pp
m -hard for NP

df⇐⇒ SAT≤pp
m (A, B).

3. (A, B) is ≤pp
T -hard for NP (NP-hard for short)

df⇐⇒ SAT≤pp
T (A, B).

The following conjecture is due to Even, Selman, and Yacobi.

Conjecture 1 ([6]). There is no NP-hard disjoint NP-pair.

If this conjecture is true, then no public-key cryptosystem is NP-hard to crack
(see Theorem 2 for more consequences). Homer and Selman [15] construct a
relativized world where P �= NP, but all disjoint NP-pairs are P-separable. In
particular, Conjecture 1 holds in this world.

2.2 Function Classes

The study of NP search problems and the difficulty of inverting polynomial-time
computable functions led to the notion of partial, multivalued functions that are
computable by NP-machines. For each partial, multivalued function f , set-f(x)
denotes the set of values of f on input x. If f(x) is undefined, then set-f(x) = ∅.
Definition 4 ([3]). We define some function classes:

1. NPMV is the class of partial, multivalued functions f for which there is
a nondet. polynomial-time machine N such that for every x, it holds that
set-f(x) = {y ∣

∣ N(x)hasan accepting path that outputs y}.
2. NPkV df={f ∈ NPMV

∣
∣ ∀x, |set-f(x)| ≤ k} where k ≥ 1

3. NPSV df= NP1V (the class of partial, singlevalued NPMV-functions)
4. NPbV df={f ∈ NP2V

∣
∣∀x, set-f(x) ⊆ {0, 1}}

5. PF is the class of partial functions computable in (det.) polynomial time.
6. For any class of functions F , let Ft df={f ∈ F ∣

∣ f is total }.
For partial, multivalued functions f and g, we say that g is a refinement of f , if
for all x, g(x) is defined if and only if f(x) is defined, and set-g(x) ⊆ set-f(x).
For function classes F and G we write F ⊆c G, if for every f ∈ F there exists a
g ∈ G such that g is a refinement of f .

Selman [30] gives a systematic comparison of classes of functions that are
computed by nondeterministic polynomial-time transducers. Moreover, this pa-
per identifies relations between these function classes and disjoint NP-pairs. A
comprehensive overview of function classes can be found in [31].

Fenner et al. [8] introduced and studied the class NPbV. In particular, the
paper investigates and gives several equivalent formulations of the hypotheses
NPMVt ⊆c PF and NPbVt ⊆c PF. For example, the latter is equivalent to the
hypothesis that all disjoint pairs of coNP-sets are P-separable.

Definition 5 ([29,13,14]). Let F be any class of functions (possibly multival-
ued and/or partial). A set A is F -selective if there is a function f ∈ F such that
for every x and y it holds that set-f(x, y) ⊆ {x, y} and ({x, y} ∩ A �= ∅ ⇒ ∅ �=
set-f(x, y) ⊆ A). By F-sel we denote the class of sets that are F-selective.



214 C. Glaßer, C. Reitwießner, and V. Selivanov

Theorem 2 ([6,12,30]). If Conjecture 1 holds, then NP �= coNP, NP �= UP,
NPMV �⊆cNPSV, and no public-key cryptosystem is NP-hard to crack.

A polynomial-time computable function f is honest, if there is a polynomial q
such that for every y in the range of f there exists an x in the domain of f such
that f(x) = y and |x| ≤ q(|y|).

There are several equivalent formulations of the hypothesis NPMV ⊆c NPSV.
Later we will show that one can add the shrinking property for NP to this list
of equivalent formulations.

Theorem 3 ([30,14]). The following are equivalent:

1. NPMV ⊆c NPSV
2. NP2V ⊆c NPSV
3. SAT ∈ NPSV-sel
4. NP ⊆ NPSV-sel
5. The inverses of honest functions in PF have refinements in NPSV.

Hemaspaandra et al. [14] use selectivity to show that the assertions above (e.g.
NPMV ⊆c NPSV) imply a collapse of the polynomial-time hierarchy. Their proof
relativizes to all oracles [14]. Naik et al. [20] improve this result and show that the
output-multiplicity hierarchy {NPkV}k≥1 is infinite unless the polynomial-time
hierarchy collapses.

Theorem 4 ([14]). If NP ⊆ NPSV-sel then ZPPNP = PH.

We are going to study the relationships between the following assertions.

Definition 6. Define the following assertions.

A1: DisjNP does not have a ≤pp
T -complete disjoint pair.

A2: DisjNP does not have a ≤pp
m -complete disjoint pair.

A3: There is no NP-hard disjoint NP-pair.
A4: The separation property does not hold for coNP.
A4′: NPbVt �⊆c NPSV.
A5: UP �⊆ coNP.
A6: The PH is infinite.
A7: The separation property does not hold for NP.
A8: The shrinking property does not hold for NP.
A8′: NPMV �⊆c NPSV.
A9: The shrinking property does not hold for coNP.
A9′: There is no disjoint NP-pair that is ≤pp

m -hard for NP.
A9′′: NP �= coNP.
A10: There is a P-inseparable, disjoint NP-pair.

Proposition 1. A4 ⇒ A8, A7 ⇒ A9, ¬A9′′ ⇒ (¬A4∧¬A7∧¬A8∧¬A9).

Theorem 5 ([11]). A1 ⇒ A2 ⇒ A9′, A1 ⇒ A3 ⇒ A9′, A9′ ⇔ A9′′.



The Shrinking Property for NP and coNP 215

Fig. 1. Summary of the obtained results. Normal arrows denote relativizable implica-
tions, crossed-out arrows denote implications that do not hold relative to some oracle.
Assertions that share a box are equivalent.

In the following we establish new relationships between the assertions given in
Definition 6. Fig. 1 gives a summary of the relationships and their relativizability.
In particular, we will answer the following open questions:

Open Problem 1 [2, problem 3]: Find an oracle relative to which the shrink-
ing property holds for NP but NP �= coNP. Better yet, find an oracle relative to
which the shrinking property holds for NP and (NP ∩ coNP) = P �= NP.

Open Problem 2 [25]: Is there an oracle relative to which the polynomial-time
hierarchy does not collapse and for all n ≥ 1, ΣP

n (resp., ΠP
n ) has the shrinking

property?

In Theorem 12 we construct the oracle that is asked for in the first problem.
The Corollaries 1 and 2 will give negative answers to the second question.

3 Connections to Reasonable Assumptions

In this section we establish implication relationships between the introduced no-
tions. Our results imply that, under reasonable complexity-theoretic assumptions
like an infinite PH and UP �⊆ coNP, the shrinking and separation properties do
not hold for NP and the shrinking property does not hold for coNP. In particular,



216 C. Glaßer, C. Reitwießner, and V. Selivanov

we will relate the shrinking and separation properties to well-known notions like
the classes ΣP

n and ΠP
n of the PH, the function classes NPMV and NPSV, NP-

hard disjoint NP-pairs, and complete disjoint NP-pairs.
Moreover, with the Corollaries 1 and 2 we will solve the open problem in [25]

that is mentioned at the end of Section 2.
First let us relate the shrinking property for NP to known and well-understood

classes of functions that are computable in nondeterministic, polynomial time.
As a consequence, the shrinking property for NP is equivalent to all hypotheses
mentioned in Theorem 3. From a result by Hemaspaandra et al. [14] it then
follows that the shrinking property does not hold for NP, unless the PH collapses
to its second level. Later we will see that this evidence is optimal in the sense
that relativizable techniques cannot strengthen the collapse to the first level.
Moreover, the collapse consequence of the shrinking property for NP solves an
open question from [25].

Theorem 6. NP has the shrinking property ⇔ NPMV ⊆c NPSV.

The last theorem together with a result by Hemaspaandra et al. [14] immediately
implies a collapse of the PH, if NP has the shrinking property. This solves the
ΣP

n -part of the open problem in [25] (the second open problem that is mentioned
at the end of Section 2).

Corollary 1. For n ≥ 1, the shrinking property for ΣP
n implies ZPPΣP

n = PH.
In particular, the shrinking property for NP implies ZPPNP = PH.

Theorem 7. NP has the shrinking prop. ⇒ NP-hard disjoint NP-pairs exist.

Remark 1. Interestingly, the analog of the last theorem in computability theory
is false, i.e., RE has the shrinking property and the analog of Conjecture 1 holds:
There exists an m-complete disjoint pair (equivalently, an effectively inseparable
pair) (A, B) of computably enumerable sets (see e.g. [24]), but every disjoint
pair of computably enumerable sets can be separated by some set whose degree
is strictly less than 0′ [32].

Theorem 8. coNP has the shrinking property ⇔ NP = coNP.

Since Theorem 8 is relativizable, we can solve the ΠP
n -part of the open problem

in [25]. Together with Corollary 1 this completely solves that problem.

Corollary 2. For n ≥ 1, ΠP
n has the shrinking property ⇔ ΣP

n = ΠP
n .

Theorem 9. NP has the shrinking prop. ⇒ DisjNP has ≤pp
m -complete pairs.

Theorem 10. UP �⊆ coNP ⇒ the separation property does not hold for NP.

Theorem 11. coNP has the separation property ⇔ NPbVt ⊆c NPSV.

We remark that all results in this section are relativizable.



The Shrinking Property for NP and coNP 217

4 Oracle Separations

We now concentrate on those implications between the assertions A1–A10 that
were left open in Section 3. For most of them we can find oracle constructions
showing that the implication cannot be established by relativizable techniques.

The main result in this section is the construction of an oracle relative to
which NP has the shrinking property and (NP ∩ coNP) = P �= NP. This oracle
has three applications: First, it provides a relativized world in which some of the
open implications do not hold. Second, it shows that the assumption NP �= coNP
is too weak to refute the shrinking property for NP with relativizable techniques.
Third, with this oracle we solve an open problem by Blass and Gurevich [2] who
explicitly ask for the existence of such an oracle.

Theorem 12. There exists an oracle O relative to which the following holds:

1. NP has the shrinking property.
2. P = NP ∩ coNP.
3. UP �⊆ coNP.

Corollary 3. Relative to the oracle O in Theorem 12, all of the following holds:
¬A1, ¬A2, ¬A3, ¬A4, A5, A7, ¬A8, A9, A9′, A9′′, A10, ZPPNP = PH.

Recall that Hemaspaandra et al. showed that NP ⊆ NPSV-sel implies a collapse
of the polynomial hierarchy to ZPPNP. Our oracle constructed in Theorem 12
shows that relativizable techniques cannot strengthen this collapse to NP.

Corollary 4. There is an oracle relative to which NP ⊆ NPSV-sel and NP �=
coNP.

Reversely, Corollary 1 shows that there is no oracle relative to which NP has
the shrinking property and ΣP

2 �= ΠP
2 . In this sense the oracle constructed in

Theorem 12 is nearly optimal.

Theorem 13 ([15]). There exists an oracle O relative to which all of the fol-
lowing holds: ¬A1, ¬A2, A3, ¬A5, ¬A7, A8, A9, A9′, A9′′, ¬A10.

Theorem 14. We summarize known oracle constructions.

1. There exists an oracle relative to which all NP-pairs are P-separable, but
coNP does not have the separation property. (A4 �⇒ A10) [9, Theorem 3.3].

2. There exists an oracle relative to which coNP has the separation property,
but NP does not have the separation property. (A7 �⇒ A4) [9, Theorem 3.5]

3. There exists an oracle relative to which NP and coNP do not have the sep-
aration property and UP ⊆ coNP. (A7 ∧A4 �⇒ A5) [9, Theorem 3.4]

4. There exists an oracle relative to which there are no NP-hard disjoint NP-
pairs, but there exist ≤pp

m -complete disjoint NP-pairs. (A3 �⇒ A2) [11, The-
orem 6.1]

5. There exists an oracle relative to which NP2V �⊆c NPSV, but NP2Vt ⊆c
PF ⊆ NPSV. In particular, NPMV �⊆c NPSV and NPbVt ⊆c NPSV.
(A8′ �⇒ A4′) [20, Corollary 6]



218 C. Glaßer, C. Reitwießner, and V. Selivanov

6. There exists an oracle relative to which NP2V �⊆c NPSV and PH = ΔP
2 . In

particular, NPMV �⊆c NPSV and PH is finite. (A8′ �⇒ A6) [20, Theorem 5]
7. There exists an oracle relative to which UP �= NP = PSPACE. In particular,

P �= NP ∩ coNP and hence P-inseparable disjoint NP-pairs exist. (A10 �⇒
A9′′) [21, Lemma 4.7]

8. There exists an oracle relative to which P = NP ∩ coNP �= UP, NPMVt ⊆c
NPSVt, and PH is infinite. Here coNP has the separation property and UP �⊆
coNP. (A5 ∧A6 �⇒ A4) [4]

9. Relative to a random oracle, NP �= coNP, NP �= UP, and NPMV �⊆c NPSV.
In particular, neither NP nor coNP have the shrinking property. [1,19,20]

5 Conclusions and Open Questions

The results of this paper show that, similar to descriptive set theory and com-
putability theory, the separation and shrinking properties are important also for
complexity theory, because they are closely related to many other fundamental
notions. In contrast to descriptive set theory and computability theory, these
properties are probably false for complexity classes like NP or coNP, because
they contradict widely believed conjectures. The negative solution to the prob-
lem in [25] gives a clear evidence that the refinements of the PH studied in [25]
behave probably much worse than the analogous refinements of the Borel hierar-
chy in descriptive set theory and of the arithmetical hierarchy in computability
theory (see [26] for additional details).

Our summary in Fig. 1 motivates several open problems. In particular, we
would like to know answers for the following questions:

1. Does an infinite PH imply that the separation property does not hold for
NP (resp., coNP)?

2. Is there an oracle relative to which A8 �⇒ A3? By Theorem 2 and Corollary 1
it suffices to construct an oracle relative to which UP = NP and ΣP

2 �= ΠP
2 .

However, it is a known open question whether such a relativized world exists.
An even stronger result would be an oracle relative to which A2 �⇒ A3.

References

1. Bennett, C., Gill, J.: Relative to a random oracle PA �= NPA �= coNPA with
probability 1. SIAM Journal on Computing 10, 96–113 (1981)

2. Blass, A., Gurevich, Y.: Equivalence relations, invariants, and normal forms. SIAM
Journal on Computing 13(4), 682–689 (1984)

3. Book, R.V., Long, T., Selman, A.L.: Quantitative relativizations of complexity
classes. SIAM Journal on Computing 13, 461–487 (1984)

4. Buhrman, H., Fortnow, L., Koucký, M., Rogers, J.D., Vereshchagin, N.K.: Inverting
onto functions and polynomial hierarchy. In: Diekert, V., Volkov, M.V., Voronkov,
A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 92–103. Springer, Heidelberg (2007)

5. Ershov, Y.L., Lavrov, I.A., Taimanov, A.D., Taitslin, M.A.: Elementary theories.
Uspechi Matematicheskikh Nauk. 20(4), 37–108 (1965); In Russian, English trans-
lation: Russian Mathematical Surveys, 20(4), 35–105 (1965)



The Shrinking Property for NP and coNP 219

6. Even, S., Selman, A.L., Yacobi, J.: The complexity of promise problems with ap-
plications to public-key cryptography. Information and Control 61, 159–173 (1984)

7. Even, S., Yacobi, Y.: Cryptocomplexity and NP-completeness. In: de Bakker, J.W.,
van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 195–207. Springer, Heidel-
berg (1980)

8. Fenner, S., Fortnow, L., Naik, A., Rogers, J.: On inverting onto functions. In:
Proceedings 11th Conference on Computational Complexity, pp. 213–223. IEEE
Computer Society Press (1996)

9. Fortnow, L., Rogers, J.: Separability and one-way functions. In: Du, D.-Z., Zhang,
X.-S. (eds.) ISAAC 1994. LNCS, vol. 834. Springer, Heidelberg (1994)

10. Glaßer, C., Selman, A.L., Sengupta, S.: Reductions between disjoint NP-pairs.
Information and Computation 200, 247–267 (2005)

11. Glaßer, C., Selman, A.L., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM Journal
on Computing 33(6), 1369–1416 (2004)

12. Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems.
SIAM Journal on Computing 17(2), 309–335 (1988)

13. Hemachandra, L.A., Hoene, A., Ogiwara, M., Selman, A.L., Thierauf, T., Wang,
J.: Selectivity. In: Proceedings 5th International Conference on Computing and
Information, pp. 55–59. IEEE Computer Society (1993)

14. Hemaspaandra, L., Naik, A., Ogihara, M., Selman, A.L.: Computing solutions
uniquely collapses the polynomial hierarchy. SIAM Journal on Computing 25, 697–
708 (1996)

15. Homer, S., Selman, A.L.: Oracles for structural properties: The isomorphism prob-
lem and public-key cryptography. Journal of Computer and System Sciences 44(2),
287–301 (1992)

16. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1994)

17. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for
promise classes. Information and Computation 184(1), 71–92 (2003)

18. Moschovakis, Y.N.: Descriptive Set Theory. North Holland, Amsterdam (1980)

19. Naik, A.: The structural complexity of intractable search functions. PhD thesis,
State University of New York, Buffalo (1994)

20. Naik, A., Rogers, J., Royer, J., Selman, A.L.: A hierarchy based on output multi-
plicity. Theoretical Computer Science 207, 131–157 (1998)

21. Ogiwara, M., Hemachandra, L.: A complexity theory of feasible closure properties.
Journal of Computer and System Sciences 46, 295–325 (1993)

22. Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 621–632. Springer, Hei-
delberg (2001)

23. Razborov, A.: On provably disjoint NP-pairs. Technical Report TR94-006, Elec-
tronic Colloquium on Computational Complexity (1994)

24. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1967)

25. Selivanov, V.L.: Two refinements of the polynomial hierarchy. In: Enjalbert, P.,
Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 439–448.
Springer, Heidelberg (1994)

26. Selivanov, V.L.: Fine hierarchies and boolean terms. Journal of Symbolic Logic 60,
289–317 (1995)

27. Selivanov, V.L.: Fine hierarchy of regular omega-languages. Theoretical Computer
Science 191(1-2), 37–59 (1998)



220 C. Glaßer, C. Reitwießner, and V. Selivanov

28. Selivanov, V.L.: Fine hierarchy of regular aperiodic omega-languages. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 399–410.
Springer, Heidelberg (2007)

29. Selman, A.L.: P-selective sets, tally languages, and the behavior of polynomial-time
reducibilities on NP. Mathematical Systems Theory 13, 55–65 (1979)

30. Selman, A.L.: A taxonomy on complexity classes of functions. Journal of Computer
and System Sciences 48, 357–381 (1994)

31. Selman, A.L.: Much ado about functions. In: Proceedings 11th Conference on Com-
putational Complexity, pp. 198–212. IEEE Computer Society Press (1996)

32. Shoenfield, J.R.: Degrees of models. Journal of Symbolic Logic 25(3), 233–237
(1960)



On the Hardness of Truthful Online Auctions

with Multidimensional Constraints

Rica Gonen

Yahoo! Research Labs
701 First Street

Sunnyvale, CA 94089
gonenr@yahoo-inc.com

Abstract. This paper assess the prospect of creating truthful mecha-
nisms for sponsored search auctions where advertisers have budget and
time constraints. While the existing impossibility in this area by [4] ad-
dresses the situation where advertisers have budget limitations and static
prices but not time limitations; our result applies to the common setting
in practice where advertisers have time and budget limitations, prices
are dynamic and advertisers act strategically on their time limitation as
well as their budget.

We show that in cases where advertisers’ arrival and departure times
are private information, no truthful deterministic mechanism for bud-
geted sponsored search with time constrained advertisers can perform
well with respect to social welfare maximization. Essentially, to protect
itself from advertisers’ time manipulation a truthful mechanism must
give up significant social welfare.

It is also shown that even in cases where advertisers’ arrival and de-
parture times are known to the mechanism, the existence of advertiser
budgets is itself a problem. In this case a budgeted sponsored search
mechanism with time constrained advertisers can not achieve non-trivial
welfare approximation when using a local pricing scheme (a player pric-
ing history is not taken into account). Also, it is shown that for a dynamic
global pricing scheme no such truthful mechanism exists.

1 Introduction and Related Work

In the last three years sponsored search auctions have gained much attention
(e.g., [5,14]) due to their implications on the profitability of the three major
search engines, i.e., Yahoo!, Google, and MSN. In a general sponsored search
auction advertisers bid on a set of keywords (sometimes with budget constraints
as in [3,14,15]) and a search engine allocates each keyword to the highest K bid-
ding advertisers’ ads and charges every allocated advertiser a price for presenting
his ad if the ad is clicked on by the user.

When approaching the design of a sponsored search auction one may consider
several challenging problems; budget constraints, incentives, and the online na-
ture of the problem.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 221–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



222 R. Gonen

Budget constraints: As advertisers are charged only for their clicked ads,
search engines look to maximize advertisers’ expected value. As such, for ev-
ery keyword the advertisers are ranked according to their reported value per
click multiplied by their click-through rate. The click-through rate is an esti-
mated parameter by nature and since the demand for keywords can be large,
advertisers find themselves in a situation where they have no control over the
overall payment the search engine will require them to pay for services rendered.
For this reason many advertisers prefer to mitigate their risk by reporting a
budget limitation in addition to their value per click. Consequently the bud-
geted sponsored search auction can be understood as modeling a risk-neutral
advertiser who enters a multi-unit auction for click-throughs and is interested
in a finite number of click-throughs. Of course, it would be easier to explicitly
state the number of click-throughs desired but a budget is a good proxy for this
expressiveness when lacking complete information on the cost of clicks.

The online nature of the problem: Sponsored search auctions are traditionally
viewed as online auctions due to the online demand presented by user queries
for keywords. Another online aspect less considered in the literature is the online
fashion in which advertisers can submit their advertising requests. An advertiser
my submit a bid for a keyword and a budget constraint for the next half day and
then return and submit his bid a week later when a new advertising campaign is
launched. It is well known that the search engines companies are facing strategic
behavior of advertisers with regards to timing their participation in the system.

Incentives: As advertisers are utility maximizers and would like to minimize
their cost for the ad referrals they receive they may misreport their value per
click, their budget constraints, or even manipulate the times at which they re-
quest the search engine to consider their bid.

1.1 Previous Work

The sponsored search auctions currently in use charge every allocated adver-
tiser a ”generalized second price” for presenting the ad (if it was clicked on).
Unfortunately as was shown in [5,7] the prices charged by the ”generalized sec-
ond price” payment scheme do not incent advertisers to reveal their true value
for getting a click on a keyword when more then a single ad is presented on
a page (which in practice is usually the case). For the basic model where ad-
vertisers have no budget constraints and are present in a single page auction,
some schemes are suggested to overcome the incentive problem when designing
an incentive-compatible sponsored search auction mechanism (e.g., [2,9]).

The budget-constrained bidding format imposes challenges on welfare max-
imization and revenue maximization regardless of the incentive issues. Several
attempts were made to investigate the welfare/revenue maximization problem in
sponsored search auctions with budget-constrained advertisers. [3,14] assumed
that advertisers report their true value and budget while [1,4,15] investigated
revenue maximization while guaranteeing the truthful behavior of advertisers.

Unlike the non budgeted basic model that was shown to be truthful and
to maximize welfare, the budget constrained sponsored search auction can not



On the Hardness of Truthful Online Auctions 223

maximize welfare while maintaining truthfulness, as was show by [4]. [4]’s model
studies a multi-unit auction with multiple players each of whom has a private
valuation and budget. In the context of sponsored search this model assumes
that all advertisers are constantly present in the auction. Essentially [4]’s im-
possibility shows that any such truthful auction will allocate all units (keyword
impressions) to a single player (advertiser) while the remaining advertisers will
not be allocated any keyword. Such an allocation is imposed by a truthful mech-
anism as the single allocated player induces high prices for all other players,
who end up unable to win any of the units. The winning player on the other
hand enjoys lower prices induced by the other players. As the winning player is
budget constrained he will not be able to buy all the units, which is the source of
the inefficiency. When taking into consideration the [4] model in the sponsored
search auction context one must note an interesting subtlety: Units (keywords)
are allocated sequentially after the winning advertiser expends his budget and
he leaves the auction, at this point in time the mechanism’s inefficiency might
be saved if prices are recalculated using only the remaining advertisers. Another
way in which the inefficiency presented by [4] can potentially be saved is with the
introduction of a time constraint under which the budget can be used. Our model
extends [4] as it consider an online sponsored search as well as time constrained
advertisers.

1.2 Our Results

This paper investigates the complete model in which incentive compatibility,
budget constraints, and time constraints are taken into consideration in the con-
text of a sponsored search auction. Two types of pricing schemes are investigated.
The first is the local pricing scheme where prices of a keyword auction in time
period t are determined independent of other same-keyword auctions in time
periods τ �= t. The second is the global pricing scheme where prices of a keyword
auction in time period t can be dependent on local prices of other same-keyword
auctions in time periods τ �= t. The two types of pricing schemes are examined
in two forms: the dynamic form and the static form. Unfortunately the picture
revealed by this paper is not very encouraging with respect to designing truthful
(dominant strategy) time-constrained and budget-constrained sponsored search
mechanisms as all of the results presented are impossibility results.

We divide the paper into two parts. In the first part the model assumes that
every advertiser has four private parameters; value per click, budget, arrival
time, and departure time. The main theorem in this part shows that no truthful
mechanism with any pricing scheme (local or global) can achieve a non-trivial
social welfare in a time-constrained budget-constrained sponsored search mecha-
nism. The above theorem is shown for local pricing schemes. We then show that
no global pricing scheme in this setting can be truthful. In the second part we
relax the assumption that advertisers’ time constraints are private values and
assume that the mechanism knows the advertisers’ true time constraints.

The results in this section do not lead to more encouraging conclusions. The
main theorem in the second part, similar to the first section, shows that no



224 R. Gonen

truthful mechanism with any pricing scheme (local or global) can achieve a non-
trivial social welfare in time-constrained budget-constrained sponsored search
mechanisms. The later theorem is shown for local pricing schemes. The global
pricing scheme divides into a dynamic and a static form. The dynamic
global pricing scheme is shown not to be truthful in this case while the
static global pricing scheme although truthful can not always guarantee a non-
trivial social welfare. Our results extends [4] paper even in the case of static
global pricing scheme where all advertisers has identical time constraints as [4]
only prove their impossibility result for two players and two goods while our
result can handel N advertisers and M goods.

There are two positive results in the existing literature that achieve non-trivial
welfare maximization and truthfulness. Let us explain these mechanisms in the
context of our impossibility result. The first mechanism is a positive result de-
signing a δ-gain truthful time-constrained budget-constraint sponsored search
mechanism and was given in [10]. The result uses a global pricing scheme and
allows for dominant strategy δ-gain truthful behavior. Essentially the δ-gain con-
cept allows a player a small bounded gain from lying and by that discourages
advertisers from manipulating the system. Since the mechanism is not strictly
truthful it is not covered by our result. The second positive result is from [15].
[15]’s result achieves a truthful welfare maximizing budget-constrained spon-
sored search mechanism. The mechanism presented is a global static pricing
scheme in a setting where advertisers are not time constrained at all (whether
the mechanism knows their time parameters or not). Therefore one might think
that [15]’s result should fall under the impossibility result of [4], but this is not
the case as impressions of keywords are allocated randomly to advertisers, thus
creating a randomized algorithm while [4] and our impossibility results refer to
deterministic designs.

Finally our main impossibility result is inspired by [11]. This paper presented
an impossibility result for online ascending auctions with gradually expiring
items. [11]’s setting and context is of a scheduling problem. As such, our setting
differs from theirs by introducing demand that results from a budget constraint
and not a unit demand.

Some other literature [6] considered online mechanisms with time parameter.
[6] work differ significantly from ours as they assume only arrival time as a
parameter and no departure time. In addition unlike our setting they do not
consider the lies of reporting an earlier arrival time than the true one.

There are also several previous works in the economic literature that address
Bayesian budget constraints for single-item settings e.g., [13]. Our work, like [4]
and unlike the existing economic literature, considers dominant strategy imple-
mentations.

This paper is organized in the following way: in the next section we formally in-
troduce our model and give the necessary definitions. In section 3 we present our
impossibility results that assume advertisers have time constrained private pa-
rameters. In section 4 we relax the former assumption and conclude in section 5.



On the Hardness of Truthful Online Auctions 225

2 Model and Definitions

In our model N risk-neutral, utility-maximizing advertisers bid for advertising
slots based on a keyword. This paper focuses on the bidding process for a single
keyword, though the results easily extend to multiple keywords. It is therefore
supposed w.l.o.g. that the keyword appears at every time t. Whenever that
keyword appears in the search at time t, Kt slots of advertisements appear in
the search results.

The mechanism used to derive the impossibility results are assumed to run
from time starting at t = 1 and end at t = T . Each time period is called a round.
During each round the mechanism allocates advertisers to the Kt slots or to some
portion of the slots if there are too many slots. The mechanism also assumes that
all slots offered in a single time round are of identical ”quality”. However, the
impossibility easily extends to the case where slots are not of equal quality.

Advertisers arrive and depart the system in an online manner and may arrive
and depart several times. Each advertiser i has a private value per click (inde-
pendent of the slot the ad originally appeared in) which is denoted by vi. For
every arrival and departure each advertiser i also has an arrival and departure
time, denoted ai and li respectively, and a privately known budget denoted bi.
In section 3 we assume that arrival and departure times are privately known pa-
rameters to each advertiser. In 4 we relax this assumption and assume that the
advertisers true arrival and departure times are known to the mechanism, which
is used to further elucidate impossibilities around this setting. The mechanism
objective function is to maximize social welfare, i.e.,

∑
i∈N ωivi where ωi is the

number of clicks resulting from the allocation constructed by the mechanism.
We also assume advertisers have quasi-linear utilities (as long as their budget is
not expended, in which case an advertiser’s utility is unboundedly small) and
that every advertiser will act rationally in order to maximize his own utility:
his obtained overall value from clicks minus his price. An advertiser may arrive
before at or after his true arrival time and declare any value or budget and any
deadline1.

Since our advertisers are budget constrained and are charged for the clicks
they receive, we denote i’s remaining budget at time t as Bt

i ≥ 0.
Our work focuses on exploring the design possibilities of a truthful budget-

constrained, time-constrained sponsored search mechanisms and therefore we
start by defining a truthful in dominant strategy budget-constrained, time-
constrained sponsored search mechanism.

Let Si be the domain of all advertiser i’s vectors of types si = (ai, li, vi, bi),
and let S−i = ×j �=iSj . By the revelation principle it is enough to consider direct
revelation mechanisms.

Consider the number of clicks resulting from the allocation constructed by the
mechanism upon receiving the type si ∈ Si from player i and s−i ∈ S−i from
the other players, and denote that number ωi.

1 The true arrival time can be think of in this context as a start time of an advertising
campaign.



226 R. Gonen

Definition 1. Truthfulness (in dominant strategies) An online budget con-
strained, time constrained, sponsored search mechanism is truthful if there exist
price functions pi : S1× . . .×Sn → R such that for any i, any s−i ∈ S−i, any true
type si ∈ Si, and any s̄i �= si

ωivi − pi(si, s−i) ≥ ω̄ivi − pi(s̄i, s−i)

This paper presents a number of impossibility results for sponsored search mech-
anisms, some of which depend on the pricing scheme structure.

The following definitions presents two types of pricing schemes in the spon-
sored search auction mechanism: one in which prices are determined locally and
the other in which prices are determined globally. The locally determined pricing
scheme computes the price of a click for advertiser i at time t by considering
only advertisers that are present at time t (other than i). The globally deter-
mined pricing scheme computes the price of a click for advertiser i at time t by
considering all local prices until time t. The reason to consider the local prices
until time t and not the local prices of all times is that the global pricing scheme
is an online pricing scheme and therefore only has a look back. For an example
of a global pricing scheme used in an online mechanism see [10]. We proceed by
the formal definitions:

Let St
−i be the domain of all advertisers’ (except for i) vectors of types such

that for all s−i ∈ S−i, s−i = (a−i, l−i, v−i, b−i) and t ∈ [a−i, l−i].

Definition 2. A pricing scheme is called a local pricing scheme if for every
advertiser i and every time t there exists a price function pL

i : St
−i → R.

Definition 3. A pricing scheme is called a global pricing scheme if for every
advertiser i and every time t there exists a price function pG

i : pL
i (S1

−i), .., p
L
i (St

−i)
→ R.

3 First Impossibility: With Private Time Parameters

In this section we focus our attention on showing our main theorem. The main
theorem proves that no truthful deterministic mechanism for budget-constrained
time-constrained sponsored search with private time parameters for advertisers
can perform well with respect to social welfare maximization. Essentially the
proof shows that in order to protect itself from advertisers’ time manipulation a
truthful mechanism must give up most of the social welfare.

To prove the theorem we utilize a claim which shows that in order to maintain
advertisers’ truthful behavior a mechanism that uses a local pricing scheme must
allocate the advertiser in the lowest priced period where he is available.

Naturally the theorem also applies to the simple setting where advertisers are
only interested in a single click and their budget is their value per click.

As the our claim discuss social welfare performance of the mechanism we will
use the following definition of c-approximation mechanism.

Definition 4. A mechanism is a c-approximation to the social welfare if for any
s ∈ S and any allocation of the mechanism, the social welfare obtained in the
allocation is at least a 1/c fraction of the optimal social welfare with respect to s.



On the Hardness of Truthful Online Auctions 227

In the theorem below we benchmark the performance of the algorithm’s social
welfare maximization to the number of web pages presented to the algorithm.
The number of web pages presented is assumed to be δM where δ is some positive
constant. To ease the understanding of the theorem’s proof we fist demonstrate
it assuming M web pages presented to the algorithm with advertisers’ budget
which is small (equal to their value) and then extend the proof to show the result
for advertiser with large budget (equal to δ times their value) while assuming
δM web pages presented.

The proofs of theorem 1 and claim 3 can be found in the full paper [8].

Theorem 1. Any truthful deterministic mechanism for an online budget con-
strained, time constrained, sponsored search auction cannot always obtain more
than O(1/(δM)) fraction of the optimal welfare where advertisers have private
time parameters.

Claim. Set some c-approximation truthful deterministic mechanism. Then, for
any player i and any time t ∈ [ai, li] there exists a price function pt

i : St
−i → R

such that, for any combination of players st
−i, if vi ≤ bi then:

– If vi > pt
i(s

t
−i) and pt

i(s
t
−i) < pt′

i (st′
−i) for all t′ �= t, ai ≤ t′ ≤ li then i is

allocated at time t and pays pt
i(s

t
−i) if he is clicked on.

– If vi < pt
i(s

t
−i) then i is not allocated a slot.

Although theorem 1 shows that any truthful deterministic mechanism for an
online budget-constrained time-constrained sponsored search auction cannot al-
ways obtain more than O(1/(δM)) fraction of the optimal welfare it is implied
by the proof’s construction that there exists a truthful deterministic mechanism
that always obtains at least 1/(δM) fraction of the optimal welfare.

Careful examination of theorem 1 may lead one to suspect that theorem 1
only applies for truthful mechanisms with local pricing schemes, as our proof
of claim 3 utilizes such prices to prove theorem 1. However, we can show that
theorem 1 holds for any pricing scheme, local or global. To prove the above we
show that a global pricing scheme does not yield a truthful mechanism for online
budget-constrained time-constrained sponsored search auctions where the time
parameters are the advertisers’ private information.

Lemma 1. There does not exist a truthful budget-constrained time-constrained
sponsored search mechanism where time parameters are the advertisers’ private
information that has a global pricing scheme.

The proof of lemma 1 can be found in the full paper [8].
In this section we focused our attention on impossibility results in a setting

where advertisers have four privately known parameters, including their arrival
and departure, in the auction and their budget. The truthful mechanisms are
proven to be under performing in terms of social welfare maximization as they
“protect” themselves from time manipulations by advertisers.



228 R. Gonen

A natural question to ask is whether the truthful budget-constrained time-
constrained sponsored search mechanisms can perform better with respect to
welfare maximization where time manipulations are not possible, i.e., the
algorithm knows the true time parameters of the advertisers.

Recall [4]’ model which assumes that all advertisers are constantly present in
the auction. Essentially their impossibility shows that any such truthful auction
will allocate all units (keyword impressions) to a single player (advertiser) while
the rest of the advertisers will not be allocated any keyword. Such allocation
is imposed by a truthful mechanism as the single allocated player induces high
prices for all other players, who end up unable to win any of the units. The win-
ning player on the other hand enjoys lower prices induced by the other players.
As the winning player is budget constrained he will not be able to buy all the
units, which is the source of the inefficiency. When taking into consideration the
[4] model in the sponsored search auction context one must notice an interesting
subtlety. As the units (keywords) are allocated sequentially once the winning
advertiser fulfills his budget, he leaves the auction. At that point if prices are
recalculated to include only the remaining advertisers the inefficient solution
might be come efficient.

To better understand the impact of budget-constrained time-constrained ad-
vertisers on the impossibility of designing a truthful sponsored search mecha-
nisms, in the next section we relax the assumption that advertisers have privately
known arrival and departure times. We assume that the mechanism knows all
of the advertisers’ true arrival and departure times such that advertisers can
not act as if they have a different arrival or departure time. By relaxing the
time manipulation of advertisers we are able to show impossibilities that are
encountered when attempting to remove budget manipulations.

4 Second Impossibility: Relaxing Private Time
Parameters

In the previous section we investigated the effect of the advertisers’ private time
parameters on the truthful online budget-constrained time-constrained spon-
sored search mechanism. In this section we relax the assumption that advertisers
have privately known arrival and departure times and assume that the mecha-
nism knows all advertisers’ true arrivals and departures. Relaxing the privately
known time parameters assumption allows us to capture the difficulties imposed
by the time-constrained budgeted environment.

The budgeted nature of the problem creates two types of pricing scheme for-
mats. The first format, static pricing schemes, is where prices are predetermined
by the mechanism given the knowledge of all advertisers’ arrival and departure
times and the report of their budget and value. In the second format, dynamic
pricing schemes, prices keep updating depending on the advertisers currently
available to the mechanism. As players are budget constrained different alloca-
tions will lead to different prices for the same player in the dynamic format.



On the Hardness of Truthful Online Auctions 229

In section 3 we examined two types of pricing schemes and their affect
on the truthful time-constrained budget-constrained sponsored search mecha-
nism. For local pricing schemes we showed that the truthful time-constrained
budget-constrained sponsored search mechanism can not achieve non trivial
welfare approximation and showed that the global pricing scheme does not main-
tain truthfulness at all. In this section we refine our examination of different
pricing scheme types by examining the dynamic and static characteristics of the
local and global pricing schemes.

We start by showing that even when time constraints are not private to ad-
vertisers, the budget-constrained time-constrained sponsored search mechanism
can not achieve non-trivial welfare approximation when using a local pricing
scheme.

We then continue by distinguishing between the two forms of prices in the
global pricing scheme case. For dynamic global pricing schemes we can show
that such schemes will not maintain truthfulness and for static global pricing
schemes we can show that although they maintain truthfulness they can not
guarantee a non-trivial welfare approximation.

Due to lack of space we defer the technical details of the section to the full
paper [8].

5 Conclusions

This paper assess the prospect of creating truthful mechanisms for sponsored
search auctions where advertisers have budget and time constraints. In cases
where advertisers’ arrival and departure times are private information, no truth-
ful deterministic mechanism for sponsored search with budget constrained and
time constrained advertisers can perform well with respect to social welfare max-
imization. Even in cases where advertisers’ true arrival and departure times are
known to the mechanism, a sponsored search mechanism with budget constrained
and time constrained advertisers can not achieve non-trivial welfare approxima-
tion when using a local pricing scheme nor can such a truthful mechanism exist
for a dynamic global pricing scheme.

Given the impossibility results presented in this paper there are several ways
in which one may approach the design of a budget-constrained time-constrained
sponsored search mechanism. One possible solution in to pursue mechanisms
that are δ-Gain truthful as was done in [10]. If the δ-Gain truthful approach
is applied with a global pricing scheme as in [10] the global pricing scheme
may yield a non trivial welfare approximation. Another possible approach is to
design a randomized algorithm for solving the problem as was done in [15] for the
budget constrained but not time constrained advertisers. One may also take the
approach followed in [11] of a set-Nash equilibrium solution concept and design
a semi-myopic mechanism that achieves a non trivial welfare approximation for
the budget-constrained time-constrained sponsored search auction.



230 R. Gonen

References

1. Abrams, Z.: Revenue Maximization when Bidders have budgets. In: Proc. Sympo-
sium on Discrete Algorithms, pp. 1074–1082 (2006)

2. Aggarwal, G., Goel, A., Motwani, R.: Truthful Auctions for Pricing Search Key-
words. In: Proceding of EC 2006 (2006)

3. Abrams, Z., Mendelevitch, O., Tomlin, J.: Optimal Delivery of Sponsored Search
Advertisements Subject to Budget Constraints. In: Proc. EC 2007 (2007)

4. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions
with budget-constrained bidders. In: Proc. 6th ACM Conference on Electronic
Commerce, pp. 44–51 (2005)

5. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet Advertising and the Generalized
Second Price Auction: Selling Billions of Dollars Worth of Keywords. American
Economic Review 97 (2007)

6. Friedman, E., Parkes, D.C.: Pricing WiFi at Starbucks- Issues in Online Mechanism
Design. In: Proc. 4th ACM Conf. on Electronic Commerce (EC 2003) (2003)

7. Gonen, R.: Untruthful Behavior in Google Slot Auctions (unpublished manuscript,
2004)

8. Gonen, R.: On the Hardness of Truthful Online Auctions with Multidimensional
Constraints, http://www.ricagonen.com

9. Gonen, R., Pavlov, E.: An Incentive-Compatible Multi Armed Bandit Mechanism.
In: Third Workshop on Sponsored Search Auctions WWW 2007, PODC 2007
(2007)

10. Gonen, R., Pavlov, E.: An Adaptive Sponsored Search Mechanism δ-Gain Truthful
in Valuation, Time, and Budget (submited for review, 2007)

11. Lavi, R., Nisan, N.: Online Ascending Auctions for Gradually Expiring Items. In:
SODA 2005 (2005)

12. Myerson, R.: Optimal Auction Design. Mathematics of Operations Research, 58–73
(1981)

13. Maskin, E.S.: Auctions, development and privatization: Ecient auctions with
liquidity- constrained buyers. European Economic Review 44, 667–681 (2000)

14. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and the Generalized
Bipartite Matching Problem. In: Proceedings of the Symposium on the Foundations
of Computer Science, pp. 264–273 (2005)

15. Pavlov, E.: Truthful Polynomial Time Optimal Welfare Keywords Auctions with
Budget Constraints. In: Joint workshop NetEcon+IBC (2007)

http://www.ricagonen.com


Effective Dimensions and Relative Frequencies

Xiaoyang Gu� and Jack H. Lutz�,��

Department of Computer Science, Iowa State University, Ames, IA 50011 USA
{xiaoyang,lutz}@cs.iastate.edu

Abstract. Consider the problem of calculating the fractal dimension of
a set X consisting of all infinite sequences S over a finite alphabet Σ
that satisfy some given condition P on the asymptotic frequencies with
which various symbols from Σ appear in S. Solutions to this problem
are known in cases where

(i) the fractal dimension is classical (Hausdorff or packing dimension),
or

(ii) the fractal dimension is effective (even finite-state) and the condition
P completely specifies an empirical distribution π over Σ, i.e., a
limiting frequency of occurrence for every symbol in Σ.

In this paper we show how to calculate the finite-state dimension (equiv-
alently, the finite-state compressibility) of such a set X when the con-
dition P only imposes partial constraints on the limiting frequencies of
symbols. Our results automatically extend to less restrictive effective
fractal dimensions (e.g., polynomial-time, computable, and constructive
dimensions), and they have the classical results (i) as immediate corollar-
ies. Our methods are nevertheless elementary and, in most cases, simpler
than those by which the classical results were obtained.

Keywords: effective fractal dimensions, empirical frequencies, finite-
state dimension, randomness, saturated sets.

1 Introduction

The most fundamental statistics used in the analysis of data for purposes of com-
pression or prediction are the empirical frequencies with which various symbols
appear. When every symbol has a frequency that is known and stable through-
out the data, the problems of compression and prediction are well understood,
with the main insights now over a half-century old [5,15,16]. However, when only
partial constraints on the empirical frequencies–e.g., the relative frequencies of
some of the symbols–are known, these problems become more challenging.
� This author’s research was supported in part by National Science Foundation Grants

0344187, 0652569 and 0728806, and by Spanish Government MEC Projects TIC
2002-04019-C03-03 and TIN 2005-08832-C03-02. Part of the results were announced
(without proceedings) at the special session on Randomness in Computation in Fall
2005 Central Section Meeting of the American Mathematical Society.

�� Corresponding author.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 231–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



232 X. Gu and J.H. Lutz

This paper shows how to calculate the finite-state dimension (equivalently,
the compressibility or predictability by finite-state machines [6,14]) of a set X
of infinite sequences over a finite alphabet Σ when membership of a sequence
S in X is determined by some given condition P on the asymptotic frequencies
with which various symbols from Σ appear in S. Our results hold even when P
only imposes partial constraints on the limiting frequencies of symbols, and they
automatically extend to less restrictive effective dimensions, such as polynomial-
time, computable, and constructive dimensions. In order to explain our results
and their significance, we briefly review four lines of research that are precursors
of our work.

1.1 Classical Fractal Dimensions

In 1919, Hausdorff [13] developed a rigorous way of assigning a dimension to ev-
ery subset of an arbitrary metric space. His definition agrees with the intuitive
notion of dimension for “smooth” sets (e.g., smooth curves have dimension 1;
smooth surfaces have dimension 2), but assigns non-integer dimensions to some
more exotic sets, and hence came to be called a “fractal” dimension. In 1949,
Eggleston [7], building on work of Besicovitch [3] and Good [10], proved that,
for any probability measure π on a finite alphabet Σ, the set of all sequences
in which each symbol a ∈ Σ has asymptotic frequency π(a) has Hausdorff di-
mension H|Σ|(π), the Shannon entropy of π, normalized to range over [0, 1].
In retrospect, Hausdorff dimension is an information-theoretic concept [27], but
these developments essentially all took place prior to Shannon’s development of
information theory [28].

In the early 1980’s, another fractal dimension called packing dimension, was
introduced [29,30]. Packing dimension agrees with Hausdorff on “regular” sets,
but is larger on some sets [9].

1.2 Shannon Information Theory

In 1948, Shannon [28] developed a probabilistic theory of information (Shannon
entropy) that has been enormously productive and is the setting in which most
work on compression and prediction has been carried out [5].

1.3 Effective Fractal Dimensions

In 2000, Lutz [18,19] proved a new characterization of Hausdorff dimension in
terms of betting strategies and used this characterization to formulate effective
fractal dimensions ranging from polynomial-time and polynomial-space dimen-
sions to computable and constructive dimensions. Pushing this effort further,
finite-state dimension was introduced the following year [6], and is now known
to characterize the compressibility [6] and predictability [14] of sequences over
finite alphabets. In [1], packing dimension was shown to have a betting-strategy
characterization that is exactly dual to that of Hausdorff dimension, thereby
giving dual “strong dimensions” at each of the levels of effectivity for which



Effective Dimensions and Relative Frequencies 233

dimensions had been defined. Each of the papers mentioned here extended the
above-mentioned result of Eggleston to the effective dimension(s) introduced.
Hence, as indicated in our first paragraph, the compression and prediction prob-
lems are well understood, even at the finite-state level, when a set X of sequences
is defined in terms of given, well-defined, asymptotic frequencies of all symbols.

1.4 Classical Dimensions of Saturated Sets

In 2002, Barreira, Saussol, and Schmeling [2] considered the classical fractal
dimensions of sets of sequences defined in terms of conditions placing (typically
partial) constraints on the frequencies and relative frequencies of symbols. The
example by which they introduced their work was the set X of all sequences over
the alphabet {0, 1, 2, 3} in which there are asymptotically five times as many 0’s
as 1’s. (No constraint is placed on the frequency of any individual symbol.) Using
sophisticated techniques (multifractal analysis and ergodic theory), they showed
how to compute the classical Hausdorff dimensions of sets of this kind. As it
turns out, Volkmann [31] and his student Cajar [4] had previously defined a set
X of sequences to be saturated if membership in it is completely determined
by the asymptotic behaviors (not necessarily convergent) of the frequencies of
symbols and investigated the Hausdorff dimensions of many saturated sets. Olsen
[21,22,23,24] and Olsen and Winter [25,26] also used multifractal analysis to
study such sets.

1.5 Our Results

We show how to calculate the finite-state dimensions of saturated sets. We give
a pointwise characterization of the dimensions of such sets, and we prove a
general correspondence principle stating that, if X is any saturated set, then
the finite-state dimension of X is exactly its classical Hausdorff dimension, and
the finite-state strong dimension of X is exactly its classical packing dimension.
We also give completely elementary methods (no multifractal analysis or ergodic
theory) for computing the finite-state dimensions of various types of saturated
sets. By our correspondence principle, this yields elementary proofs that these
results also hold for classical fractal dimensions and less restrictive effective
fractal dimensions.

The rest of this paper is organized as follows. Section 2 lists the basic defini-
tions and conventions we use in this paper. Section 3 reviews the definitions of
Hausdorff dimension, packing dimension, finite-state dimension, and finite-state
strong dimension. We give a few example of calculating the dimensions of exotic
saturated sets in Section 4. In Section 5, we discuss finite-state dimensions of
saturated sets in detail and give insight into why a maximum entropy principle
holds.

2 Preliminaries

Let m ≥ 2 be an integer. We work with the m-ary alphabet Σm = {0, 1, . . . ,m−
1}. Σ∗

m is the set of all (finite) strings on Σm including the empty string λ.



234 X. Gu and J.H. Lutz

Cm = Σ∞
m is the set of all (infinite) m-ary sequences. C = C2 is the Cantor

space. Δ(Σm) is the set of all probability measures on Σm.
Let i be an integer such that 0 ≤ i ≤ m − 1. The symbol counting function

#i : (Cm ∪ Σ∗
m) × N → N is defined such that for every string or sequence S

and n ∈ N, #i(S, n) is the number of occurrences of i in the first n bits of S.
The symbol frequency function πi : (Cm ∪Σ∗

m)×N→ [0, 1] is defined such that
πi(S, n) = #i(S, n)/n. The empirical measure function �π : (Cm ∪ Σ∗

m) × N →
Δ(Σm) is defined such that �π(S, n) = (π0(S, n), . . . , πm−1(S, n)). Intuitively, �π
extracts empirical probability measures from the first n bits of a string or a
sequence based on the actual frequencies of digits.

3 The Four Dimensions

Hausdorff dimension and packing dimension are important tools in mathematics
used to study the size of sets and the properties of dynamic systems. All count-
able sets have 0 for both of these dimensions. In order to study relative size of
countable sets from the eyes of computers with different resources, Lutz gener-
alized Hausdorff dimension to effective dimensions by using his gale characteri-
zation of Hausdorff dimension [18]. Athreya, Hitchcock, Lutz, and Mayordomo
then gave a dual gale characterization of packing dimension, with which, they
generalized packing dimension to effective strong dimensions [1]. We first review
the definitions related to gales. Note that Σm is an alphabet with m symbols
and m ≥ 2.

Definition. Let s ∈ [0,∞). An s-supergale is a function d : Σ∗
m → [0,∞) such

that for all w ∈ Σ∗
m msd(w) ≥∑

a∈Σm
d(wa). The success set of an s-supergale

d is S∞[d] = {S ∈ C | lim sup
n→∞

d(S[0..n− 1]) = ∞}. The strong success set of d

is S∞
str[d] = {S ∈ C | lim inf

n→∞ d(S[0..n− 1]) =∞}.
Now we conveniently give the gale characterizations of Hausdorff and packing
dimensions as definitions. Please refer to Falconer [8] for classical definitions.

Definition. ([18,1]). Let X ⊆ Cm. The Hausdorff dimension of X is

dimH(X) = inf {s ∈ [0,∞) | X ⊆ S∞[d] for some s-supergale d } .
The packing dimension of X is

dimP(X) = inf {s ∈ [0,∞) | X ⊆ S∞
str[d] for some s-supergale d} .

Finite-state dimension and strong dimension are finite-state counterparts of clas-
sical Hausdorff dimension [13] and packing dimension [20,29] introduced by Dai,
Lathrop, Lutz, and Mayordomo [6] and Athreya, Hitchcock, Lutz, and Mayor-
domo [1] in the Cantor space C. Finite-state dimensions are defined by using the
gale characterizations of the Hausdorff dimension [18] and the packing dimension
[1] and restricting the gales to the ones whose underlying betting strategies can
be carried out by finite-state gamblers. In this section, we give the definitions of



Effective Dimensions and Relative Frequencies 235

the finite-state dimensions for space Cm and review their basic properties. Now,
we define finite-state gamblers on alphabet Σm.

Definition. ([6]) A finite-state gambler (FSG) is a 5-tuple G = (Q,Σm, δ, �β, q0)
such that Q is a non-empty finite set of states; Σm is the input alphabet; δ :
Q × Σm → Q is the state transition function; �β : Q → Δ(Σm) is the betting
function; q0 ∈ Q is the initial state.

The extended transition function δ∗ : Q×Σ∗
m → Q is defined such that

δ∗(q, wa) =

{
q if w = a = λ,

δ(δ∗(q, w), a) if w 	= λ.

We use δ for δ∗ and δ(w) for δ(q0, w) for convenience.
The betting function βi : Q → Δ(Σm) specifies the bets the FSG places on

each input symbol in Σm with respect to a state q ∈ Q.

Definition. ([6]). Let G = (Q,Σm, δ, �β, q0) be an FSG. The s-gale of G is the
function dG : Σ∗

m → [0,∞) defined by the recursion

dG(wb) =

{
1 if w = b = λ,

msdG(w)βi(δ(w))(b) if b 	= λ,

for all w ∈ Σ∗
m and b ∈ Σm ∪ {λ}. For s ∈ [0,∞), a function d : Σ∗

m → [0,∞) is
a finite-state s-gale if it is the s-gale of some finite-state gambler.

Note that in the original definition of a finite-state gambler the range of the
betting function �β is Δ({0, 1})∩Q

2 [6,1]. In the following observation, we show
that allowing the range of �β to have irrational probability measures does not
change the notions of finite-state dimension and strong dimension.

Observation 3.1. Let G = (Q,Σm, δ, �β, q0) be an FSG. For each ε > 0, there
exists an FSG G′ = (Q,Σm, δ, �β′, q0) with �β′ : Q → Δ(Σm) ∩Q

m such that for
all s ∈ [0,∞), S∞[d(s)

G ] ⊆ S∞[d(s+ε)
G′ ] and S∞

str[d
(s)
G ] ⊆ S∞

str[d
(s+ε)
G′ ].

In this paper, we allow the finite-state gamblers to place irrational bets.

Definition. ([6,1]). Let X ⊆ Cm. The finite-state dimension of X is

dimFS(X) = inf {s ∈ [0,∞) | X ⊆ S∞[d] for some finite-state s-gale d}

and the finite-state strong dimension of X is

DimFS(X) = inf {s ∈ [0,∞) | X ⊆ S∞
str[d] for some finite-state s-gale d} .

We will use the following basic properties of the Hausdorff, packing, finite-state,
strong finite-state dimensions.



236 X. Gu and J.H. Lutz

Theorem 3.2. ([6,1]). Let X,Y,Xi ⊆ Σ∞
m for i ∈ N.

1. 0 ≤ dimH(X) ≤ dimFS(X) ≤ 1, 0 ≤ dimP(X) ≤ DimFS(X) ≤ 1.
2. dimH(X) ≤ dimP(X), dimFS(X) ≤ DimFS(X).
3. If X ⊆ Y , then the dimension of X is at most the dimension of Y .
4. dimFS(X ∪ Y ) = max{dimFS(X), dimFS(Y )} and DimFS(X ∪ Y ) = max
{DimFS(X),DimFS(Y )}.

5. dimH (
⋃∞
i=0Xi) = supi∈N

dimH(Xi), dimP(
⋃∞
i=0Xi) = supi∈N

dimP(Xi).

4 Relative Frequencies of Digits

As we have mentioned in Section 1, Besicovitch in 1934 and Eggleston in 1949
proved the following two identities respectively.

Theorem 4.1. dimH(FREQ≤β) = H2((β, 1 − β)) [3] and dimH(FREQβ) =
H2((β, 1− β)) [7], where β ∈ [0, 1

2 ], FREQ≤β = {S ∈ C | lim sup
n→∞

π0(S, n) ≤ β},
and FREQβ = {S ∈ C | lim

n→∞ π0(S, n) = β}.
In this section, we will calculate the finite-state dimension of some more exotic
sets that contain m-adic sequences that satisfy certain conditions placed on the
frequencies of digits. The proofs in this section use straightforward constructions
of finite-state gamblers. Both the constructions and analysis use completely el-
ementary techniques.

Let Hβ,m(α) = −(α logm α+ βα logm βα+ (1 − α− βα) logm
1−α−βα
m−2 ). Let

α∗(x) =

{
1
m x < 1

1

1+x+(m−2)x
x

x+1
otherwise.

Note that

Hβ,m(α∗(β)) = sup
α∈[0, 1

1+β ]

Hβ,m(α) =

⎧
⎨

⎩

1 if β < 1,
logm(m− 2 + 1+β

β
β

β+1
) otherwise.

Theorem 4.2. Let β′ ≥ β ≥ 0. Let

X =
{

S

∣
∣
∣
∣ lim inf
n→∞

π1(S, n)
π0(S, n)

≥ β and lim sup
n→∞

π1(S, n)
π0(S, n)

≥ β′
}

.

Then dimH(X) = dimFS(X) = Hβ′,m(α∗(β′)) and dimP(X) = DimFS(X) =
Hβ,m(α∗(β)).

Corollary 4.3. (Theorem 2 [2]). Let β ≥ 0. Let

X =
{

S

∣
∣
∣
∣ lim
n→∞

π1(S, n)
π0(S, n)

= β

}

.

Let β′ = max{β, 1/β}. Then

dimH(X) = Hβ,m(α∗(β′)) = logm

(

m− 2 +
1 + β′

β
β′

β′+1

)



Effective Dimensions and Relative Frequencies 237

Note that dimP(X), dimFS(X), and DimFS(X) all takes the value of dimH(X),
which were not proven in [2].

Proof. We prove the case where β′ = β. The other case is similar by switching
0’s and 1’s in the sequences. Let Y =

{
S

∣
∣
∣ lim inf
n→∞

π1(S,n)
π0(S,n) ≥ β

}
. Let

Z =

{

S

∣
∣
∣
∣
∣

lim
n→∞π0(S, n) = α∗(β), lim

n→∞ π1(S, n) = βα∗(β),

and (∀i > 1) lim
n→∞ πi(S, n) = 1−α∗(β)−βα∗(β)

m−2

}

.

By Eggleston’s theorem, dimH(Z) = Hβ,m(α∗(β)). Since Z ⊆ X ⊆ Y , it follows
immediately from Theorem 4.2 that dimH(X) = Hβ,m(α∗(β)). �

5 Saturated Sets and Maximum Entropy Principle

In Section 4, we calculated the finite-state dimensions of many sets defined using
properties on asymptotic frequencies of digits. They are all saturated sets. Now
we formally define saturated sets and investigate their collective properties.

Let Πn(S) = {�π(S, k) | k ≥ n} for all n ∈ N. Let Π̄n(S) = Πn(S), i.e., Π̄n(S)
is the closure of Πn(S). Define Π : Cm → P(Δ(Σm)) such that for all S ∈ Cm,
Π(S) =

⋂
n∈N

Π̄n(S).

Definition. Let X ⊆ Cm. We say that X is saturated if for all S, S′ ∈ Cm,

Π(S) = Π(S′)⇒ [S ∈ X ⇐⇒ S′ ∈ X ].

When we determine an upper bound on the finite-state dimensions of a set
X ⊆ Cm, it is in general not possible to use a single probability measure as the
betting strategy even when X is saturated. However, when certain conditions
are true, a simple 1-state finite-state gambler may win on a huge set of sequences
with different empirical digit distribution probability measures.

In the following, we formalize such a condition and reveal some relationship
between betting and the Kullback-Leibler distance (relative entropy) [5]. Note
that m-dimensional Kullback-Leibler distance Dm(�β ‖ �α) is defined as

Dm(�β ‖ �α) = E�β logm
�β

�α
.

Definition. Let �α, �β ∈ Δ(Σm). We say that �α ε-dominates �β, denoted as �α >>ε
�β, if Hm(�α) ≥ Hm(�β) +Dm(�β ‖ �α)− ε. We say that �α dominates �β, denoted as
�α >> �β, if �α >>0 �β.

Note that Hm(�β) + Dm(�β ‖ �α) = E�β logm
1
�β

+ E�β logm
�β
�α = E�β logm

1
�α , where

E�β logm
�β
�α =

∑m−1
i=0 βi logm

βi

αi
. It is very easy to see that the uniform probability

measure dominates all probability measures.

Observation 5.1. Let �α = ( 1
m , . . . ,

1
m ). Let �β ∈ Δ(Σm). Then �α >> �β.

Here, we give a few interesting properties of the domination relation.



238 X. Gu and J.H. Lutz

Theorem 5.2. Let �α = (α0, . . . , αm−1) ∈ Δ(Σm). Let �β = (β0, . . . , βm−1) ∈
Δ(Σm) be such that βj = 1, where j = arg max{α0, . . . , αm−1}. Then �α >> �β

and Hm(�β) = 0.

Theorem 5.3. Let �α, �β ∈ Δ(Σm), ε ≥ 0, and r ∈ [0, 1]. If �α >>ε �β, then
�α >>ε r�α + (1− r)�β.

Theorem 5.4. Let �μ = ( 1
m , . . . ,

1
m ) ∈ Δ(Σm) be the uniform probability mea-

sure. Let �β ∈ Δ(Σm). Let s ∈ [0, 1]. Let �α = s�μ+ (1− s)�β. Then �α >> �β.

The following theorem relates the domination relation to finite-state dimensions.

Theorem 5.5. Let �α ∈ Δ(Σm) and X ⊆ Σ∞
m .

1. If �α >>ε �π(S, n) for infinitely many n for every ε > 0 and every S ∈ X,
then dimFS(X) ≤ Hm(�α).

2. If �α >>ε �π(S, n) for all but finitely many n for every ε > 0 and every S ∈ X,
then DimFS(X) ≤ Hm(�α).

Theorem 5.5 tells us that if we can find a single dominating probability measure
for X ⊆ Cm, then a simple 1-state FSG may be used to assess the dimension
of X . However, in the following, we will see that the domination relationship is
not even transitive.

Theorem 5.6. Domination relation defined above is not transitive.

Fix �α ∈ Δ(Σm) with Hm(�α) 	= 1, the hyperplane H in R
m defined by Hm(�α) =

∑m−1
i=0 xi logm

1
αi

divides the simplex Δ(Σm) into two halves A and B with
A ∩B ⊆ H . Suppose ( 1

m , . . . ,
1
m ) ∈ B, then A = {�β ∈ Δ(Σm) | �α >> �β}.

So it is not always possible to find a single probability measure that dominates
all the empirical probability measures of sequences in X ⊆ Cm. Nevertheless,
we take advantage of the compactness of Δ(Σm) and give a general solution for
finding the dimensions of X ⊆ Cm, when X is saturated. The following theorem
is our pointwise maximum entropy principle for saturated sets. It says that the
dimension of a saturated set is the maximum pointwise asymptotic entropy of
the empirical digit distribution measure.

Theorem 5.7. Let X ⊆ Cm be saturated. Let H = supS∈X lim inf
n→∞ Hm(�π(S, n))

and P = supS∈X lim sup
n→∞

Hm(�π(S, n)). Then dimFS(X) = dimH(X) = H and

DimFS(X) = dimP(X) = P .

This theorem automatically gives a solution for finding an upper bounds for
dimensions of arbitrary X .

Corollary 5.8. Let X ⊆ Cm and let H and P be defined as in Theorem 5.7.
Then dimFS(X) ≤ H and DimFS(X) ≤ P .

Due to the space limit of the proceeding, we omit the calculation of the di-
mensions of some interesting saturated sets using Theorem 5.7 here. Interested
readers are encouraged to read the full version of this paper.



Effective Dimensions and Relative Frequencies 239

6 Conclusion

A general saturated set usually has an uncountable decomposition in which, the
dimension of each element is easy to determine, while the dimension of the whole
set, which is the uncountable union of all the element sets, is very difficult to
determine and requires advanced techniques in multifractal analysis and ergodic
theory. By using finite-state gamblers and gale characterizations of dimensions,
we are able to obtain very general results calculating the classical dimensions and
finite-state dimensions of saturated sets using completely elementary analysis.
This indicates that gale characterizations will play a more important role in
dimension-theoretic analysis and that finite-state gamblers are very powerful.

Acknowledgments. We thank anonymous referees for helpful comments.

References

1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong di-
mension, algorithmic information, and computational complexity. SIAM Journal
on Computing 37, 671–705 (2007)

2. Barreira, L., Saussol, B., Schmeling, J.: Distribution of frequencies of digits via
multifractal analyais. Journal of Number Theory 97(2), 410–438 (2002)

3. Besicovitch, A.S.: On the sum of digits of real numbers represented in the dyadic
system. Mathematische Annalen 110, 321–330 (1934)

4. Cajar, H.: Billingsley dimension in probability spaces. Lecture notes in mathemat-
ics, vol. 892 (1981)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Inc., New York (1991)

6. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theo-
retical Computer Science 310, 1–33 (2004)

7. Eggleston, H.: The fractional dimension of a set defined by decimal properties.
Quarterly Journal of Mathematics 20, 31–36 (1949)

8. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cam-
bridge (1985)

9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd
edn. Wiley, Chichester (2003)

10. Good, I.J.: The fractional dimensional theory of continued fractions. In: Proceed-
ings of the Cambridge Philosophical Society, vol. 37, pp. 199–228 (1941)

11. Gu, X.: A note on dimensions of polynomial size circuits. Theoretical Computer
Science 359(1-3), 176–187 (2006)

12. Gu, X., Lutz, J.H., Moser, P.: Dimensions of Copeland-Erdős sequences. Informa-
tion and Computation 205(9), 1317–1333 (2007)

13. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179
(1919)

14. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theoret-
ical Computer Science 304(1–3), 431–441 (2003)

15. Huffman, D.A.: A method for the construction of minimum redundancy codes. In:
Proc. IRE, vol. 40, pp. 1098–1101 (1952)

16. Kelly, J.: A new interpretation of information rate. Bell Systems Technical Jour-
nal 35, 917–926 (1956)



240 X. Gu and J.H. Lutz

17. Lutz, J.H.: Gales and the constructive dimension of individual sequences. In: Pro-
ceedings of the 27th International Colloquium on Automata, Languages, and Pro-
gramming, pp. 902–913 (2000); Revised as [19]

18. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32,
1236–1259 (2003); Preliminary version appeared In: Proceedings of the Fifteenth
Annual IEEE Conference on Computational Complexity, pp. 158–169 (2000)

19. Lutz, J.H.: The dimensions of individual strings and sequences. Information and
Computation 187, 49–79 (2003); Preliminary version appeared as [17]

20. McMullen, C.T.: Hausdorff dimension of general Sierpinski carpets. Nagoya Math-
ematical Journal 96, 1–9 (1984)

21. Olsen, L.: Multifractal analysis of divergence points of deformed measure theoret-
ical Birkhoff averages. Journal de Mathématiques Pures et Appliquées. Neuvième
Série 82(12), 1591–1649 (2003)

22. Olsen, L.: Applications of multifractal divergence points to some sets of d-
tuples of numbers defined by their n-adic expansion. Bulletin des Sciences
Mathématiques 128(4), 265–289 (2004)

23. Olsen, L.: Applications of divergence points to local dimension functions of subsets
of R

d. Proceedings of the Edinburgh Mathematical Society 48, 213–218 (2005)
24. Olsen, L.: Multifractal analysis of divergence points of the deformed measure the-

oretical Birkhoff averages. III. Aequationes Mathematicae 71(1-2), 29–53 (2006)
25. Olsen, L., Winter, S.: Multifractal analysis of divergence points of the deformed

measure theoretical Birkhoff averages II (preprint, 2001)
26. Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and diver-

gence points of self-similar measures. Journal of the London Mathematical Society
(Second Series) 67(1), 103–122 (2003)

27. Ryabko, B., Suzuki, J., Topsoe, F.: Hausdorff dimension as a new dimension in
source coding and predicting. In: 1999 IEEE Information Theory Workshop, pp.
66–68 (1999)

28. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

29. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geomet-
rically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

30. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of
the Cambridge Philosophical Society 91, 57–74 (1982)

31. Volkmann, B.: Über Hausdorffsche Dimensionen von Mengen, die durch Ziffer-
neigenschaften charakterisiert sind. VI. Mathematische Zeitschrift 68, 439–449
(1958)



Reachability in Linear Dynamical Systems

Emmanuel Hainry

LORIA, Université Henri Poincaré
Campus scientifique, BP 239 - 54506 Vandœuvre-lès-Nancy, France

Emmanuel.Hainry@loria.fr

Abstract. Dynamical systems allow to modelize various phenomena or
processes by only describing their local behaviour. It is however useful to
understand the behaviour in a more global way. Checking the reachabil-
ity of a point for example is a fundamental problem. In this document we
will show that this problem that is undecidable in the general case is in
fact decidable for a natural class of continuous-time dynamical systems:
linear systems. For this, we will use results from the algebraic numbers
theory such as Gelfond-Schneider’s theorem.

Keywords: Dynamical Systems, Reachability, Skolem-Pisot problem,
Gelfond-Schneider Theorem.

1 Introduction

A dynamical system is described by a function (the dynamics of the system) and
a space on which this function is defined and in which the system will evolve.
The evolution of a dynamical system is hence described in a very simple way
but it can be hard to grasp where a point that undergoes the dynamics will go.
Hence the problem of deciding whether given a certain point, the system will
eventually reach another given point is fundamental.

Indeed, many natural phenomena can be described using dynamical systems.
Examples come from mathematics [1], physics, biology [2]; the famous Lorenz’
attractor [3] is an example of a dynamical system describing a meteorological
phenomenon. However, as standard as those systems are, and as simple as the
description of their dynamics may be, many important problems such as limit
and reachability are undecidable.

Some positive results are known for some very specific classes but on the
whole, it is very difficult to know much about such systems. Even considering
polynomial systems yields many undecidable problems: [4] shows that it is pos-
sible to simulate a Turing machine using a polynomial dynamical system. It is
hence undecidable whether or not a trajectory will reach the region correspond-
ing to the halting state of the machine. This particular problem can be seen as
a continuous version of the Skolem-Pisot problem [5,6,7] which studies whether
a component of a discrete linear system will reach 0. This problem is not differ-
ent from deciding if this system reaches a hyperplane of the space, described by
yk = 0 where k is the number of the component considered. The Skolem-Pisot
problem is equivalent to deciding whether a linear recurrent sequence reaches 0.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 241–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



242 E. Hainry

It is still open whether the Skolem-Pisot problem is decidable. Some results
are known but they don’t yet enlighten the whole decision problem. As an ex-
ample of recent developments, [7] shows that in small dimensions, the problem
is decidable, and [8] shows that this problem is NP-hard. As this problem also
arises in a continuous context it would be interesting to study the continuous
Skolem-Pisot problem for continuous-time linear dynamical systems. Consider-
ing a continuous space may make the study of this problem easier than in a
discrete space, indeed if two points on the two different sides of the aimed hy-
perplane are reached, continuity (and the intermediate values theorem) implies
that the hyperplane will also be reached. Even if the discrete version of this
problem had many possible interpretations, no natural interpretation appears in
the continuous case.

The (point to point) reachability problem, which is undecidable in the general
case, has been shown undecidable for various restricted classes of dynamical
systems, such as Piecewise Constant Derivative systems [9] where the dynamics
are really simple as it consists of a sharing of the space into regions where the
derivative will be constant. Other results on the subject of reachability and
undecidability of problems in hybrid systems are studied in [10,11,12,13].

It has been shown [14] that in discrete-time linear dynamical systems, the
reachability problem is decidable. The class of linear dynamical systems in the
continuous field is hence a good candidate for a class of dynamical systems
where reachability might be decidable. It is however not trivial to extend the
result on discrete dynamical systems to continuous dynamical systems, indeed,
it uses algebraic properties of the orbit that are not preserved in a continuous
setting. In this paper, we will hence focus on linear continuous-time dynamical
systems and show that reachability is decidable for those systems. This result is
a necessary step if we want to study the continuous Skolem-Pisot problem that
also deals with linear dynamical systems.

The section 2 presents the problems we are going and mathematical notions
that will be useful in the following. The section 3 contains results of undecid-
ability: for polynomial dynamical systems, the Skolem-Pisot problem and the
reachability problem are undecidable.The next section is the core of this paper:
it contains the theorem 4 which is the core of this paper and proves the de-
cidability of reachability in linear dynamical systems. The proof of this result
details in fact the algorithm used to decide the question. It is composed of two
parts: the part 4.2 shows how to solve the problem in the specific case where
the matrix is in Jordan form; the part 4.1 recalls that putting the matrix into
Jordan form is doable.

2 Prerequisites

2.1 Linear Continuous-Time Dynamical Systems

The dynamics of a linear dynamical system are described by a linear differential
equation. To describe such a system, we take a matrix of real numbers which



Reachability in Linear Dynamical Systems 243

will represent the dynamics and a vector of reals that is the initial point. We use
here classical definitions and notations that can be found in [15].

Definition 1 (Linear continuous-time dynamical system). Given a ma-
trix A ∈ R

n×n and a vector X0 ∈ R
n. We define X as the solution of the

following Cauchy problem: {
X ′ = AX

X(0) = X0.

X is called a trajectory of the system.

Definition 2 (Reachability). Given A ∈ R
n×n, X0 ∈ R

n, Y ∈ R
n, the system

is said to reach Y from X0 if there exists t ∈ R such that X(t) = Y with X the
trajectory defined with the dynamics A and the initial point X0.

Definition 3 (ω-limit points). Given a trajectory X, a point Y is an ω-limit
point of X if there is an diverging increasing sequence (tn) ∈ R

N such that
Y = limn→+∞X(tn).

Definition 4 (ω-limit sets). The ω-limit set of a dynamical system is the set
of its ω-limit points: ω(X) = ∩n∪t>nX(t), where A is the closure of the set A.

The problems we are interested in are the reacability problem (which we will
prove decidable in Linear Dynamical Systems) and the Skolem-Pisot problem.

Problem 1 (Reachability problem). Given a trajectory X defined from A ∈ K
n×n

and X0 ∈ K
n, a point Y ∈ K

n, decide whether Y can be reached from X0.

The classical Skolem-Pisot problem originally consists in determining if a lin-
ear recurrent sequence has a zero. It can however be defined as a hyperplane
reachability problem.

Problem 2 (Skolem-Pisot problem). Given a trajectoryX , given C ∈ K
n defining

an hyperplane1 of K
n, decide if ∃t ∈ R such that CTX(t) = 0? In other words,

does the trajectory X intersect the hyperplane defined by C?

The problems we will consider will be those for which the field K is in fact the
set of rational numbers Q.

2.2 Polynomials

Let us now recall a few notations, mathematical tools and algorithms on poly-
nomials. In the following, we use a field K that is a subfield of C.

Definition 5 (Ring of polynomials). We denote K[X ] the ring of one vari-
able polynomials with coefficients in K. A polynomial can be written as P (X) =∑n

i=1 aiX
i, with ai ∈ K and an �= 0. The integer n is the degree of P .

1 The hyperplane defined by C is the set of points Y such that CT Y =
�
0
�
.



244 E. Hainry

Definition 6 (Roots of a polynomial). The set Z(P ) of roots of a polynomial
P is defined as Z(P ) = {x ∈ C;P (x) = 0}
Definition 7 (Algebraic numbers). The set of roots of polynomials with co-
efficients in Q is the set of algebraic numbers.

An algebraic number can be represented uniquely by the minimal polynomial
it nulls (minimal in Q[X ] for the division) and a ball containing only one root
of the polynomial. Note that the size of the ball can be chosen using only the
values of the coefficients of the polynomial as [16] shows a bound on the distance
between roots of a polynomial from its coefficient.

Definition 8 (Representation of an algebraic number). An algebraic num-
ber α will be represented by (P, (a, b), ρ) where P is the minimal polynomial of α,
a+ ib is an approximation of α such that |α− (a+ ib)| < ρ and α is the only root
of P in the open ball B(a+ ib, ρ).

It can be shown that given the representations of two algebraic numbers α and
β, the representations of α+β, α−β, αβ and α/β can be computed. See [17,18]
for details.

We will also need specific results on algebraic numbers that come from [19,20].

Proposition 1 (Baker). Given α ∈ C − {0}, α and eα are not both algebraic
numbers.

Theorem 1 (Gelfond-Schneider). Let α and β be two algebraic numbers. If
α /∈ {0, 1} and β /∈ Q, then αβ is not algebraic

2.3 Matrices

Definition 9 (Characteristic polynomial). Given a matrix A ∈ K
n×n, its

characteristic polynomial is χA(X) = det(XIn −A)

Definition 10 (Exponential of a matrix). Given a matrix A, its exponential
denoted exp(A) is the matrix

+∞∑

i=1

1
i!
Ai.

Note that the exponential is well defined for all real matrices.
All matrices can be put in Jordan form, which allows to compute easily the

exponential. To find more about Jordan matrices and blocks, the reader may
consult [15] or [21].

Definition 11 (Jordan block). A Jordan block is a square matrix of one of
the two following forms

⎡

⎢
⎢
⎢
⎣

λ
1 λ

. . . . . .
1 λ

⎤

⎥
⎥
⎥
⎦

;

⎡

⎢
⎢
⎢
⎣

B
I2 B

. . . . . .
I2 B

⎤

⎥
⎥
⎥
⎦

with B =
[
a −b
b a

]

and I2 =
[
1 0
0 1

]



Reachability in Linear Dynamical Systems 245

Definition 12 (Jordan form). A matrix that contains Jordan blocks on its
diagonal is said to be in Jordan form.

⎡

⎢
⎢
⎢
⎢
⎣

D1 0 · · · 0

0 D2
. . .

...
...

. . . . . . 0
0 · · · 0 Dn

⎤

⎥
⎥
⎥
⎥
⎦

Proposition 2 ([21]). Any matrix A ∈ R
n×n is similar to a matrix in Jordan

form. In other words,

∃P ∈ GL(Rn×n) and J in Jordan form such that A = P−1JP.

3 Undecidability for Polynomial Dynamical Systems

Many biological phenomena can be modelised using polynomial dynamical sys-
tems rather than linear dynamical systems. A famous example comes from me-
teorological systems which were described by Lorenz in [3]. Lorenz’ attractor has
a quite chaotic behaviour which gives the intuition that the reachability problem
in polynomial dynamical systems is not decidable. Other polynomial differential
systems yields fractal basins of attraction. In other words, this dynamical sys-
tems has exactly two ω-limit points depending on the initial point and, the set
of starting points that will lead to the first of those attractors is a fractal, for
example a Julia set.

In those systems, from already known results, we can infer that the Skolem-
Pisot problem and the reachability problem are undecidable.

Theorem 2. The Skolem-Pisot problem is undecidable for polynomial dynami-
cal systems.

Proof. From [4], we know that it is possible to simulate a Turing machine using a
polynomial differential system. The halt of the Turing machine is then equivalent
to the system reaching the hyperplane z = qf which stands for the halting state.
This is an instance of the Skolem-Pisot problem.

Theorem 3. Reachability is undecidable for polynomial dynamical systems.

Proof. Let us modify the Turing machine of the previous proof so that from the
halting state, the machine erases its tape then enters a special state. Simulating
this machine by the same mechanism from [4], the dynamical system reaches
the point representing blank tapes and special state if and only if the original
machine halts. This means we can translate any instance of the halting problem
into a reachability in polynomial differential systems problem.



246 E. Hainry

4 Decidability for Linear Dynamical Systems

This section is devoted to proving the main theorem of this article: theorem 4.

Theorem 4. The reachability problem for continuous time linear dynamical sys-
tems with rational coefficients is decidable.

To decide whether a point is reachable we will try to obtain an expression of
the trajectory X that is usable and with this expression search for the different
t that could be solution. We will first consider the case where the matrix is in
Jordan form: this case will be studied in section 4.2. The section 4.1 will show
how to put the matrix in Jordan form. Note that the Jordan matrix will have
algebraic coefficients and not only rational ones.

4.1 To Put the Matrix in Jordan Form

To be able to do what we have done in the previous section, we will want to find
a Jordan matrix similar to the one considered. Building the Jordan form of a
matrix implies knowing its eigenvalues, for that we need to compute the roots
of the characteristic polynomial of the matrix.

This consist in the following steps that are classical: computing the charac-
teristic polynomial; factorizing the polynomial in Q[X ]; computing the roots;
jordanizing the matrix.

4.2 If the Matrix Is in Jordan Form

Let us suppose that the matrix A is in Jordan form with algebraic coefficients
and that the X0 and Y vectors are also composed of algebraic elements. This

means A =

⎡

⎢
⎢
⎢
⎢
⎣

D1 0 · · · 0

0 D2
. . .

...
...

. . . . . . 0
0 · · · 0 Dk

⎤

⎥
⎥
⎥
⎥
⎦

with the Di being Jordan blocks.

The solution of the Cauchy system
{
X ′ = AX
X(0) = X0

is X(t) = exp(tA)X0.

We then need to compute the exponential of tA. It is easy to check that

exp(tA) =

⎡

⎢
⎢
⎢
⎣

exp(tD1)
exp(tD2)

. . .
exp(tDk)

⎤

⎥
⎥
⎥
⎦

Finding a t ∈ R such that X(t) = Y is equivalent to finding such a t for each
component i and ensuring this is always the same t. We are going to solve the



Reachability in Linear Dynamical Systems 247

equation Jordan block by Jordan block. It means we choose an i such that the
corresponding part of X0 is not null (in the other case it is easy to decide if
either all t ∈ R will be solutions or no t will be solution) and search for a t such

that exp(tDi)

⎡

⎢
⎣

x1

...
xni

⎤

⎥
⎦ =

⎡

⎢
⎣

y1
...
yni

⎤

⎥
⎦ where the xj and yj are the elements of X0 and

Y corresponding to the block i. To simplify the notations, we will forget i and
just consider the problem as being exp(tD)X0 = Y and k being the size of this
block.

There are two cases to consider: the two different forms of Jordan blocks. For
each of those cases, a few sub cases are to be considered which revolve around
the nullity of the real part of the eigenvalue. Let us note that as we deal with
algebraic numbers, it is possible to verify if the real part or the imaginary part
is null.

First form: A real eigenvalue. The first form of Jordan blocks corresponds
to a real eigenvalue λ. Two cases need to be dealt with: λ = 0 and λ �= 0

If λ �= 0. The exponential is exp(tD) = etλ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
t 1
t2

2 t 1
...

. . . . . . . . .
tk

k! · · · t2

2 t 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. If X01 is not 0,

then there is at most one t ∈ R solution. Indeed, let us consider xi, the first non
null element of {x1, xk}. The only possible t is then 1

λ ln
(
yi

xi

)
.

We want to verify that this t is coherent with the rest of the block. Let us
remark that etλ = yi

xi
is an algebraic number. If the block has size more than 1,

then t verifies some algebraic equations hence the proposition 1 says λt = 0, it
is easy to verify if t = 0 is the solution of the block.

If λ = 0. The case with λ = 0 means we are searching for a t such that
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
t 1

t2/2 t 1
...

. . . . . . . . .
tk

k! · · · t2/2 t 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

x1

...
xk

⎤

⎥
⎦ =

⎡

⎢
⎣

y1
...
yk

⎤

⎥
⎦

For such a t to exist, we need to have x1 = y1, x2+tx1 = y2, ... Let us say that
xi is the first non-null element of X . Then the only candidate for t is yi+1−xi+1

xi
.

Since this candidate is algebraic, it is easy to check whether this t is a solution
for the block.



248 E. Hainry

Second form. The second form corresponds to complex eigenvalues. The Jor-

dan block is D =

⎡

⎢
⎢
⎢
⎣

B
I2 B

. . . . . .
I2 B

⎤

⎥
⎥
⎥
⎦

with B =
[
a −b
b a

]

and I2 =
[
1 0
0 1

]

. The expo-

nential is exp(D)=eta

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B2

tB2 B2
t2

2 B
2
2 tB2 B2

...
. . . . . . . . .

tk

k!B
k
2 · · · t2

2 B
2
2 tB2 B2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with B2 =
[
cos(tb) − sin(tb)
sin(tb) cos(tb)

]

.

There are two cases to consider, whether a is null or not.

If a = 0. In the case where the eigenvalue has a null real part, the exp(ta) term
disappears. Let us suppose c is the smallest odd number such that xj �= 0 or

xj+1 �= 0. We first want to solve
[
yj
yj+1

]

= B2

[
xj
xj+1

]

. Let us remark that, since

B2 is a rotation, if
√
x2
j + x2

j+1 �=
√
y2
j + y2

j+1, there is no solution and in the
other case, there is an infinity of solutions. We can express the solution of this
system t ∈ α + 2π

b Z where α is not explicitly algebraic as its expression uses
tan−1. Let us remark that for all those candidate t, the matrix B2 is the same,

namely B2 =
[
cos(α) − sin(α)
sin(α) cos(α)

]

. Those cos(α) and sin(α) are algebraic numbers

that can be computed: we can write an expression in xj , xj+1, yj and yj+1 for
each combination of signs for those numbers.2

We then have to verify whether the following components of X and Y are

compatible with those t. We have
[
yj+2

yj+3

]

= t

[
yj
yj+1

]

+
[
cos(α) − sin(α)
sin(α) cos(α)

] [
xj+2

xj+3

]

.

Since yj or yj+1 is non null (as
√
y2
j + y2

j+1 =
√
x2
j + x2

j+1 �= 0), there is then
at most one solution and we can express it as an algebraic number.

Conclusion for a = 0. We are able to discriminate 3 possible cases: either there
is no solution, either there is exactly one candidate t (defined with a fraction
and a few subtractions of elements of X and Y ) either there is an infinity of
candidate t (defined as ±α + 2π

b Z with the α being fractions of elements of X
and Y ). This last case will need to be compared with the results for the other
Jordan blocks to decide whether there will be solutions or not for the whole
system.

If a �= 0. In the case where a �= 0, the term exp(ta) makes the solution not simply
turn around the origin but describe a spiral. If a > 0, this spiral is diverging, if
a < 0 it is converging to the origin. We just have to study the norm of Y .
2 For example, if xj > 0, xj+1 > 0, yj > 0 and yj+1 > 0, we have sin(α) =�

y2
j

y2
j+y2

j+1

x2
j+x2

j+1
(xj+xj+1)2

and cos(α) satisfies a similar expression.



Reachability in Linear Dynamical Systems 249

We want to solve the system eta
[
cos(tb) − sin(tb)
sin(tb) cos(tb)

] [
x1

x2

]

=
[
y1
y2

]

with x1 or x2

not null (if they are, we will choose another xj). Let us consider the norms of
the two sides of this equation: eta

√
x2

1 + x2
2 =

√
y2
1 + y2

2 . As we have chosen x1

or x2 to be non null, we can write eta =
√

y2
1+y2

2
x2
1+x

2
2
. We hence have exactly one t

candidate to be the solution. This t is the logarithm of an algebraic number and
we can check whether tb is the correct angle (this is the combination of a non
algebraic solution with an infinity of solutions).

Putting together the solutions. As we have seen, for one block, we may
have no solution, one solution or an infinity of solutions. We must then bring
the blocks together. In the case where one block has no solution, the problem
is solved. In the case where there is exactly one solution, it can be algebraic (if
λ = 0, or λ > 0 and there is more than one component to check), in which case
it is easy to compute formally exp(tA)X0 and compare it with Y .

If we only have non explicitly algebraic solutions, we know that the solution
must verify ∀i, exp(ait) = zi with ai and zi algebraic numbers. We must then
have e

a1
a2

ln(z1) = z2. From theorem 1, it implies that a1/a2 ∈ Q or z1 ∈ {0, 1}.
z1 = 0 is not compatible, z1 = 1 means that t is rational and does not belong to
this case. a1/a2 ∈ Q can be checked easily (it means the degree of the minimal
polynomial is at most 1). Then we must check that za1/a2

1 = z2 which is possible
for a rational exponent. This verification must be done for all pairs of ai.

If we have several infinities of candidates, we have to decide whether those
infinities have a common point. To decide whether the αi + 2π

bi
Z intersect, we

need to know whether the bi have an integer common multiple. If they don’t,
then there will exist an infinity of t belonging to all those sets; if they do, only
a finite number of t need to be tested.

The last case is if we have on one hand a non algebraic solution and on the
other hand an infinity of solutions. We can summarize this case as the simulta-

neous resolution of two constraints:

⎧
⎨

⎩

eat = z[
cos(bt) − sin(bt)
sin(bt) cos(bt)

] [
x1

x2

]

=
[
y1
y2

]
. We will

rephrase the second part as
[
eibt 0
0 e−ibt

] [
1 −i
1 i

] [
x1

x2

]

=
[
1 −i
1 i

] [
y1
y2

]

.

And we can write the whole system as the following:

⎧
⎨

⎩

eat = z
eibt = z2
e−ibt = z3

, where a, b,

z, z2, and z3 are algebraic numbers (some are complex). We have already been
confronted with such a system (but it had only two components) and we know
that from theorem 1 it means that i ba belongs to Q or z ∈ {0, 1}. i ba ∈ Q can be
verified easily as it is an algebraic number; z = 0 is impossible, 1 means eat = 1
hence a = 0 (which belongs to another case) or t = 0 hence z2 = z3 = 1 in which
case, t = 0 is a solution to the problem.



250 E. Hainry

References

1. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems,
and an Introduction to Chaos. Elsevier Academic Press (2003)

2. Murray, J.D.: Mathematical Biology, 2nd edn. Biomathematics, vol. 19. Springer,
Berlin (1993)

3. Lorenz, E.N.: Deterministic non-periodic flow. Journal of the Atmospheric Sci-
ences 20, 130–141 (1963)

4. Graça, D.S., Campagnolo, M.L., Buescu, J.: Robust simulations of Turing machines
with analytic maps and flows. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE
2005. LNCS, vol. 3526, pp. 169–179. Springer, Heidelberg (2005)

5. Mignotte, M.: Suites récurrentes linéaires. Séminaire Delange-Pisot-Poitou. Théorie
des nombres 15, G14–1–G14–9 (1974)

6. Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes
linéaires. Bulletin de la Société Mathématique de France 104, 175–184 (1976)

7. Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem - on the
border between decidability and undecidability. Technical Report 683, Turku Cen-
ter for Computer Science (2005)

8. Blondel, V., Portier, N.: The presence of a zero in an integer linear recurrent
sequence is NP-hard to decide. Linear algebra and its Applications 351–352, 91–98
(2002)

9. Bournez, O.: Complexité algorithmique des systèmes dynamiques continus et hy-
brides. PhD thesis, École Normale Supérieure de Lyon (1999)

10. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

11. Asarin, E., Schneider, G.: Widening the boundary between decidable and unde-
cidable hybrid systems. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002)

12. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability
problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Hei-
delberg (2001)

13. Blondel, V., Tsitsiklis, J.N.: A survey of computational complexity results in sys-
tems and control. Automatica 36(9), 1249–1274 (2000)

14. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. Journal
of the ACM 33(4), 808–821 (1986)

15. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press (1974)

16. Mignotte, M.: An inequality about factors of polynomials. Mathematics of Com-
putation 28(128), 1153–1157 (1974)

17. Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel.
PhD thesis, École polytechnique (2003)

18. Brawley, J.V., Carlitz, L.: Irreducibles and the composed product for polynomials
over a finite field. Discrete Mathematics 65(2), 115–139 (1987)

19. Baker, A.: Transcendental Number Theory. Cambridge University Press (1990)
20. Gelfond, A.O.: Transcendental and Algebraic Numbers. Dover Publications (2003)
21. Lelong-Ferrand, J., Arnaudiès, J.M.: Cours de mathématiques, tome 1: algèbre.

Dunod (1971)



Hybrid Functional Interpretations

Mircea-Dan Hernest1 and Paulo Oliva2,�

1 Informatics Institute, University of Innsbruck, Austria
dan.hernest@uibk.ac.at

2 Department of Computer Science, Queen Mary, University of London
pbo@dcs.qmul.ac.uk

Abstract. We show how different functional interpretations can be combined via
a multi-modal linear logic. A concrete hybrid of Kreisel’s modified realizability
and Gödel’s Dialectica is presented, and several small applications are given. We
also discuss how the hybrid interpretation relates to variants of Dialectica and
modified realizability with non-computational quantifiers.

Keywords: Functional interpretations, modified realizability, Dialectica interpre-
tation, linear logic, program extraction from proofs, uniform quantifiers.

1 Introduction

The second author recently devised a unified presentation [1] of different functional
interpretations of intuitionistic logic, including Kreisel’s modified realizability [2] and
Gödel’s Dialectica interpretation [3]. As it turns out, these distinct interpretations di-
verge only in the treatment of the structural rule of contraction. Therefore, due to its
finer handling of contractions, linear logic [4] gives us the optimal setting for further
analysing and comparing these interpretations [5, 6].

In this article we show that functional interpretations not only can be better under-
stood modulo linear logic, but can also be successfully combined into what we term
hybrid interpretations, where features of different interpretations can coexist. Consider
for instance the handling of extensionality when working in the language of all finite
types. In the case of modified realizability we can safely adopt a fully extensional set-
ting with primitive equality for basic types (say n = m for numbers n,m ∈ N) and
higher-type equality defined as f

ρ→τ
= g :≡ ∀xρ(fx τ= gx) together with the axiom

schema of extensionality

x
ρ
= y → fx

τ= fy (1)

for all finite types ρ, τ . However, when it comes to Dialectica interpretation, the trans-
lation of (1) requires witnesses for the universal quantifiers within x

ρ
= y, which cannot

be majorised in general [7] and hence cannot be expressed inside Gödel’s system T.
But recall that intuitionistic proofs can be embedded into linear logic ones, with intu-
itionistic implicationsA→ B translated as linear implications !A � B. The difficulty

� The second author gratefully acknowledges support of the Royal Society of the UK under
grant 516002.K501/RH/kk.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 251–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



252 M.-D. Hernest and P. Oliva

of Dialectica in dealing with full extensionality is that the “negative information” in
the assumption !A ≡!(x

ρ
= y) of (1) should not (and cannot) be witnessed. In other

words, the modality “!” should in this case rather be treated as by Kreisel’s modified
realizability, also when carrying out a Dialectica interpretation.

This distinguished treatment of the modalities is possible because, as pointed out by
Girard (cf. [8] and [9], p84), the modalities are not canonical, thus different modalities
can coexist into a single system. Therefore, we intend to make use of what we name a
multi-modal linear logic, which includes distinct modalities corresponding to each of
the various functional interpretations. E.g., in the extensionality example (1) we rather
use Kreisel’s modified realizability modality (!kA) in order to express that the informa-
tion in the premise of the axiom schema should not be witnessed:

!k(x
ρ
= y) � fx

τ= fy . (2)

This generalises Spector’s quantifier-free rule of extensionality (see [10]) since it allows
us to derive rs

τ= rt from s
ρ
= t in any context of the form !kΔ, and has the advantage

that visibly (2) requires no realizer.
In contrast to modified realizability, the Dialectica interpretation is well-suited to

deal with classical proofs via negative translation, as it interprets the Markov principle

¬∀xAqf (x) → ∃x¬Aqf (x) . (3)

Since the premise of (3) corresponds in linear logic to ?∃xA⊥
qf(x), the modality “?”

should rather be treated as by the Dialectica interpretation, even when attempting to do
a modified realizability, hence (3) should be replaced by

!g ?g ∃xAqf(x) � ∃x ?g Aqf(x) . (4)

For proofs which use both extensionality (2) and Markov principle (4), constructive
information will be extracted whenever such a labelling of the modalities is possible.

The setting of multi-modal linear logic also allows for a unified study of the non-
computational (“nc” for short) quantifiers introduced by Berger in the context of modi-
fied realizability [11] and adapted by the first author to Dialectica interpretation [12].

The paper is organised as follows. In the next section we present the formal system of
multi-modal linear logic. In Section 3 we introduce the hybrid functional interpretation
of the multi-modal system. In Section 4 we present a few illustrative applications of
the hybrid interpretation. A comparison between the use of nc quantifiers and of our
hybrid logic is given in Section 5. Section 6 discusses possible extensions of the hybrid
interpretation to include other modalities. In Section 6.1 we present some ideas for
an algorithm which decorates a (linear translation of a) given intuitionistic proof with
different modalities so as to achieve a desired outcome of the extraction program.

2 Multi-modal Linear Logic LLω
h

We build upon an extension of classical linear logic to the language of all finite types,
introduced by the second author in [13]. The set of finite types T is inductively defined



Hybrid Functional Interpretations 253

by: i, b ∈ T and if ρ, σ ∈ T then ρ→ σ ∈ T . For simplicity, we deal with only two
basic finite types i (integers) and b (booleans). We use no linear types nor linear terms.

We assume that the terms of LLωh contain all typed λ-terms, i.e. variables xρ for
each finite type ρ, λ-abstractions (λxρ.tσ)ρ→σ , term applications (tρ→σsρ)σ , and con-
ditionals (sb)(tρ, rρ). The atomic formulas of LLωh are Aat, Bat, . . . and A⊥

at, B
⊥
at , . . . .

For simplicity, the standard propositional constants 0, 1,⊥,� of linear logic have been
omitted, since the hybrid interpretation of atomic formulas is trivial (see Definition 1).

Formulas are built from atomic formulas via connectives A � B (par), A ⊗B (ten-
sor), A �z B (if-then-else) and quantifiers ∀xA and ∃xA. Exponentials will be treated
in Section 2.1 and nc-quantifiers in Section 5. The linear implication A � B abbre-
viates A⊥

� B where the linear negation (·)⊥ is an abbreviation so that (A⊥)⊥ is
syntactically equal to A (see [4, 13]). Recall that the structural rules of linear logic do
not include the usual rules of weakening and contraction. These are added separately,
in a controlled manner via the use of modalities (cf. Section 2.1). The rules for the mul-
tiplicative connectives and quantifiers are the usual ones for (one-sided) classical linear
logic (see [4, 13]). Following [5], we deviate from the standard formulation of linear
logic and use the if-then-else logical constructor A �z B instead of standard additive
conjunction and disjunction1. The rules forA �z B are given in [13] (Table 3). In terms
of quantification over booleans, the standard additives can be defined as

A ∧B :≡ ∀zb(A �z B) A ∨B :≡ ∃zb(A �z B) .

Notation for tuples. We use bold face variables f , g, . . . ,x,y, . . . for tuples of vari-
ables, and bold face terms a, b, . . . ,γ, δ, . . . for tuples of terms. Given the sequences
of terms a and b, by a(b) we mean the sequence of terms a0(b), . . . , an(b). Similarly
for the multiple simultaneous substitution a[b/x].

2.1 Kreisel and Gödel Modalities

The second author [5, 13] has recently studied possible different interpretations for the
exponentials ! and ?, and how these correspond to well-known functional interpreta-
tions of intuitionistic logic. We here introduce syntactically distinct exponentials (see
Table 1) and show how these different interpretations can coexist (whence the “hy-
brid” denomination). For simplicity we have considered only the so-called “Kreisel”
and “Gödel” modalities, denoted !k and respectively !g , together with their duals ?k

Table 1. Rules for the exponentials ∗ ∈ {k, g}

?∗Γ, A
(!∗)

?∗Γ, !∗A

Γ, A
(?∗)

Γ, ?∗A

Γ, ?∗A, ?∗A
(con∗)

Γ, ?∗A

Γ
(wkn∗)

Γ, ?∗A

1 See Girard’s comments in [4] (p13) and [9] (p73) on the relation between the additive connec-
tives and the if-then-else construct.



254 M.-D. Hernest and P. Oliva

and ?g . This will correspond to a combination of modified realizability and Dialectica
interpretation into a single functional interpretation which supersedes both of them.

Moreover, a partial order of information is put on the distinct modalities in the form
of the following “relaxing” rules

Γ, ?gA
(?-relax)

Γ, ?kA
and

Γ, !kA
(!-relax)

Γ, !gA

meaning that at anytime we can choose to “forget” some information we had. This is be-
cause, as will be reflected in the hybrid interpretation given below, the Gödel “whynot”
is meant to carry a finer information than ?k , whereas the Kreisel “bang” is more gen-
eral than !g . The usual rules for both kinds of exponentials are presented in Table 1.

In mixing both Kreisel’s and Gödel’s interpretations, we must add also the following
restriction on the “Gödel” contraction rule cong (for terminology see Section 3 below):

(∗) if the contraction formula A in cong is computationally relevant, then it must not
contain any Kreisel whynot ?k in front of a computationally relevant subformula,
and also no Kreisel bang !k in front of a refutation relevant subformula.

As we will see, (∗) ensures that the interpretation of such formulas A is quantifier-free
(hence decidable); (∗) is necessary and sufficient for attaining Theorem 1.

3 A Hybrid Functional Interpretation

To each formula A of LLωh we associate a not necessarily quantifier-free formula |A|xy
of linear logic LLω (defined in [13]) where x,y are fresh variables not appearing in A.
The length and types of x,y are inductively determined by the formulaA. The variables
x in the superscript are called the witnessing variables, while the subscript variables y
are called the challenge variables. Intuitively, the interpretation of A is a two-player
(Eloise and Abelard) one-move game, where |A|xy is the adjudication relation. We want
that Eloise has a winning move whenever A is provable in LLωh . Moreover, the hybrid
linear logic proof of A will provide Eloise’s winning move a, i.e., ∀y|A|ay will hold in
LLω , where a is a tuple of terms of corresponding types.

Formulas for which the tuple of witnessing variables is not empty are considered
computationally relevant, and formulas for which the sequence of challenge variables
is not empty are considered refutation relevant. An ?k (respectively !k) in front of a
computationally (respectively refutation) irrelevant formula will be called redundant.

Definition 1 (Hybrid Interpretation). The interpretation of atomic formulas are the
atomic formulas themselves, with empty sets of witnessing and challenge variables, i.e.
|Aat| :≡ Aat and |A⊥

at| :≡ A⊥
at . Assuming |A|xy and |B|vw already defined, we define

|A � B|f ,gy,w :≡ |A|fw
y � |B|gy

w |∃zA(z)|x,zf :≡ |A(z)|xfz
|A⊗B|x,vf ,g :≡ |A|xfv ⊗ |B|vgx |∀zA(z)|fy,z :≡ |A(z)|fzy

|A �z B|x,vy,w :≡ |A|xy �z |B|vw .



Hybrid Functional Interpretations 255

Finally, we can give different interpretations to the modalities as:

|!kA|x :≡ !∀y|A|xy |!gA|xf :≡ !|A|xfx

|?kA|y :≡ ?∃x|A|xy |?gA|fy :≡ ?|A|fy
y .

It is easy to see that |A⊥|yx ≡ (|A|xy)⊥ and thus |A � B|f ,gx,w ≡ |A|xfw � |B|gx
w .

We prove the soundness of our interpretation, i.e., we show how Eloise’s winning move
in the game |A|xy can be algorithmically extracted from a proof of A in LLωh .

Theorem 1 (Soundness of Hybrid Interpretation). Let A0, . . . , An be a sequence of
formulas of LLωh , with z as the only free-variables. If the sequent A0, . . . , An is prov-
able in LLωh , then terms a0, . . . ,an can be automatically synthesised from its formal
proof, such that the translated sequent |A0|a0

x0
, . . . , |An|an

xn
is provable in LLω , where

FV(ai) ∈ {z,x0, . . . ,xn}\{xi}.
Proof: Ignoring the rules for Gödel exponentials, the proof is given in [5], with !:≡!k
and ?:≡?k . The addition of Gödel exponentials to the language (together with their
interpretation) does not alter the facts. Also the rules for Gödel exponentials are treated
in [13], but independent of the Kreisel exponentials. Hence all we need to prove is that
the proofs in [13] still hold after adding Kreisel exponentials to the language (together
with their interpretation). It is easy to notice that, due to the restriction (∗) we added on
cong , the interpretation of ?gA is quantifier-free, hence decidable. This is because (so
far) only non-redundant !k or ?k could introduce quantifiers in the translated formula. �

4 Simple Applications to Program Extraction

In this section we present some examples where it pays off to analyse proofs using
both Kreisel and Gödel modalities. Some information might not be relevant while some
other might be. One can thus use !kA and ?kA to ignore the computationally irrelevant
parts of the proof, in a way very similar in effect with light Dialectica [12].

4.1 Example 1

Consider theorems of the form

∀xA→ ∀yB → ∀zC (5)

possibly with parameters, where the negative information on x is irrelevant, while the
one on y is of our interest. In this case, we would rather view this theorem as

!k∀xA � !g∀yB � ∀zC . (6)

For instance, consider the simple intuitionistic theorem

∀f (∀n(f(n) ≤ 1)→ ∀m(f(m) �= f(m+ 1))→ ∀l(f(l) = f(l + 2))
)
. (7)

From a proof of this, using labelling (6), our hybrid interpretation extracts a realizer
Φ(f, l) s.t.

∀f, l(∀n(f(n) ≤ 1)→ (f(Φ(f, l)) �= f(Φ(f, l) + 1))→ (f(l) = f(l + 2))
)
.

Indeed, one such witness is Φ(f, l) := if (f(l + 1) = f(l+ 2)) then l+ 1 else l.



256 M.-D. Hernest and P. Oliva

4.2 Example 2

More concretely, we consider the well-known example of extracting the Fibonacci num-
bers from a minimal logic proof of their weak existence. The example was first used
in [14] to illustrate the so-called “refined A-translation” and then in [15] to illustrate the
light Dialectica (see also Section 4.3 of [12]). The semi-classical Fibonacci proof is a
minimal-logic proof of ∀n∃clmG(n,m) , where

∃clmG(n,m) :≡ ∀m(G(n,m)→ ⊥) → ⊥ (8)

from assumptions expressing thatG is the graph of the Fibonacci function (G is viewed
as a predicate constant without computational content), i.e., G(0, 0), G(1, 1) and

∀l1, l2, l3
(
G(l1, l2)→ G(l1 + 1, l3) → G(l1 + 2, l2 + l3)

)
. (9)

Note that such a specification fits into the form (5) (with C :≡⊥). As was noticed by
the first author in [15], the negative universally quantified l1 , l2 and l3 do not need to
be witnessed in order to extract an algorithm for computing the Fibonacci numbers as
a witness for m as function of n. The proof in [14] can thus be translated to a hybrid
linear logic proof such that, in the pattern of (6), statement (8) becomes

?g ∃mG(n,m)

and (9) becomes (we tacitly removed a number of redundant !g from the front of G’s)

!k ∀l1, l2, l3
(
G(l1, l2) � G(l1 + 1, l3) � G(l1 + 2, l2 + l3)

)

and therefore only m is witnessed, by the usual Fibonacci algorithm defined as Fn :=
Fn−1 + Fn−2 and F1 := 1 and F0 := 0.

4.3 Example 3

The Dialectica interpretation and modified realizability also treat the induction rule2

A(0) A(n)→ A(n+ 1)
(IND)

A(l)

in slightly different ways. In both cases, the proofs of A(0) and A(n) → A(n + 1)
provide a realiser t[l] for the witnessing variables of A(l), i.e., |A|ty . However, only
during the extraction of t via Dialectica interpretation a functional which refutes A(n)
when given a refutation forA(n+1) will also be extracted. Such realizer is nonetheless
not used in the construction of the desired term t. Therefore we rather always treat
induction in the way modified realizability does, even when constructing a Dialectica
witness. In our multi-modal setting, this can be achieved by formulating induction as

A(0) !kA(n) � A(n+ 1)
(IND)

A(l)

since the Kreisel modality blocks the witnessing of counter-example flows.

2 The induction stated here corresponds to the induction rule with no open assumption in natural
deduction systems.



Hybrid Functional Interpretations 257

4.4 Example 4

Consider the representation of real numbers as Cauchy sequences of rationals with a
fixed rate of convergence. A real number being positive carries the extra information
of a lower bound on how far from zero the limit of the sequence can be (cf. [10]).
In order to avoid going into the representation level, when analysing the proof that a
certain real function f is positive at x, i.e. f(x) >R 0, it is often useful to view this
as ∃ l(f(x) >R 2−l). Although witnessing l gives us some lower bound on the value
of f(x), the formula f(x) >R 2−l still carries information on how far above 2−l the
value of f(x) is. This extra information is usually irrelevant in practice and the purely
existential matrix can be treated as quantifier-free, given that we can always forget these
witnesses later. When automatising program extraction, it thus proves to be useful to
make sure that the interpretation will not witness the innermost existential quantifier at
all. This can be achieved by viewing the statement f(x) >R 0 as ∃ l?k(f(x) >R 2−l).

5 Comparison to Light Dialectica

As we noticed above, the effect of applying the hybrid functional interpretation on
the semi-classical Fibonacci proof is equivalent to that of light Dialectica. This is not
unexpected, since the two are related by a shared feature: the occultation of certain non-
relevant quantifiers. Whereas light Dialectica needs a stronger restriction on the intro-
duction rule for the nc-universal quantifier, a direct correspondence exists between the
so-called ncm−FC condition of [12] and the present hybrid-interpretation restriction (∗)
on contraction formulas of cong . Both have the purpose of ensuring that the translated
contraction formula is decidable. We can thus see the hybrid interpretation as a simpli-
fication of the light Dialectica. On the other hand, there are situations which the latter
can handle, whereas the former cannot. The reason is that a !kA discards all challenge
terms of |A| and symmetrically a ?kA discards all witness terms of |A| . In contrast,
by means of nc-quantifiers one can exactly “pick” which variables of A do not need to
be witnessed or challenged. In this sense, light Dialectica appears to be finer than the
hybrid functional interpretation. Nonetheless, optimal is to have both techniques avail-
able in a single interpretation, combining their different syntactic natures. One can then
easily choose to use either of them, or even both when necessary. For this reason we
designed the following “light” hybrid interpretation, which supersedes both the hybrid
and the light interpretations (light Dialectica [12] and light modified realizability [11]).
Moreover, the nc-quantifiers could be useful in a purely linear context already.

5.1 The Light Hybrid Interpretation

To the language of our system we add the symbols ∀ and ∃ for non-computational uni-
versal and existential quantifiers respectively, usually abbreviated nc-forall, nc-exists.
The hybrid interpretation of the nc quantifiers is

|∃zA(z)|xy :≡ ∃z|A(z)|xy |∀zA(z)|xy :≡ ∀z|A(z)|xy ,

hence the translated formula includes the “regular” quantifiers corresponding to the nc
quantifiers - a further reason, besides the interpretation of non-redundant !k , ?k , that



258 M.-D. Hernest and P. Oliva

|B|vw is not quantifier-free for general B. Therefore, the restriction on the contraction
rule cong is enhanced so that computationally relevant contraction formulas must not
contain any nc-quantifier, besides satisfying condition (∗). Moreover, corresponding
rules must be devised for the introduction of the new ∀ and ∃. These are just copies of
the rules (∀) and (∃):

Γ,A
(∀)

Γ, ∀zA
Γ,A[t/z]

(∃)
Γ, ∃zA

but in the case of (∀) with an extension of the restriction that z is not free in Γ : further z
must not be free in the terms t of the (∃) instances in the proof of the premise Γ,A, nor
in the computationally relevant contraction formulas of this proof. Notice the context-
dependency of the above restriction, which is better expressed as “z must not be free in
the witnessing terms of the translations of Γ,A, after mining the proof of this premise
sequent”. In fact, the latter form is both necessary and sufficient, whereas the former is
largely sufficient but can be optimised to become necessary as well (just as in [12]).

Theorem 2 (Soundness of light hybrid interpretation). Theorem 1 still holds after
the addition of nc-quantifiers with their introduction rules and hybrid interpretation.

Proof: Notice that the presence of nc-quantifiers does not modify the set of free vari-
ables of the translated formula (since nc-quantified variables are regular-quantified in
the translation). The interpretation of (∃) is just an instance of (∃). Similarly, the inter-
pretation of (∀) is an instance of (∀), but we must check the restriction that z is not free
in the witnessed translation |Γ |γv of Γ . The extra restrictions we set on (∀) ensure that z
is not free in γ and by the usual restriction z is not among the free variables of Γ ,which
appear free in |Γ |γv as well. Since z does not appear in the list of challenge variables for
|∀zA|, essential is also that z cannot be free in the witnesses a from |A|ax . �

6 Future Work: Extension and Automation

We can also consider other modalities, e.g., Howard (!h) and Diller-Nahm (!d), together
with their duals ?h and ?d . We assume a general ordering on all four modalities as
k > h > d > g and add the following weakening rules w.r.t. this partial order:

Γ, ?iA

Γ, ?jA

Γ, !jA

Γ, !iA
(j > i and i, j ∈ {k, h, d, g})

meaning that anytime we can choose to “forget” some information we had. The inter-
pretation of the new exponentials should be, following [13], as follows:

|!dA|xf :≡ !∀y∈fx |A|xy |?dA|fy :≡ ?∃x∈fy |A|xy
|!hA|xf :≡ !∀y≤∗fx |A|xy |?hA|fy :≡ ?∃x≤∗fy |A|xy

In some cases, when decidability of formulas is an issue, we might need to use the
Diller-Nahm interpretation instead of Dialectica. Consider the following example (also
(7) could serve as an example, if we assume that f(m) = f(m+ 1) is undecidable)

∀fN→R
(∀m(f(m) <R f(m+ 1)) → ∀n(f(n) <R f(n+ 2))

)
. (10)



Hybrid Functional Interpretations 259

Note that <R is an undecidable relation. The best we can do is to collect a finite set
of witnesses for m (as functions of n). Like in Example 4 above, also here are we not
interested in the redundant information hidden within f(m) <R f(m+ 1). For the sake
of program-extraction, formula (10) is thus better labelled as

∀fN→R
(
!d∀m?k (f(m) <R f(m+ 1)) � ∀n?k (f(n) <R f(n+ 2))

)
.

We can produce a finite collection of witnesses for m as Φ(f, n) := {n, n+ 1} so that

∀fN→R, n
(∀m∈Φ(f, n) (f(m) <R f(m+ 1)) → (f(n) <R f(n+ 2))

)
.

Note that the same effect can be achieved via a light Diller-Nahm interpretation, using
an ∃ for the existential quantifier hidden within <R , rather than the Kreisel whynot ?k .

6.1 Automated Decoration of Modalities

Given a proof of a mathematical theorem, once the desired information (i.e., quantified
variables to be realized) is selected, we can automatically view the intuitionistic proof
as a hybrid linear logic proof, with the modalities decorated in such way that the proof
analysis will give us the information requested. For instance, in a theorem of the form

∀xA → ∀y ∃zB (11)

it could be that we are interested only in the negative universal information x, and not
in the positive existential information z. Hence we rather present (11) as a specification
in multi-modal linear logic decorated like

!g∀xA � ∀y?k∃zB or !g∀xA � ∀y∃zB.
An automated tool can try to figure out if such a labelling of the given proof is possible.
If it is, the hybrid interpretation will then return the realizer t and a linear logic proof of

∀y (!A[ty/x] � ?∃zB ) or ∀y (!A[ty/x] � ∃zB )

which can finally be translated back to an intuitionistic proof of ∀y (A[ty/x] → ∃zB ).
The input to such a “decorating algorithm” is the intuitionistic proof of an intuition-

istic formula A and A� , a (light) hybrid decoration of the linear logic translation of
A. We would like to transform the proof of A into a (light) hybrid linear proof of A� .
For this we should establish how the rules of intuitionistic logic could be translated
to proofs in hybrid linear logic. In general, an intuitionistic proof of B from uncan-
celled assumptions A0, . . . , An gets canonically translated to a linear proof of B from
!0A0, . . . , !nAn , where !i is one of the possible modalities, hence a proof of the se-
quent ?0A

⊥
0 , . . . , ?nA

⊥
n , B. Whenever a linear cut rule is to be applied, one has to

make sure that the exponential flavours in the cut formula from the left sub-tree are
isomorphically corresponding to the exponential flavours in its linear negation from the
right sub-tree. Moreover, this correspondence has to be coordinated recursively down
into the sub-trees. It is nevertheless not enough to simply ensure that the exponential
flavours propagate soundly from conclusion to axioms and assumptions. One has to also
verify the various restrictions: those involved by contraction rules like cong and, if the
nc-quantifiers are used as well, those involved by the (∀) introduction rule.

Sometimes, hybrid decorated specifications A� simply fail to have a hybrid proof.



260 M.-D. Hernest and P. Oliva

7 Conclusion

Hybrid interpretations successfully combine peculiar features of different functional
interpretations. A few restrictions need to be satisfied when mixing the corresponding
distinct modalities. The possibility of “colouring” the exponentials in a linear proof
translation of the given specification with the desired flavours can be investigated by an
algorithm. The non-computational quantifiers smoothly add to the picture in a way that
uniformly explicates the structure of both light Dialectica and light modified realizabil-
ity. Illustrative applications of the hybrid interpretations were here presented.

Example 3 brings an important optimisation of the usual treatment of induction by
Dialectica. Full extensionality and the Markov principle are simultaneously treated
under certain restrictions. Although not previously noticed, similar effects could be
achieved via the nc quantifiers, but using the hybrid modalities appears to be smoother.

The user of hybrid interpretations thus has a large choice of techniques. The hunt for
new applications has now just opened and the reader is warmly invited!

References

1. Oliva, P.: Unifying functional interpretations. Notre Dame Journal of Formal Logic 47(2),
263–290 (2006)

2. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite types. In:
Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North Holland, Amsterdam
(1959)

3. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Di-
alectica 12, 280–287 (1958)

4. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
5. Oliva, P.: Modified realizability interpretation of classical linear logic. In: Proc. of the 22nd

Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE Press (2007)
6. Oliva, P.: An analysis of Gödel’s Dialectica interpretation via linear logic. Dialectica (2008),

http://www.dcs.qmul.ac.uk/∼pbo
7. Howard, W.A.: Hereditarily majorizable functionals of finite type. In: Troelstra, A.S. (ed.)

WG 1988. Lecture Notes in Mathematics, vol. 344, pp. 454–461. Springer, Berlin (1973)
8. Danos, V., Joinet, J.B., Schellinx, H.: The structure of exponentials: Uncovering the dynam-

ics of linear logic proofs. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS,
vol. 713, pp. 159–171. Springer, Heidelberg (1993)

9. Girard, J.Y.: Towards a geometry of interaction. Contemporary Mathematics 92 (1989)
10. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathemat-

ics. Proceedings of the Steklov Institute of Mathematics 242, 136–164 (2003)
11. Berger, U.: Uniform Heyting Arithmetic. Annals Pure Applied Logic 133, 125–148 (2005)
12. Hernest, M.D.: Optimized programs from (non-constructive) proofs by the light (monotone)

Dialectica interpretation. PhD Thesis, École Polytechnique and Universität München (2006),
http://www.brics.dk/∼danher/teza/

13. Oliva, P.: Computational interpretations of classical linear logic. In: Leivant, D., de Queiroz,
R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 285–296. Springer, Heidelberg (2007)

14. Berger, U., Schwichtenberg, H., Buchholz, W.: Refined program extraction from classical
proofs. Annals of Pure and Applied Logic 114, 3–25 (2002)

15. Hernest, M.D.: Light Dialectica program extraction from a classical Fibonacci proof. Elec-
tronic Notes in Theoretical Computer Science 171(3), 43–53 (2007)

http://www.dcs.qmul.ac.uk/~pbo
http://www.brics.dk/~danher/teza/


A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 261–272, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

The Algorithm Concept – Tool for 
Historiographic Interpretation 

or Red Herring? 

Jens Høyrup 
jensh@ruc.dk 

http://www.akira.ruc.dk/~jensh/ 

Abstract. With starting point in Donald Knuth’s paper "Ancient Babylonian 
Algorithms", and using the algebraic reading of pre-Modern mathematical texts 
as a parallel, the paper discusses the relevance of the algorithm concept, on one 
hand as an analytical tool for the understanding and comparison of mathematical 
procedures, on the other as a possible key to how pre-Modern reckoners thought 
their mathematics and to how they thought about it.  

Keywords: pre-Modern mathematics; algorithm concept as an historiographic 
analytical tool; algebra as a historiographic analytical tool. 

A “red herring”: the smoked herring drawn 
across the trail of the fox in order to distract 
 the hounds and make the hunt last longer 

To August Ziggelaar 
 on occasion of his eighty years’ 

 birthday, 17 January 2008 

1   A Parallel but Preceding Issue 

When the Rhind Mathematical Papyrus – the most important single source for ancient 
Egyptian mathematics – was first published by August Eisenlohr in 1877, he interpreted 
some of the calculations of the text by means of that kind of equation algebra which in his 
times was currently taught in school. In 1880, Moritz Cantor followed him in the first 
edition of the first volume of his Vorlesungen über Geschichte der Mathematik,1 making it 
thereby (if any specific excuse was needed) the canonical way to read the text. It remained 
so in spite of the well-argued objections formulated by Léon Rodet already in 1881 (with 
the conclusion [24: 205] that “when studying the history of a science, exactly as when one 

                                                           
1 Still in the third edition from 1907 [3: 74]. 



262 J. Høyrup 

wants to obtain something, one should `rather ask God himself than his saints’”2). In his 
third edition, Cantor [3: 76] refers to Rodet’s objections and alternative interpretation 
through the method of a “single false position” (p. 76),3 but sees no genuine difference. 
Eric Peet, in his new edition of the Rhind Papyrus [20: 60], characterizes the matter as “not 
one of essence but of form”. 

Egyptian mathematics was not alone in this situation. In 1886, H. G. Zeuthen 
published Die Lehre von den Kegelschnitten im Altertum, arguing that in Elements 
II.1–10 the ancient Greek geometers possessed “what one may call a geometric algebra, 
since on one hand, like algebra, its deals with general magnitudes, irrational as well as 
rational, on the other uses other means than ordinary language in order to make its 
procedures intelligible and impress them on memory” [29: 7]. What Zeuthen had in mind 
was obviously a much more modern kind of algebra than what Eisenlohr had thought of, 
and the assertion is rather unobjectionable if Zeuthen’s whole explanation is taken into 
account.4 But it was not, and the resulting conventional wisdom of twentieth-century 
historiography was that the ancient Greek mathematicians had algebra without 
qualification, “dressed up” as geometry but algebra in “mathematical essence”. 

Algebra was also the obvious interpretational tool when “Babylonian algebra” was 
discovered and deciphered in the years around 1930 – and in subsequent decades it was 
taken for the very truth, as historians and historically interested mathematicians read 
the commentary and popularizations of the “saints” (i.e., of Neugebauer, van der 
Waerden and others) – see [7]. 

Cautious objections against the existence of a “Babylonian algebra” were raised by 
Michael Mahoney in 1971 [17], based however on a definition of algebra which 
excluded everything written before Viète, and therefore perhaps not very relevant for 
historians interested, e.g., in al-Khwārizmī’s or Fibonacci’s algebra. A famous clash in 
1975–1978 between Sabetai Unguru [26], B. L. van der Waerden [27], Hans 
Freudenthal [5] and André Weil [28] at least made it clear that the status of Greek 
“geometric algebra” was under discussion. 

In mild form, the association of large areas of pre-Modern mathematics to algebra is 
reflected in the characterization of problems as “equations”. An illustrative example  
chosen at random (that is, from a book which I happened to review recently) is the 
statement that a twelfth-century Liber augmentis et diminutionis shows “how linear 

                                                           
2 My translation, as everywhere in the following when no translator is identified. 
3 The method may be illustrated on the problem by which Fibonacci introduces the method in the 

Liber abbaci [2: 173]: 1/4  and 1/3  of a tree are underground, and this part is 21 palms. We posit 
a length for the tree, of which the fractions can be taken conveniently – most obviously 12. 1/4 +
1/3  of 12 palms are 7 palms – but we need 21 palms. Therefore the initial guess should be 
multiplied by 21/7  = 3. 

The method can also be used for homogeneous problems of (for instance) the second degree; 
then the scaling factor is the square root of the error factor. 

The Rhind Papyrus only uses the method for first-degree problems, but elsewhere in the 
Pharaonic mathematical corpus it is applied to homogeneous problems of the second degree (to  

find the sides of a rectangle from their ratio and the area). 
4 Admittedly, soon afterwards Zeuthen [29: 12] expresses Elements II.1–10 as algebraic equa-

tions dealing with a, b, c, ... – but then he explains that these must be understood as statements 
about lines and rectangles. 



 The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring? 263 

equations with one unknown or systems of linear equations with two unknowns may be  
solved with the help of the rule of double false position”5 [4: I, 5]. This also illustrates why 
some historians object to the automatic algebraic reading. One problem of the treatise runs 
as follows [16: I, 326]: 

 

Somebody traded with a quantity of money, and this quantity was doubled for him. From this 
he gave away two dragmas, and traded with the rest, and it was doubled for him. From this he 
gave away four dragmas, after which he traded with the rest, and it was doubled. But from 
this he gave away six dragmas, and nothing remained for him.  

Actually, the treatise solves this problem (and many others) not only through 
application of the “double false position” but also by stepwise reverse calculation and 
by means of what the treatise calls its regula, the formulation and solution of a 
first-degree equation in which the unknown initial quantity is called a thing and treated 
exactly as an x. Seeing the problem itself simply as “an equation” misses the need for 
what Viète following Pappos called “zetetics”, the formulation of the problem as an 
equation – and, in the present case, masks that zetetics is no automatic process, since 
the problem may as well be translated for instance into a system of three equations with 
three unknowns (the successive amounts traded with). 

A translation of a literary text always identifies that which the reader is supposed not 
to know – the words of the foreign language – within a framework which the reader is 
supposed to know. In cases where the semantic structures of the two languages are 
different, it is sometimes possible for the translator to make a choice depending on local 
semantics without telling the reader – in a classic example, translating English “wood” 
into German “Holz” if the material is thought of, and into “Wald” if the “wood” refers 
to many trees growing together. If an English pun is involved, an explanatory note is 
needed for the German reader. 

Such a note is, mutatis mutandis, what Zeuthen gave. His reference to “algebra” was 
a tool for making his readers understand how the theorems from Elements II were used. 
Applied thus, the reference to the reader’s notion of algebra was hence a fruitful as well 
as legitimate explanatory tool – and even a way to make the reader reflect upon his own 
notion of algebra. 

Zeuthen’s followers forgot the note, and many of those who explained Egyptian 
and Babylonian mathematics as “algebra” never thought of making similar notes. 
Thereby “algebra” became a red herring, distracting from analysis of what goes on in 
the ancient texts and what went on in the mind of its carriers instead of elucidating it. 

2   Seeing Historical Texts through Algorithms 

In recent decades, it has become customary to appeal to the algorithm concept, mostly 
as an alternative, at times as a supplement to “algebra”. The precedent invites us to ask 
whether this is a new and better tool or another red herring? 

The first publication to use the notion of algorithms as a tool to understand what goes 
on in historical texts was probably Donald Knuth’s “Ancient Babylonian Algorithms” 

                                                           
5 That is, making two guesses and finding the correct value from the two errors that arise by 

means of a calculation which follows the principle of the “alligation rule” (though the latter link 
is never made). In mathematical principle, we may see the method as a linear interpolation, and 
some medieval mathematicians indeed provided a corresponding geometric proof. 



264 J. Høyrup 

from 1972 [15]. He did not see algorithms as an alternative way to explain Babylonian 
mathematics but states indeed (p. 622) that the 

Babylonian mathematicians [...] were adept at solving many types of algebraic equations. 
But they did not have an algebraic notation that is quite as transparent as ours; they 
represented each formula by a step-by-step list of rules for its evaluation, i.e. by an 
algorithm for computing that formula. In effect, they worked with a “machine language” 
representation of formulas instead of a symbolic language. 

There are at least three layers in this. Firstly, that the algorithm is a prescription for 
finding a result – it provides neither the idea behind the procedure nor any proof of its 
correctness, and cannot do that (on this level of mathematics) as long as everything is 
understood as a prescribed sequence of abstract numerical operations – as, secondly, 
was Knuth’s understanding of the mathematical texts, based on the translations and the 
interpretation of the time [7]. Only the abstract understanding of the numbers of the 
texts as devoid of ontological reference allows us to consider them as elements of a 
“machine language”. Thirdly, that an “algorithm” is a “step-by-step list of rules”; this 
may seem uncontroversial – but see below, note 15. 

Knuth gives this illustration (from the tablet BM 85200+VAT 6599 #246). What is at 
stake is to find the length and the width of the base of a cistern, whose volume is given 
(in the usual transcription of sexagesimal numbers) as 27;46,40 (meaning 27+46/60 +
40/3600 ), and whose depth is 3;20, given that the length exceeds the width by 0;50. I 
conserve Knuth’s parenthetical explanations: 

A (rectangular) cistern. 
The height is 3,20, and a volume of 27,46,40 has been excavated. 
The length exceeds the width by 50. (The object is to find the length and the width.) 
You should take the reciprocal of the height, 3,20, obtaining 18. 
Multiply this by the volume, 27,46,40, obtaining 8,20. (This is 

the length times the width; the problem has been reduced to 
finding x and y, given that x–y = 50 and xy = 8,20. A 
standard procedure for solving such equations, which 
occurs repeatedly in Babylonian manuscripts, is now used.) 

Take half of 50 and square it, obtaining 10,25. 
Add 8,20, and you get 8,30,25. (Remember that the radix point 

position always needs to be supplied. In this case, 50 stands 
for 5/6  and 8,20 stands for 81/3, taking into account the sizes 
of typical cisterns!) 

The square root is 2,55. 
Make two copies of this, adding (25) to the one and sub-

tracting from the other. 
You find that 3,20 (namely 3 1/3 ) is the length and 2,30 

(namely 21/2) is the width. 
This is the procedure. 

                                                           
6 Knuth translates freely from the translation in [19: I, 198, 205]. Revised transliteration and re-

translation in agreement with recent insights in [9: 146]. 



 The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring? 265 

We observe that until the beginning of the “standard procedure”, the numbers are not 
ontologically abstract (in other words, deprived of semantics), not “machine language” 
but intrinsically also an explanation – knowing that the volume is the product of base 
and height, we understand that division of the volume by the height (which the 
Babylonians performed as a multiplication by its reciprocal) must give the base. 

What Knuth could not know in 1972 is that the “standard procedure” refers to a 
sequence of geometric cut-and-paste operations – shown here alongside the 
prescription. His “square root” is thus the side of a square, and the “two copies” (the 
text actually says “posit it twice”) are the two sides which meet in a corner. What Knuth 
renders “adding (25) to one and subtracting from the other” (actually “join to one, 
remove from one”) is a recurrent ellipsis for a sub-sub-procedure in which the 
half-excess is joined to one side and removed from the other – often first removed and 
only afterwards – because the same line segment is involved and therefore has to be at 
disposition – joined to the other side. Even this part therefore is not written in “machine 
language” but semantically loaded; the inherent references to the geometric diagram7 
which is manipulated provides a justification of the procedure which is just as adequate 
as the one that follows from our manipulations of an algebraic equation.8 

Removal of the reference to the “machine language”, a misunderstanding induced by 
the translation into modern arithmetical language, does not prevent us from speaking of 
the prescription as an “algorithm”: it still consists of a “step-by-step list of rules”. 
However, as Knuth points out (p. 674), he only finds “straight-line calculations, without 
any branching or decision-making involved. In order to construct algorithms that are 
really non-trivial from a computer-scientist’s point of view, we need to have some 
operations that affect the flow of control”. The closest he gets is the reading of a text 
with repetition as an expanded macro-iteration. 

He might have pointed to that use of an embedded sub-routine which he observes in 
the text he quotes. This feature of the Babylonian texts was explored in some depth by 
Jim Ritter [23]. Ritter centred the discussion on the tablet Str. 368,9 which has the same 
embedded sub-routine as the example discussed by Knuth – with one small difference. 
Instead of performing the bisection within the subroutine, the main procedure omits a 
previous doubling that should produce the number to be bisected. The same pairwise 
cancellation of operations, one inside and the other outside the sub-routine, is found in 
other texts. The algorithmic interpretation can of course be saved (we may just speak of 
two related but different sub-routines) – but the two-level algorithmic interpretation 
can still be seen to be only a formalization of the sequence of operations, and not to 

                                                           
7 These references are visible in the terminology, which is only rendered inadequately by Knuth. 

The Old Babylonian mathematical terminology (that is, the terminology of the earlier second 
millennium BCE, the period from which most mathematical texts stem) distinguishes two dif-
ferent “additive operations”, two different “subtractions”, two different “halves”, and no less 
than four “multiplications” (one of which is not a genuine multiplication but a rectangle con-
struction). 

8 Karine Chemla has repeatedly used the formulation that the text is “algorithm and proof in one”. 
For the whole geometric interpretation of the procedure, see for instance [9]. 

9 Transliteration and translation in [19: I, 311f]. 



266 J. Høyrup 

cover that insight from which the sequence of steps is planned – which would not 
astonish Knuth, cf. above. 

In what Knuth regarded as the trivial sense, Babylonian mathematical texts – more 
precisely, the “procedure texts” 10  – can certainly be understood as consisting of 
algorithms. The texts teach by means of paradigmatic examples, that is, by means of 
steps in sequence; the ontological identifications of the entities which are operated on 
(“the height”, “the volume”, etc.) just show that the algorithm is not a purely numerical 
one; occasional explanatory remarks (“because he has said that ...”, referring to the 
statement) we may understand as “comment fields”. 

In this sense, however, even a Euclidean construction (say, Elements I,1, “On a given 
line segment to construct an equilateral triangle”, ed. [6: I, 10]) can be read as an 
algorithm, with the only difference that the comments field (here a proof) follows after 
the completion of the algorithmic prescription (“With centre Α and distance ΑΒ to draw 
the circle ΒΓΔ ...”; and with centre Β and distance ΒΑ to draw ...” ). Even this is a trivial 
linear algorithm, even though it may be applied as a sub-routine in other constructions 
(thus already in Elements I.2).11 We may legitimately ask whether a conceptual tool 
which can be applied so widely is really informative (but the answer will probably 
depend on taste rather than on arguments). 

Greek mathematics is certainly more than geometrical construction, and the 
“comment fields” of constructional propositions attach these to the general endeavours 
of theory and demonstration. On the other hand, the concentration on paradigmatic 
examples was not a Babylonian monopoly. Knuth (p. 676) already refers to the ancient 
Egyptians and to Indian and Chinese mathematics (rightly, indeed, with the only 
difference that Indian and Chinese sources regularly state their “algorithms” in the 
abstract before giving the paradigmatic examples); and the list need not stop there. If 
the preponderant use of (branch-free) algorithms characterizes these types of 
mathematics, should we not expect it also to characterize the way their carriers 
understood mathematics? 

Old Babylonian and late medieval texts allow us to reach at least a partial answer to 
this question. Before we turn to the carriers’ perspective, however, we shall take up a 
final aspect of the use of the algorithm notion as a historiographical tool. 

3   Algorithmic Analysis 

In order to distil from a text problem its “mathematical substance” (and thus to decide if 
and why the procedure is adequate), some kind of formalization is often needed. To 
take a simple example, the “rule of three”:12 

                                                           
10 Beyond these texts, which describe the procedure to be followed in problem solutions, the 

corpus of mathematical texts encompasses “catalogues” listing only problem statements (at 
times with indication of the solution), mathematical tables and tablets containing only nu-
merical calculations. 

11 More interesting embedding is present in ancient Greek geometry at the level of the formulaic 
language, as discussed by Germaine Aujac [1] and particularly by Reviel Netz [18: 127–167]. 
But this has hardly anything to do with algorithms, it only shows that the notion of embedding 
is interesting on its own – cf. [8]. 

12 I quote from Jacopo da Firenze's Tractatus algorismi from 1307, ed., trans. [12: 237]. 



 The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring? 267 

7 tornesi are worth 9 parigini.13 Say me, how much will 20 tornesi be worth? Do 
thus, the thing that you want to know is that which 20 tornesi will be worth. And the 
not similar (thing) is that which 7 tornesi are worth, that is, they are worth 9 
parigini. And therefore we should multiply 9 parigini times 20, they make 180 
parigini, and divide in 7, which is the third thing. Divide 180, from which results 25 
and 5/7 . And 25 parigini and 5/7  will 20 tornesi be worth. And thus the similar 
computations are done. 

At first we replace 7 by a, 9 by b and 20 by c, and then we say that c tornesi are worth 
(cb)/a parigini. We might also have argued that 20 is 20/7 times as much as 7, and the 
value of the 20 tornesi hence ( 20/7)⋅9 parigini, that is, ( c/a) ⋅b (this method was called 
“by ratio” by the Arabic mathematician Ibn Thabāt [21: 43] around 1200 and preferred 
by some Arabic mathematicians). 

If read as computational prescriptions (that is, as straight-line algorithms, “first 
multiply ...then divide ...” respectively “first divide ... then multiply”), these formulae 
are quite adequate. The danger is, however, that they are read as algebraic formulae, in 
which case the reader might believe that the two methods are identical – which is 
clearly a bad approach to historical texts, since it conflates an opaque procedure (the 
rule of three) and a transparent one. The frequent references in general histories of 
mathematics to the presence of the rule of three in Babylonian and Egyptian mathemat-
ics shows that the mere possibility of translating into algebraic formulae suffices to 
produce the mistake. 

At times, moreover, even a literal reading of an algebraic formula does not allow an 
unambiguous reconstruction of the computational procedure which it expresses – and 
thus not to decide whether two texts actually use the same procedure. For instance, we 
may look at this problem from the Late Babylonian tablet BM 34568:14 

The diagonal and the length I have accumulated: 9. 3 the width. What the length and the 
diagonal. Since you do not know, 
9 steps of 9, 81, and 3 steps of 3, 9. 9 from 81 you lift: 
remaining 72. 72 steps of ½ you go: 36. 9 steps of what 
may I go so that 36 (is produced)? 9 steps of 4 you go: 36. 4 the length. 
4 from 9 you lift: remaining 5. 5 the diagonal. 

To render this procedure by the line 

l is found as  
l+d

)w  ] l + ([d  22 −⋅½  ,  d as  (d+l)–l
 

(as done in [10: 13] apart from a missing fraction line in the print) is only adequate 
because d+l is a given number; if it had been calculated, the formula would not tell 
whether it was calculated twice in the formula for l or once, and saved. 

                                                           
13 “Tornesi” are minted in Tours, “parigini” in Paris. 
14 I use the translation in [9: 393], but replace the sexagesimal place value numbers with decimal 

ones. 



268 J. Høyrup 

 
Annette Imhausen’s algorithmic representation of an Egyptian problem [13: 165] 

An alternative formalism, able to better grasp the structure and details of complicated 
calculations for analysis, was proposed by Jim Ritter [23]15 and amply used in adapted 
shape by Annette Imhausen first in 2002 [13] and next in her dissertation from 2003 [14]: 
In a three-column scheme, the single steps of the text (in translation), the numerical steps 
and their explanation in symbols stand in parallel. In the symbol column, the outcome of 
each computation is given a new name,16 which produces an unambiguous trail. 

4   The Participants’ Point of View 

So much about the algorithm concept as a tool for historiographic text analysis. We should 
now return to its possible adequacy as a mirror for the original reckoners’ understanding of 
what they were doing. 
                                                           
15 The paper circulated for long before its final publication in 2004. I read it myself in 1997; a 

preprint [22] appeared in 1998. 
It should be added that Jim Ritter's notion of an algorithm is much broader than Knuth's 

“step-by-step list of rules”. He introduces “another, more general level of the algorithm, more 
general than that of the calculational techniques or that of the arithmetical operations, the level 
of method of solution, the choice of strategy of solution”, and exemplifies this by the method of 
a single false position which can be seen to underlie several of his examples. This has the 
apparent advantage of making the carriers' understanding part of the algorithm. As far as I can 
see, however, the algorithm concept is dissolved by the inclusion of a level which is not linked 
to the steps of the algorithm (as are the “comments”, be they Babylonian or Euclidean) but 
which is on the other hand common to many algorithms that differ in their steps. Instead of 
seeing the algorithms used in weather prediction as encompassing the physical theories and 
differential equations on which they are based, it seems to me to leave more room for analysis 
to separate the physical and mathematical theories from their implementation in computer 
algorithms. I shall therefore go on using the usual (“Knuthian”) understanding of the term. 

16 It is noteworthy that the same principle was followed by Jordanus of Nemore in the earlier part of the 
thirteenth century, when he introduced a letter formalism with the purpose of proving the correctness 
of arithmetical and algebraic theorems (and not of making symbolic algebraic calculations). 



 The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring? 269 

Many Old Babylonian procedure texts start the prescription by a phrase “You, by 
your doing”. Is it adequate to read this as a reference to a specific algorithm 
individualized as such? If so, we might perhaps expect to find occasional references to 
such algorithms by name. 

We do indeed find a few references by name to particular methods. What is striking, 
however, is that the occurrences of the names show them to point to methods that can be 
varied, not to precise algorithms (not even to what can naturally be interpreted as 
branched algorithms). One, maksarum/“bundling”, refers to the division of a surface (in 
the actual case, a triangle) or a volume (in the actual case, a cube) into a bundle of 
smaller surfaces or volumes of the same shape [9: 66, 254]; the other, “the Akkadian 
[method]” refers to the quadratic completion which we have encountered in the 
sub-routine discussed above – but it turns up in a procedure of a different and quite 
peculiar character [9: 194]. 

This corresponds well to the flexible use of the sub-routine which we discussed 
above; the Old Babylonian reckoners hence appear to have conceived of their methods 
as procedures which could be applied flexibly as required by varying contexts, not as a 
tool-box of fixed algorithms. Only the very standardized set of problems occurring in 
the texts cause us to find exactly the same procedure time and again, and thus giving us 
the impression that fixed algorithms are involved. 

I am not aware of the presence of elements in Egyptian mathematical discourse 
which allow a similar analysis; however, the actual algorithms constructed by Annette 
Imhausen are often so varied in their details that even they are likely to represent the 
modern analysis only, not the way the Egyptians understood their mathematical 
practice. 

As far as the Indian and Chinese material is concerned, my inability to read the texts 
in the original language prevents me from forming a definite opinion; however, the 
initial abstract formulation of rules which are then followed by examples may suggest 
that (“trivial”) algorithmic thinking was closer to the way Chinese and Indian reckoners 
thought. 

I am much more familiar with the culture of practical arithmetic represented by 
Leonardo Fibonacci and the Italian and Provencal abbacus treatises of the fourteenth 
and fifteenth centuries. 17  Within this culture, the word which might represent 
something close to an algorithm is regula (regola, reghola, etc.). It is still reflected in 
our modern notion of the “rule of three” (the regola delle tre cose of the abbacus 
masters) referred to above. This really looks like an algorithm, and indeed a quite trivial 
one – but trivial only until we start reading the texts closely. Indeed, if we look at for 
instance the presentation in Jacopo da Firenze’s Tractatus algorismi [12: 236–240] we 
find that it is divided into several cases: all three numbers are integers, one of the first 
two numbers contains fractions, or both of these do. But the three cases are not treated 
in parallel – the second and third only tell to multiply adequately by the denominators, 
leaving it tacitly understood that the rest is as in the first case; although it is not said 
(and perhaps not precisely conceptualized) it is obvious that the substructure is a less 
trivial algorithm: 

                                                           
17 Høyrup 2005 gives the reasons that Fibonacci must be seen as an early representative of the 

same broad mathematical culture as the later abbacus writings and not as the “father” of the 
abbacus school. 



270 J. Høyrup 

IF all three numbers are integer GO L; 
IF only one of the former numbers contains a fraction with denominator p, multiply 
both of these by p; 
GO L; 
IF both of them contain fractions, with respective denominators p and q, multiply 
both by a common multiple of p and q; 
GO L; 
L: 
(multiply and divide) 

In the case of the presentation of the “rule of double false position” (see note 5), this 
structure is even more explicit. Some of the abbacus books, and also Fibonacci, 
occasionally operate with negative numbers conceptualized as “debts”; but they never 
do so in the rule of double false. Therefore, the formula to be used depends on whether 
both guesses turn out to result in an excess (or both in a deficit), or one in an excess, the 
other in a deficit. The algorithm may not be presented in full – in Barthélemy de 
Romans’ Compendy de la praticque des nombres [25: 390] all that is said is thus plus et 
plus, meins et meins, sustrayons. Plus et meins, adjoustons (“excess and excess, deficit 
and deficit, we subtract. Excess and deficit, we add”). This only describes the initial 
branching structure, and leaves out the linear part as already known. 

However, a regula is mostly not an algorithm, neither straight-line nor branched. For 
instance, the regula of the Liber augmentis et diminutionis (see text around note 5), 
reappearing as regula recta in Fibonacci’s Liber abbaci, refers to a general and very 
flexible method: the application of first-degree equation algebra. Several other regulae 
are similarly open-ended; actually, even the rule of three may be adequately but tacitly 
adapted to problems of inverse proportionality. Application of the algorithm concept 
thus allows to trace a substructure in statu nascendi in the thinking of the abbacus 
masters; but if they had been asked what they meant by regola, the answer would most 
likely not have made us think of an algorithm. 

All in all, we may conclude that the algorithm concept, when applied to pre-modern 
mathematical texts, may represent a valid mapping of their procedures – at times useful, 
at times as trivial as the algorithms which it digs out of the sources. If believed to 
correspond to the way the early reckoners thought about their activity, it is likely to be a 
red herring (barring perhaps Chinese and Sanskrit texts). If used to trace emerging 
substructures in the way they thought their mathematics it is mostly also misleading – 
but not always; used with delicacy it may sometimes offer a valuable tool. 

References 

[1] Aujac, G.: Le langage formulaire dans la géométrie grecque. Revue d’Histoire des 
Sciences 37(2), 97–109 (1984) 

[2] Boncompagni, B. (ed.): Scritti di Leonardo Pisano matematico del secolo decimoterzo. I. Il 
Liber abbaci di Leonardo Pisano. Tipografia delle Scienze Matematiche e Fisiche, Roma 
(1857) 

[3] Cantor, M.: Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten 
Zeiten bis zum Jahre 1200 n. Chr. 3Teubner, Leipzig (1907)  



 The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring? 271 

[4] Folkerts, M.: The Development of Mathematics in Medieval Europe: The Arabs, Euclid, 
Regiomontanus. Variorum Collected Studies Series, vol. CS811. Ashgate, Aldershot 
(2006) 

[5] Freudenthal, H.: What Is Algebra and What Has It Been in History? Archive for History of 
Exact Sciences 16, 189–200 (1977) 

[6] Heiberg, J.L.: Euclidis Elementa. 5 vols. Euclidis Opera omnia, vol. I-V. Teubner, Leipzig 
(1883–1888) 

[7] Høyrup, J.: Changing Trends in the Historiography of Mesopotamian Mathematics: An 
Insider’s View. History of Science 34, 1–32 (1996) 

[8] Høyrup, J.: Embedding: Multi-purpose Device for Understanding Mathematics and Its 
Development, or Empty Generalization? Filosofi og Videnskabsteori på Roskilde 
Universitetscenter. 3. Række: Preprints og Reprints, Nr. 8 (2000) 

[9] Høyrup, J.: Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin. 
In: Studies and Sources in the History of Mathematics and Physical Sciences. Springer, 
New York (2002) 

[10] Høyrup, J.: Seleucid Innovations in the Babylonian ‘Algebraic’ Tradition and Their Kin 
Abroad. In: Dold-Samplonius, et al. (eds.) From China to Paris: 2000 Years Transmission 
of Mathematical Ideas. Boethius, vol. 46, pp. 9–29. Steiner, Stuttgart (2002) 

[11] Høyrup, J.: Leonardo Fibonacci and Abbaco Culture: a Proposal to Invert the Roles. Revue 
d’Histoire des Mathématiques 11, 23–56 (2005) 

[12] Høyrup, J.: Jacopo da Firenze’s Tractatus Algorismi and Early Italian Abbacus Culture. In: 
Science Networks. Historical Studies, Birkhäuser, Basel etc, vol. 34 (2007) 

[13] Imhausen, A.: The Algorithmic Structure of the Egyptian Mathematical Problem Texts. In: 
Steele, J.M., Imhausen, A. (eds.) Under One Sky. Astronomy and Mathematics in the 
Ancient Near East. Alter Orient und Altes Testament, vol. 297, pp. 147–166. Ugarit-Verlag 
(2002) 

[14] Imhausen, A.: Ägyptische Algorithmen. Eine Untersuchung zu den mittelägyptischen 
mathematischen Aufgabentexten. Ägyptologische Abhandlungen, vol. 65. Harrassowitz, 
Wiesbaden (2003) 

[15] Knuth, D.: Ancient Babylonian Algorithms. Communications of the Association of 
Computing Machinery 15, 671–677 (1972); A correction of an erratum in 19, 108 (1976) is 
of no importance here 

[16] Libri, G.: Histoire des mathématiques en Italie. 4 vols. Jules Renouard. Paris (1838–1841) 
[17] Mahoney, M.S.: Babylonian Algebra: Form vs. Content. Studies in History and Philosophy 

of Science 1, 369–380 (1972) 
[18] Netz, R.: The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. 

Ideas in Context, vol. 51. Cambridge University Press, Cambridge (1999) 
[19] Neugebauer, O. (ed.) Mathematische Keilschrift-Texte. 3 vols. Quellen und Studien zur 

Geschichte der Mathematik, Astronomie und Physik. Abteilung A: Quellen. 3. Band, 
erster-dritter Teil. Julius. Springer, Berlin (1935, 1935, 1937) 

[20] Peet, T.E. (ed.): The Rhind Mathematical Papyrus, British Museum 10057 and 10058. 
Introduction, Transcription, Translation and Commentar. University Press of Liverpool, 
London (1923) 

[21] Rebstock, U. (ed.): Die Reichtümer der Rechner (Ġunyat al-Ḥussāb) von Aḥmad b.Ṯabāt 
(gest. 631/1234). Die Araber – Vorläufer der Rechenkunst. Beiträge zur Sprach- und 
Kulturgeschichte des Orients, vol. 32. Verlag für Orientkunde Dr. H. Vorndran, 
Walldorf-Hessen (1993) 

[22] Ritter, J.: Reading Strasbourg 368: A Thrice-Told Tale. Max-Planck-Institut für 
Wissenschaftsgeschichte. Preprint 103 (1998) 



272 J. Høyrup 

[23] Ritter, J.: Reading Strasbourg 368: A Thrice-Told Tale. In: Chemla, K. (ed.) History of 
Science, History of Text. Boston Studies in the Philosophy of Science, vol. 238, pp. 
177–200. Kluwer, Dordrecht (2004); (I used an electronic manuscript version kindly put at 
my disposition by Jim Ritter and therefore have to omit page references) 

[24] Rodet, L.: Les prétendus problèmes d’algèbre du manuel du calculateur égyptien (Papyrus 
Rhind). Journal asiatique. septième série 18, 184–232, 390–559 (1881) 

[25] Spiesser, M. (ed.) Une arithmétique commerciale du XV<Superscript>e</Superscript> 
siècle. Le Compendy de la praticque des nombres de Barthélemy de Romans. De Diversis 
artibus, Brepols, Turnhout, vol. 70 (2003) 

[26] Unguru, S.: On the Need to Rewrite the History of Greek Mathematics. Archive for History 
of Exact Sciences 15, 67–114 (1975) 

[27] van der Waerden, B.L.: Defence of a “Shocking” Point of View. Archive for History of 
Exact Sciences 15, 199–210 (1976) 

[28] Weil, A.: Who Betrayed Euclid? Archive for History of Exact Sciences 19, 91–93 (1978) 
[29] Zeuthen, H.G.: Die Lehre von den Kegelschnitten im Altertum. Höst & Sohn, København 

(1886) 



Adversarial Scheduling Analysis of

Game-Theoretic Models of Norm Diffusion

Gabriel Istrate1,�, Madhav V. Marathe2, and S.S. Ravi3

1 e-Austria Institute, V.Pârvan 4, cam. 045B, Timişoara RO-300223, Romania
gabrielistrate@acm.org

2 Network Dynamics and Simulation Science Laboratory, and Dept. of Computer
Science Virginia Tech.
mmarathe@vbi.vt.edu

3 Computer Science Dept., S.U.N.Y. at Albany, Albany, NY 12222, U.S.A.
ravi@cs.albany.edu

Abstract. In [IMR01] we advocated the investigation of robustness of
results in the theory of learning in games under adversarial scheduling
models. We provide evidence that such an analysis is feasible and can
lead to nontrivial results by investigating, in an adversarial scheduling
setting, Peyton Young’s model of diffusion of norms [You98]. In particu-
lar, our main result incorporates contagion into Peyton Young’s model.

Keywords: evolutionary games, adversarial scheduling, Markov chains.

1 Introduction

Game-theoretic equilibria are steady-state properties; that is, given that all the
players’ actions correspond to an equilibrium point, it would be irrational for
any of them to deviate from this behavior when the others stick to their strategy.
The fundamental problem facing this type of concept is that it does not predict
how players arrive at this equilibrium in the first place, or how they “choose” one
such equilibrium, if several such points exist. The theory of equilibrium selection
of Harsányi and Selten assumes some form of prior coordination between players,
in the form of a tracing procedure. This strong prerequisite is often unrealistic.

Evolutionary game theory (EGT) [Wei95] attempts to explain the emergence
of equilibria as the result of an evolutionary “learning” process. Models of this
type assume one (or several) populations of agents, that interact by playing a
game, and updating their behavior based on the outcome of this interaction.

Results in EGT are important not as realistic models of strategic behavior.
Rather, they provide possible explanations for experimentally observed features
of real-world social dynamics. Similar issues apply in the area of agent-based
social simulation [GT05, BEM05]. In [Eps07, AE96], Epstein et al. advocated
a generative approach to social science: in order to better understand a given
phenomenon one should be able to generate it via simulations.
� Corresponding author.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 273–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



274 G. Istrate, M.V. Marathe, and S.S. Ravi

Given that such mathematical models or simulations are emerging as tools for
policy-making (see e.g. [NBB99, ECC+04, EG+04, FC+06]), how can we be sure
that the conclusions that we derive from the output of the simulation do not cru-
cially depend on the particular assumptions and features we embed in it? Part of
the answer is that these results have to display “robustness” with respect to the
various idealizations inherent in the model, be it mathematical or computational.

In this paper we are only concerned with one such issue: scheduling, i.e., the
order in which agents get to update their strategies. Three alternatives have
been studied extensively, both in the mathematical and the computer simula-
tion literature: in the synchronous mode every player updates at every step.
A popular alternative is uniform matching. Models of the latter type assume
an underlying (hyper)graph topology (describing the sets of players allowed to
simultaneously update in one step as a result of game playing) and choose a
(hyper)edge uniformly at random from the available ones. Employing uniform
matching in multiagent models of social systems is unrealistic for it assumes per-
fect and global randomness. Another alternative is to assume that the schedule
is given as a a permutation of players that is repeated [BH+06, BH+07].

We investigate in an adversarial setting Peyton Young’s model of evolution
of norms [You98] (see also [You03]). The dynamics models an important aspect
of social networks, the emergence of conventions, and has been proposed as an
evolutionary justification for the emergence of certain rules in the pragmatics
of natural language [Roo04]. Our results can be summarized as follows: results
on selection of strict-dominant equilibria under random noise extend (Theo-
rem 1) to a class of nonadaptive schedulers. However, such an extension fails
for adaptive schedulers, even those with fairness properties similar to those of a
random scheduler. Our main result (Theorem 2) extends the convergence to the
strictly-dominant equilibrium to a class of “nonmalicious” adaptive schedulers
that models contagion and has a certain reversibility property (the class of such
schedulers includes the random scheduler as a special case). However for this
class of schedulers the convergence time is not necessarily the one from the case
of random scheduling.

Besides the relevance of our results to evolutionary game-theory, we hope that
the concepts and techniques relevant to this paper can contribute to the theory
of rapidly mixing Markov chains.

2 Preliminaries

We consider adversarial analysis of population games [Blu01]. Systems of interest
in this class consist of a number of agents, defined as the vertices of a hypergraph
H = (V,E). Each edge of this hypergraph represents a particular choice of all
players who can play (one or more simultaneous instances of) a game G that
defines the dynamics. Each player has a state (generally a mixed strategy of G)
chosen from a certain set S. The global state of the system is an element of
S = SV . The dynamics proceeds by choosing one edge e of H (according to a
scheduling mechanism that is specified by the scheduler), letting the agents in e
play the game, and updating their states as a result of game playing.



Adversarial Scheduling Analysis of Game-Theoretic Models 275

2.1 Schedulers

Denote by X∗ the set of finite words over alphabet X .

Definition 1. A (probabilistic) scheduler assigns a probability distribution pw,s
on E to each triple (w, s, s0) consisting of initial prefixes w ∈ E∗, s ∈ S∗

with
|w| = |s| and starting state s0 ∈ S. The next element e ∈ E to be scheduled,
given prefixes w, s and initial state s0, is sampled from E according to pw,s,s0 .

A non-adaptive probabilistic scheduler is specified by (a) a collection (multi-
set) Σ = {D1, . . . ,Dm} of probability distributions on the set E such that every
x ∈ E belongs to the support of some distribution Di and (b) a fixed permutation
π of Σ. The scheduler proceeds by (possibly concurrently) scheduling elements
of E sampled from a distribution from Σ chosen according to (consecutive rep-
etitions of) permutation π. For C > 0, a non-adaptive probabilistic scheduler is
C individually-fair if for every x ∈ E, the probability that x is scheduled during
one round of π is at least C/|E|.

One can define, for any given triple (w, s, s0), where w ∈ E∗, s ∈ S∗
and s0 ∈ S,

a probability πw,s,s0 that, starting from state s0 the scheduler uses w as the
initial prefix of its schedule and evolves its global state according to string s.
Let Ω denote the resulting probability space. We divide each trajectory of a
probabilistic scheduler into rounds: the first round is the smallest initial segment
that schedules each element of E at least once, the second round is the smallest
segment starting at the end of the first round that schedules each element at
least once, and so on.

Definition 2. If f(·) is a function on integers, we say that a family of prob-
abilistic schedulers, indexed by n, the cardinality of the set E, is O(f(n))-fair
w.h.p. if there exists a monotonically decreasing function g : (0,∞) → (0, 1),
with limε→∞ g(ε) = 0 such that for every state s ∈ S, the random variable li
measuring the length of the i’th round, satisfies the condition limn→∞ Prob[li >
ε · f(n)] < g(ε).

Random scheduling can be specified by a non-adaptive probabilistic scheduler
whose set Σ consists of just one distribution, namely the uniform distribution on
E. This scheduler is 1-individually fair and, by the well-known Coupon Collector
Lemma it is also O(n log(n))-fair w.h.p.

2.2 Peyton Young’s Model of Norm Diffusion

The setup of this model is the following: agents located at the vertices of a
graph G interact by playing a two-person symmetric game with payoff matrix
M = (mi,j)i,j∈{A,B} displayed in Figure 1. It is assumed that strategy A is a
so called strict risk-dominant equilibrium. That is, we have a − d > b − c > 0.
Each undirected edge {i, j} has a positive weight wij = wji that measures its
“importance”. When scheduled, agents play (using the same strategy, identified
as the agent’s state) against each of their neighbors. If agent i is the one to



276 G. Istrate, M.V. Marathe, and S.S. Ravi

strategies A B

A a,a c,d

B d,c b,b

Fig. 1. Payoff matrix

update, x is the joint profile of agents’ strategies, and z ∈ {A,B} is the candidate
new state, pβ(xi → z|x) ∼ eβ·νi(z,x−i), where νi(z, x−i), the payoff of the i’th
agent should he play strategy z while the others’ profile remains the same is
given by νi(z, x−i) =

∑
(i,j)∈E wijmz,xj . Under random scheduling, the process

we defined is a variant of the best-response dynamics. This latter process (viewed
as a Markov chain) is not ergodic. Indeed, the since in game G it is always better
to play the same strategy as your partner, the dynamics has at least two fixed
points, states “all A” and “all B”, defined as the two states where all labels have
a common value.

An important property of Peyton Young’s dynamics is that it corresponds to
a potential game: there exists a function ρ : V → R such that, for any player
i, any possible actions a1, a2 of player i, and any action profile a of the other
players, ui(a1, a)−ui(a2, a) = ρ(a1, a)−ρ(a2, a) (where ui is the utility function
of player i). In other words changes in utility as a result of strategy update
correspond to changes in a global potential function. An explicit potential is
given by ρ∗(x) =

∑
(h,k)∈E wh,kmxh,xk

.

2.3 Stochastic Stability

A fundamental concept we are dealing with is that of a stochastically stable state
for dynamics described by a Markov chain.

Definition 3. Consider a Markov process P 0 defined on a finite state space Ω.
For each ε > 0, define a Markov process P ε on Ω. P ε is a regular perturbed
Markov process if all of the following conditions hold.

– P ε is irreducible for every ε > 0.
– For every x, y ∈ Ω, limε>0 P

ε
xy = P 0

xy.
– If Pxy > 0 then there exists r(m) > 0, the resistance of transition m = (x→
y), such that as ε→ 0, P εxy = Θ(εr(m)).

Let με be the (unique) stationary distribution of P ε. A state s is stochastically
stable if limε→0 μ

ε(s) > 0.

Definition 4. A tree rooted at node j is a set T of edges such that for any
state w �= j there exists a unique (directed) path from w to j. The resistance of
a rooted tree T is the sum of resistances of all edges in T .

The following characterization of stochastically stable states is presented as
Lemma 3.2 in the Appendix of [You98]:



Adversarial Scheduling Analysis of Game-Theoretic Models 277

Proposition 1. Let P ε be a regular perturbed Markov process, and for each
ε > 0 let με be the unique stationary distribution of P ε. Then limε→0 μ

ε = μ0

exists, and μ0 is a stationary distribution of P 0. The stochastically stable states
are precisely those states z such that there exists a tree rooted at z of minimal
resistance (among all rooted trees).

Definition 5. Given a graph G, a nonempty subset S of vertices and a real num-
ber 0 ≤ r ≤ 1/2, we say that S is r-close-knit if ∀S′ ⊆ S, S′ �= ∅, e(S′,S)�

i∈S′ deg(i) ≥
r, where e(S′, S) is the number of edges with one endpoint in S′ and the other
in S, and deg(i) is the degree of vertex i. A graph G is (r, k)-close-knit if every
vertex is part of a r-close-knit set S, with |S| = k.

Definition 6. Given p ∈ [0, 1], the p-inertia of the process is the maximum,
over all states x0 ∈ S, of W (β, p, x0), the expected waiting time until at least
1− p of the population is playing action A conditional on starting in state x0.

The model in [You03, You98] assumes independent individual updates, arriving
at random times governed (for each agent) by a Poisson arrival process with
rate one. Since we are, however, interested in adversarial models that do not
have an easy description in continuous time we will assume that the process
proceeds in discrete steps. At each such step a random node is scheduled. It is a
simple exercise to translate the result in [You03, You98] to an equivalent one for
global, discrete-time scheduling. The conclusions of this translation are: (1) The
stationary distribution of the process is the Gibbs distribution, μβ(x) = eβρ(x)

�
z e

βρ(x) ,
where ρ is the potential function of the dynamics. (2) “All A” is the unique
stochastically-stable state of the dynamics. (3) Let r∗ = b−c

a−d+b−c , and let r > r∗,
k > 0. On a family of (r, k)-close-knit graphs the convergence time is O(n).

3 Results

First we note that Peyton Young’s results easily extend to non-adaptive sched-
ulers. Adaptive schedulers on the other hand, even those of fairness no higher
than that of the random scheduler, can preclude the system from ever enter-
ing a state where a proportion higher than r of agents plays the risk-dominant
strategy:

Theorem 1. The following hold:

(i) For all non-adaptive schedulers, the state “all A” is the unique stochastically
stable state of the system.

(ii) Let G be a class of graphs that are (r, k)-close-knit for some fixed r > r∗.
Let f = f(n) be a class of non-adaptive Θ(1) individually fair schedulers. Given
any p ∈ (0, 1) there exists a βp such that for all β > βp there exists a constant
C such that the p-inertia of the process (under scheduling given by f) is at most
C ·m · n, where m = m(n) is the number of rounds of f .

(iii) For every r ∈ (0, 1) there exists an adaptive scheduler, O(n log(n))-fair
w.h.p. (where the constant hidden in the “O” notation depends on r), that can



278 G. Istrate, M.V. Marathe, and S.S. Ravi

forever prevent the system, started on the “all B’s” configuration, from ever
having more than a fraction of r of the agents playing A.

The proof of Theorem 1 is fairly simple and is left to [IMR08] because of space
reasons.

3.1 Main Result: Diffusion of Norms by Contagion

Adaptive schedulers can display two very different notions of adaptiveness: (i)
The next node depends only on the set of previously scheduled nodes, or (ii) It
crucially depends on the states of the system so far.

The adaptive schedulers in Theorem 1(iii) crucially use the second, stronger,
kind of adaptiveness. In the sequel we study a model that displays adaptive-
ness of type (i) but not of type (ii). The model is specified as follows: To each
node v we associate a probability distribution Dv on the vertices of G. We then
choose the next scheduled node according to the following process. If ti is the
node scheduled at stage i, we chose ti+1, the next scheduled node, by sampling
from Dti . In other words, the scheduled node performs a (non-uniform) ran-
dom walk on the vertices of graph G. To exclude technical problems such as
the periodicity of this random walk, we assume that it is always the case that
v ∈ supp(Dv). Also, let H be the directed graph with edges defined as follows:
(x, y) ∈ E[H ] ⇐⇒ (y ∈ supp(Dx)). This dynamics generalizes both the class
of non-adaptive schedulers from previous result and the random scheduler (for
the case when H is the complete graph). In the context of van Rooy’s evolution-
ary analysis of signalling games in natural language [Roo04], it functions as a
simplified model for an essential aspect of emergence of linguistic conventions:
transmission via contagion.

It is easy to see that the dynamics can be described by an aperiodic Markov
chain M on the set on V {A,B} × V , where a state (w, x) is described as follows:

– w is the set of strategies chosen by the agents.
– x is the label of the last agent that was given the chance to update its state.

If the directed graph H is strongly connected then the Markov chain M is
irreducible, hence it has a stationary distribution Π . We will, therefore, limit
ourselves in the sequel to settings with strongly connected H . We will, further,
assume that the dynamics is weakly reversible, i.e. (x ∈ supp(Dy)) if and only if
(y ∈ supp(Dx)). This, of course, means that the graphH is undirected. Note that
since we do not constrain otherwise the transition probabilities of distributions
Di, the stationary distribution Π of the Markov chain does not, in general, de-
compose as a product of component distributions. That is, one cannot generally
write Π(w, x) as Π(w, x) = π(w) · ρ(x), for some distributions π, ρ.

Theorem 2. The set Q = {(w, x)|w = V A} is the set of stochastically stable
states for the diffusion of norms by contagion.

Proof. States in Q are obviously reachable from one another by zero-resistance
moves, so it is enough to consider one state y ∈ Q and prove that it is stochas-
tically stable. To do so, by Proposition 1, all we need to do is to show that y is



Adversarial Scheduling Analysis of Game-Theoretic Models 279

the root of a tree of minimal resistance. Indeed, consider another state x ∈ Q
and let T be a minimum potential tree rooted at x.

Claim. There exists a tree T rooted at y having potential less or equal to the
potential of the tree T , strictly smaller in case x is not a state having all its
first-component labels equal to A.

Let πy,x = (x0, i0) → (x1, i1) → . . . → (xk, ik) → (xk+1, ik+1) → . . . → (xr, ir)
be the path from y to x in T (that is (x0, i0) = y, (xr , ir) = x).

We will define T by viewing the set of edges of T as partitioned into subsets
of edges corresponding to paths as follows (see Figure 2 (a)):

(i) The set of edges of path πy,x.
(ii) The set of edges of the subtree rooted at y.
(iii) Edges of tree components (perhaps consisting of a single node) rooted at a

node of πy,x, other than y (but possibly being x).

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

X

Y

Y

X

potential

4

32

1

Fig. 2. (a). Decomposition of edges of tree T (b). Resistance of edges on a path between
two nodes X and Y .

To obtain T we will transform each tree (path) in the above decomposition
of T into one that will be added to T . The transformation goes as follows:

(i) Instead of path πy,x we add path Πx,y from x to y defined by: Πx,y =
(xr, ir)→ (xr−1, ir)→ (xr−2, ir−1)→ . . .→ (x0, i1)→ (x0, i0) = y.

(ii) Rooted trees of type (2) are included into tree T as well.
(iii) The transformation is more complicated for the third type of edges, and we

explain it in detail. Let Wk be a tree component of T , connected to path
πy,x at connection point (xk, ik).
Case 1: xk = xk−1. Then the point (xk, ik) = (xk−1, ik) belongs to path
Πx,y as well, so one can just add the rooted tree Wk to T as well.
Case 2: xk �= xk−1 and the move (xk−1, ik−1) → (xk, ik) has positive re-
sistance. In this case, since in configuration xk−1 and scheduled node ik we
have a choice of either moving to xk or staying in xk−1, it follows that the
move (xk, ik)→ (xk−1, ik) has zero resistance.
Therefore we can add to T the tree Wk = Wk ∪{(xk, ik)→ (xk−1, ik)}. The
tree has the same resistance as the one of tree Wk.



280 G. Istrate, M.V. Marathe, and S.S. Ravi

Case 3: xk−1 �= xk and the move (xk−1, ik−1)→ (xk, ik) has zero resistance.
Let j be the smallest integer such that either xk+j+1 = xk+j or xk+j+1 �=
xk+j and the move (xk+j , ik+j)→ (xk+j+1, ik+j+1) has positive resistance.
In this case, one can first replace Wk by Wk ∪ {(xk, ik) → (xk+1, ik+1),
(xk+1, ik+1) → . . . → (xk+j , ik+j)} without increasing its total resistance.
Then we apply one of the techniques from Case 1 or Case 2.
Case 4: xk−1 �= xk, the move (xk−1, ik−1) → (xk, ik) has zero resistance,
and all moves on πy,x, from xk up to x have zero resistance. Then define
Wk = Wk ∪ (xk, ik)→ (xk+1, ik+1)→ . . .→ x.

It is easy to see that no two sets Wk intersect on an edge having positive
resistance. The union of the paths of all the sets is a directed associated graph W
rooted at y, that contains a rooted tree T of potential no larger than the potential
of W . Since transformations in cases (i),(iii) do not increase tree resistance, to
compare the potentials of T and W it is enough to compare the resistances of
paths πy,x and Πx,y.

We come now to a fundamental property of the game G: since it is a potential
game, the resistance r(m) of a move m = (a1, j1)→ (a2, j2) only depends on the
values of the potential function at three points: a1, a2 and a3, where a3 is the state
obtained by assigning node j2 the value not assigned by move to a2. Specifically,
r(m) > 0 if either ρ∗(a2) < ρ∗(a1), in which case r(m) = ρ∗(a1) − ρ∗(a2), or
a2 = a1 and ρ∗(a3) > ρ∗(a1), in which case r(m) = ρ∗(a3) − ρ∗(a1). In other
words, the resistance of a move is positive in the following two cases: (1) The
move leads to a decrease of the value of the potential function. In this case the
resistance is equal to the difference of potentials. (2) The move corresponds to
keeping the current state (thus not modifying the value of the potential function),
but the alternate move would have increased the potential. In this case the
resistance is equal to the value of this increase.

Let us now compare the resistances of paths πy,x and Πx,y. First, the two
paths contain no edges of infinite resistance, since they correspond to possible
moves under Markov chain dynamics P ε. If we discount second components, the
two paths correspond to a single sequence of states Z connecting x0 to xr, more
precisely to traversing Z in opposite directions. (The last move in Πx,y has zero
resistance and can thus be discounted). Resistant moves of type (2) are taken
into account by both traversals, and contribute the same resistance value to both
paths. So, to compare the resistances of the two paths it is enough to compare
resistance of moves of type (1). Moves of type (1) of positive resistance are those
that lead to a decrease in the potential function. Decreasing potential in one
direction corresponds to increasing it in the other (therefore such moves have
zero resistance in the opposite direction).

An illustration of the two types of moves is given in Figure 2 (b), where the
path betweenX and Y goes through four other nodes, labeled 1 to 4. The relative
height of each node corresponds to the value of the potential function at that
node. Nodes 2 and 3 have equal potential, so the transition between 2 and 3
contributes an equal amount to the resistance of paths in both directions (which



Adversarial Scheduling Analysis of Game-Theoretic Models 281

may be positive or not). Other than that only transitions of positive resistance
are pictured.

The conclusion of this argument is that r(πy,x)−r(Πx,y) = ρ∗(x)−ρ∗(y) ≥ 0,
and r(πy,x)− r(Πx,y) > 0 unless x is an “all A” state.

3.2 The Inertia of Diffusion of Norms with Contagion

Theorem 2 shows that random scheduling is not essential in ensuring that
stochastically stable states in Peyton Young’s model correspond to all play-
ers playing A: the same result holds in the model with contagion. On the other
hand, the result on the p-inertia of the process on families of close-knit graphs is
not robust to such an extension. Indeed, consider the line graph L2n+1 on 2n+ 1
nodes labelled −n, . . . ,−1, 0, 1 . . . n. Consider a random walk model such that:
(a) the origin of the random walk is node 0, and (b) the walk goes left, goes
right or stays in place, each with probability 1/3. It is a well-known property of
the random walk that it takes Ω(n2) time to reach nodes at distance Ω(n) from
the origin. Therefore, the p-inertia of this random walk dynamics is Ω(n2) even
though for every r > 0 there exists a constant k such that the family {L2n+1}
is (r, k)-close-knit for large enough n.

In the journal version of the paper we will present an upper bound on the
p-inertia for the diffusion of norms with contagion based on concepts similar to
the blanket time of a random walk [WZ96].

4 Conclusions and Acknowledgments

Our results have made the original statement by Peyton Young more robust, and
have highlighted the (lack of) importance of various properties of the random
scheduler in the results from [You98]: the reversibility of the random scheduler,
as well as its inability to use the global system state are important in an adver-
sarial setting, while its fairness properties are not crucial for convergence, only
influencing convergence time. Also, the fact that the stationary distribution of
the perturbed process is the Gibbs distribution (true for the random scheduler)
does not necessarily extend to the adversarial setting.

This work has been supported by the Romanian CNCSIS under a PN-II “Idei”
Grant, by the U.S. Department of Energy under contract W-705-ENG-36 and
NSF Grants CCR-97-34936, CNS-062694, SES-0729441 and NIH-NIGMS MI-
DAS project 5U01GM070694-06.

References

[AE96] Axtell, R., Epstein, J.: Growing Artificial Societies: Social Science from the
Bottom Up. The MIT Press (1996)

[Blu01] Blume, L.: Population games. In: Durlauf, S., Peyton Young, H. (eds.) So-
cial Dynamics: Economic Learning and Social Evolution. MIT Press (2001)



282 G. Istrate, M.V. Marathe, and S.S. Ravi

[BEM05] Barrett, C., Eubank, S., Marathe, M.: Modeling and Simulation of Large
Biological, Information and Socio-Technical Systems: An Interaction Based
Approach. In: Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Com-
putation: The New Paradigm. Springer, Heidelberg ( to appear, 2005)

[BH+06] Barrett, C., Hunt III, H., Marathe, M., Ravi, S.S., Rosenkrantz, D.,
Stearns, R.: Dichotomy Theorems for Reachability Problems in Sequen-
tial Dynamical Systems. Journal of Computer and System Sciences 72,
1317–1345 (2006)

[BH+07] Barrett, C., Hunt III, H., Marathe, M., Ravi, S.S., Rosenkrantz, D.,
Stearns, R., Thakur, M.: Computational Aspects of Analyzing Social Net-
work Dynamics. In: Proc. International Joint Conference on Artificial In-
telligence (IJCAI 2007), Hyderabad, India (January 2007)

[ECC+04] Epstein, J.M., Cummings, D., Chakravarty, S., Singa, R., Burke, D.: To-
ward a Containment Strategy for Smallpox Bioterror. An Individual-Based
Computational Approach. Brookings Institution Press (2004)

[Eps07] Epstein, J.: Generative Social Science: Studies in Agent-based Computa-
tional Modeling. Princeton University Press (2007)

[EG+04] Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M., Srinivasan, A.,
Toroczkai, Z., Wang, N.: Modeling Disease Outbreaks in Realistic Urban
Social Networks. Nature 429, 180–184 (2004)

[FC+06] Ferguson, N.L., Cummings, D., Fraser, C., Cajka, J., Cooley, P., Burke,
D.: Strategies for mitigating an influenza pandemic. Nature (April 2006)

[GT05] Gilbert, N., Troizch, K.: Simulation for social scientists, 2nd edn. Open
University Press (2005)

[IMR01] Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial models in evolutionary
game dynamics. In: Proceedings of the 13th ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001) (2001) (journal version in preparation)

[IMR08] Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis
of game-theoretic models of norm diffusion. Technical report 0803.2495,
arXiv.org (2008)

[NBB99] Nagel, K., Beckmann, R., Barrett, C.: TRANSIMS for transportation plan-
ning. In: Bar-Yam, Y., Minai, A. (eds.) Proceedings of the Second Inter-
national Conference on Complex Systems, Westview Press (1999)

[Roo04] Van Rooy, R.: Signalling games select Horn strategies. Linguistics and Phi-
losophy 27, 423–497 (2004)

[Wei95] Weibull, J.: Evolutionary Game Theory. M.I.T. Press (1995)
[WZ96] Winkler, P., Zuckerman, D.: Multiple cover time. Random Structures and

Algorithms 9(4), 403–411 (1996)
[You93] Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84

(1993)
[You98] Young, H.P.: Individual Strategy and Social Structure: an Evolutionary

Theory of Institutions. Princeton University Press (1998)
[You03] Young, H.P.: The diffusion of innovations in social networks. In: Blume,

L., Durlauf, S. (eds.) The Economy as a Complex System III, Oxford Uni-
versity Press (2003)



A Simple P-Matrix Linear Complementarity

Problem for Discounted Games�

Marcin Jurdziński and Rahul Savani��

Department of Computer Science, University of Warwick, UK
{mju,rahul}@dcs.warwick.ac.uk

Abstract. The values of a two-player zero-sum binary discounted game
are characterized by a P-matrix linear complementarity problem (LCP).
Simple formulas are given to describe the data of the LCP in terms of
the game graph, discount factor, and rewards. Hence it is shown that the
unique sink orientation (USO) associated with this LCP coincides with
the strategy valuation USO associated with the discounted game. As an
application of this fact, it is shown that Murty’s least-index method for
P-matrix LCPs corresponds to both known and new variants of strategy
improvement algorithms for discounted games.

Keywords: Discounted game, linear complementarity problem, P-
matrix, strategy improvement algorithm, unique sink orientation, zero-
sum game.

1 Introduction

Discounted (stochastic) games were introduced by Shapley [15]. The monograph
of Filar and Vrieze [6] discusses discounted (stochastic) games in detail. For
clarity, we only consider non-stochastic discounted games in this paper. One
motivation for studying these games is that there is a polynomial time reduction
to discounted games from parity games (via mean-payoff games) [14,21], which
are equivalent to model checking for the modal mu-calculus. A polynomial-time
algorithm for parity games is a long-standing open question.

Our contribution is a transparent reduction from binary discounted games to
the P-matrix linear complementarity problem (LCP). The simple formulas for
the LCP data allow us to show that the unique sink orientation of the cube
associated with the P-matrix LCP [16] is the same as the strategy valuation
USO for the game. As an application of this fact, it is shown that Murty’s least-
index method for P-matrix LCPs corresponds to both known and new variants of
strategy improvement algorithms for binary discounted games. For games with
outdegree greater than two, one gets generalized LCPs. Discounted games can
be reduced in polynomial time to simple stochastic games [21]. Recently (non-
binary) simple stochastic games have been reduced to P-matrix (generalized)
� This research was supported in part by EPSRC projects EP/D067170/1,

EP/E022030/1, and EP/D063191/1 (DIMAP).
�� Corresponding author.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 283–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



284 M. Jurdziński and R. Savani

LCPs [17,8]. The monograph of Cottle et. al. [4] is the authoritative source on
the linear complementarity problem.

2 Discounted Games

A (perfect-information binary) discounted game Γ=(S, λ, ρ, rλ, rρ, β, SMin, SMax)
consists of: a set of states S = { 1, 2, . . . , n }; left and right successor functions
λ, ρ : S → S, respectively; reward functions rλ, rρ : S → R for left and right
edges respectively, with rλ(s) = rρ(s) if λ(s) = ρ(s); a discount factor β ∈ [0, 1);
and a partition (SMin, SMax) of the set of states. A sequence 〈s0, s1, s2, . . .〉 ∈ Sω
is a play if for all i ∈ N, we have that λ(si) = si+1 or ρ(si) = si+1. We define
the (β-)discounted payoff D(π, β) of a play π = 〈s0, s1, s2, . . .〉 by D(π, β) =∑∞

i=0 β
ir(si, si+1), with r(si, si+1) denoting rλ(si) or rρ(si) as appropriate.

A function μ : SMin → S is a positional strategy for player Min if for every
s ∈ SMin, we have that μ(s) = λ(s) or μ(s) = ρ(s). Strategies χ : SMax →
S for player Max are defined analogously. We write ΠMin and ΠMax for the
sets of positional strategies for player Min and Max, respectively. For strategies
μ ∈ ΠMin and χ ∈ ΠMax, and a state s ∈ S, we write Play(s, μ, χ) for the play
〈s0, s1, s2, . . .〉, such that s0 = s, and for all i ∈ N, we have that si ∈ SMin implies
μ(si) = si+1, and si ∈ SMax implies χ(si) = si+1. A function σ : S → S is a
(combined) positional strategy. For a combined positional strategy σ : S → S,
we write Play(s, σ) for the play Play(S, σ�SMin, σ�SMax).

For every s ∈ S, we define the lower value Val∗(s, β) and the upper value
Val∗(s, β) by

Val∗(s, β) = max
χ∈ΠMax

min
μ∈ΠMin

D(Play(s, μ, χ), β),

Val∗(s, β) = min
μ∈ΠMin

max
χ∈ΠMax

D(Play(s, μ, χ), β).

The inequality Val∗(s, β) ≤ Val∗(s, β) always holds. We say that the value exists
in a state s ∈ S, if we have Val∗(s, β) = Val∗(s, β); we then write Val(s, β)
for Val∗(s, β) = Val∗(s, β). We say that the discounted game is positionally
determined if for all s ∈ S, the value exists in s.

We identify functions v : S → R and n-vectors v ∈ R
n. For s ∈ S, depending

on which interpretation is more natural in context, we write either v(s) or vs.
We do the same for n-vectors of variables, for which Latin letters v, w, and z are
typically used. We say that v : S → R is a solution of the optimality equations
Opt(Γ ) if for all s ∈ S, we have

v(s) =

{
min{ rλ(s) + β · v(λ(s)), rρ(s) + β · v(ρ(s)) } if s ∈ SMin,

max{ rλ(s) + β · v(λ(s)), rρ(s) + β · v(ρ(s)) } if s ∈ SMax.
(1)

Theorem 1 ([15]). Every discounted game is positionally determined. More-
over, the optimality equations Opt(Γ ) have a unique solution v : S → R, and for
every s ∈ S, we have Val(s, β) = v.



A Simple P-Matrix Linear Complementarity Problem for Discounted Games 285

It follows from the existence of a solution to the optimality equations that there
exist optimal pure positional strategies [21]. Hence, without loss of generality,
we consider only pure positional strategies.

3 A P-Matrix LCP for Discounted Games

3.1 An LCP for Discounted Games

Consider the following set of constraints over variables v(s), w(s), z(s), for all
s ∈ S:

v(s) + w(s) = rλ(s) + βv(λ(s)), if s ∈ SMin, (2)
v(s)− w(s) = rλ(s) + βv(λ(s)), if s ∈ SMax, (3)
v(s) + z(s) = rρ(s) + βv(ρ(s)), if s ∈ SMin, (4)
v(s)− z(s) = rρ(s) + βv(ρ(s)), if s ∈ SMax, (5)
w(s), z(s) ≥ 0 (6)
w(s) · z(s) = 0. (7)

Non-negative variables w(s) and z(s) should be thought of as slack variables
which turn inequalities such as v(s) ≤ rλ(s) + βv(λ(s)) if s ∈ SMin, or v(s) ≥
rρ(s) + βv(ρ(s)) if s ∈ SMax, into equations. Note that variables w are slacks
for left successors, and variables z are slacks for right successors. The natural
inequalities for left and right successors, turned into equations (2)–(5) using non-
negative slack variables (6), together with the complementarity condition (7), for
all s ∈ S, yield the following characterization.

Proposition 1. There is a unique solution v, w, z : S → R of constraints (2)–
(7), and v is the unique solution of Opt(Γ ).

A linear complementarity problem [4] LCP(M, q) is the following set of con-
straints:

w = Mz + q, (8)
w, z ≥ 0, (9)

ws · zs = 0, for every s ∈ S, (10)

where M is an n × n real matrix, q ∈ R
n, and w and z are n-vectors of real

variables. In order to turn constraints (2)–(7) into a linear complementarity prob-
lem LCP(M, q), we rewrite equations (2)–(5) in matrix notation and eliminate
variables v(s), for all s ∈ S.

For a predicate p, we define [p] = 1 if p holds, and [p] = 0 if p does not hold. For
σ : S → S, define the n×n matrix Tσ by (Tσ)st = [σ(s) = t], for all s, t ∈ S. For
every n×n matrix A, we define the matrix Â by setting (Â)st = (−1)[s∈SMin]Ast,
for every s, t ∈ S. Observe that Â is obtained from A by multiplying all entries
in every row s, such that s ∈ SMin, by −1.



286 M. Jurdziński and R. Savani

Equations (2)–(3) and (4)–(5) can be written as

Îv = w + Îrλ + βT̂λv,

Îv = z + Îrρ + βT̂ρv,

respectively, where v, w, and z are n-vectors of real variables, and rλ, rρ ∈ R
n

are the vectors of rewards. By eliminating v we get

w + Îrλ = (Î − βT̂λ)(Î − βT̂ρ)−1(z + Îrρ),

and hence we obtain an LCP(M, q) equivalent to constraints (2)–(7), where

M = (Î − βT̂λ)(Î − βT̂ρ)−1, (11)

q = MÎrρ − Îrλ. (12)

Proposition 2. There is a unique solution w, z ∈ R
n of the LCP(M, q), and

(Î − βT̂λ)−1(w + Îrλ) = (Î − βT̂ρ)−1(z + Îrρ) is the unique solution of Opt(Γ ).

Invertibility of (Î − βT̂λ) and (Î − βT̂ρ) is guaranteed by Theorem 4.

3.2 The P-Matrix Property

For an n×n matrix A and α ⊆ S, such that α 	= ∅, the principal submatrix Aαα
of A is the matrix obtained from A by removing all rows and columns in S \α. A
principal minor of A is the determinant of a principal submatrix of A. An n×n
matrix is a P-matrix [4] if all of its principal minors are positive. The importance
of P-matrices for LCPs is captured by the following theorem.

Theorem 2 (Theorem 3.3.7, [4]). A matrix M ∈ R
n×n is a P-matrix if and

only if the LCP(M, q) has a unique solution for every q ∈ R
n.

There are many algortithms for LCPs that work for P-matrices, but not in gen-
eral. As stated by the following theorem, the matrices that arise from discounted
games are P-matrices.

Theorem 3. The matrix M = (Î − βT̂λ)(Î − βT̂ρ)−1 is a P-matrix.

Proof. By Proposition 2, every LCP (M, q) arising from a discounted game has
a unique solution. Given M , every q ∈ R

n can arise from a game (to see this,
set rλ = 0 in (12) and note that M is invertible), hence M is a P-matrix by
Theorem 2. ��
We give an alternative proof of Theorem 3 that does not rely on the fixed point
theorem underlying Theorem 1 and Proposition 2. For this we recall the following
two theorems from linear algebra. An n× n matrix A is strictly row-diagonally
dominant if for every i, 1 ≤ i ≤ n, we have |Aii| >

∑
j �=i |Aij |.

Theorem 4 (Levy-Desplanques [9]). Every strictly row-diagonally dominant
square matrix is invertible.



A Simple P-Matrix Linear Complementarity Problem for Discounted Games 287

A convex combination of n× n matrices B and C is a matrix QB + (I −Q)C,
where Q is a diagonal matrix with diagonal entries q1, q2, . . . , qn ∈ [0, 1].

Theorem 5 (Johnson-Tsatsomeros [10]). Let A = BC−1, where B and C
are square real matrices. Then A is a P-matrix iff every convex combination of
B and C is invertible.

Proof (alternative proof of Theorem 3). For every β ∈ [0, 1), both (Î −βT̂λ) and
(Î −βT̂ρ) are strictly row-diagonally dominant, and so is every convex combina-
tion of them. By Theorem 4, every such convex combination is invertible, and
hence by Theorem 5, the matrix M = (Î − βT̂λ)(Î − βT̂ρ)−1 is a P-matrix. ��
It is well-known that one-player discounted games, where S = SMin or S = SMax,
can be solved in polynomial time via a simple linear program [5]. We briefly note
that in this case the matrix M is hidden-K, giving another proof that the LCP
(M, q) is solvable via a linear program [13]. A matrix X is a Z-matrix if all off-
diagonal entries are non-positive. A P-matrix M is hidden-K if and only if there
exist Z-matrices X and Y such that MX = Y and Xe > 0, where e is the all-one
vector (see page 212 of [4]). Without loss of generality, suppose S = SMax, so
Î = I, T̂λ = Tλ, and T̂ρ = Tρ. Then, by (11), we have M(I − βTρ) = (I − βTλ),
which gives the hidden-K property.

3.3 Understanding q and M

For every σ : S → S with σ(s) ∈ {λ(s), ρ(s)}, let vσ ∈ R
n be the vector

of discounted payoffs of σ-plays
〈D(Play(s, σ), β)

〉
s∈S . We define rσ ∈ R

n as
follows. For s ∈ S,

rσ(s) =

{
rλ(s) if σ(s) = λ(s),
rρ(s) if σ(s) = ρ(s).

Proposition 3. For σ : S → S, we have vσ = (Î − βT̂σ)−1Îrσ.

Proof. The discounted payoff of the play Play(s, σ) is the unique solution of the
system of equations v = rσ +βTσv, which is equivalent to Îv = Îrσ +βT̂σv, and
hence vσ = (Î − βT̂σ)−1Îrσ. ��
Proposition 4. If q ∈ R

n is as defined in (12), then q = Î
(
vρ− (rλ + βTλv

ρ)
)
.

Proof. By Proposition 3, we have

q = MÎrρ− Îrλ = (Î−βT̂λ)(Î−βT̂ρ)−1Îrρ− Îrλ = (Î−βT̂λ)vρ− Îrλ . ��
For σ : S → S, define the n × n matrix Dσ in the following way. For s ∈ S, let
Play(s, σ) = 〈s0, s1, . . . , sk−1, 〈t0, t1, . . . , t
−1〉ω〉. Then for t ∈ S, we define

(Dσ)st =

⎧
⎪⎨

⎪⎩

βi if t = si for some i, 0 ≤ i < k,
βk+i

1−β� if t = ti for some i, 0 ≤ i < �,

0 otherwise.



288 M. Jurdziński and R. Savani

Proposition 5. For σ : S → S, we have vσ = Dσrσ.

Proof. Let s ∈ S and Play(s, σ) = 〈s0, s1, . . . , sk−1, 〈t0, t1, . . . , t
−1〉ω〉. Then we
have

D(Play(s, σ), β) =
k−1∑

i=0

βirσ(si) + βk
∞∑

j=0


−1∑

i=0

βj
+irσ(ti)

=
∑

k−1

βirσ(si) +

−1∑

i=0

(
βk+i

∞∑

j=0

βj

)
rσ(ti)

=
∑

k−1

βirσ(si) +

−1∑

i=0

βk+i

1− β
 · rσ(ti)

= (Dσrσ)s. ��

By Proposition 5, the discounted payoff of the play Play(s, σ) is equal to
(Dσrσ)s =

∑
t∈S(Dσ)st · rσ(t). Therefore, we can think of (Dσ)st as the co-

efficient of the contribution of the reward rσ(t) on the edge that leaves state
t ∈ S, towards the total discounted payoff of the play, which is starting from
state s, and that is following strategy σ onwards.

Lemma 1. Let M be the n×n matrix as defined in (11). Then for every s, t ∈ S,
we have Mst = (−1)[s∈SMin]+[t∈SMin]

(
(Dρ)st − β(Dρ)λ(s)t

)
.

Proof. The following follows from Propositions 3 and 5, and from Î−1 = Î:

M = (Î − βT̂λ)(Î − βT̂ρ)−1Î Î−1

= (Î − βT̂λ)DρÎ .

Therefore, for all s, t ∈ S, we have

Mst = (−1)[s∈SMin] · (−1)[t∈SMin](Dρ)st − (−1)[s∈SMin]β · (−1)[t∈SMin](Dρ)λ(s)t

= (−1)[s∈SMin]+[t∈SMin]
(
(Dρ)st − β(Dρ)λ(s)t

)
. ��

4 Algorithms

4.1 Unique Sink Orientations of Cubes

A unique sink orientation (USO) of an n-dimensional hypercube is an orientation
of its edges such that every face has a unique sink. The USO problem is to find
the unique sink of the n-cube, using calls to an oracle that gives the orientation
of edges adjacent to a vertex. For more details about USOs see [19].

For an LCP (M, q), the vector q is nondegenerate if it is not a linear combina-
tion of any n−1 columns of (I,−M). Every P-matrix LCP (M, q) of dimension n
with nondegenerate q corresponds to a USO ψ(M, q) of the n-cube [16].



A Simple P-Matrix Linear Complementarity Problem for Discounted Games 289

A principal pivot transform (PPT) of the LCP (M, q) is a related LCP with
the role of wi and zi exchanged for all i ∈ α for some α ⊆ {1, . . . , n}. We denote
by Mi the i-th column of M and by ei = Ii the i-th unit vector. For each
α ⊆ {1, . . . , n}, define the n× n matrix Bα as,

(Bα)i =

{
−Mi, if i ∈ α ,
ei, if i /∈ α .

The α-PPT of (M, q), written (Mα, qα), is found as follows. Start with the matrix
A = [I,−M, q], which comes from the equation Iw−Mz = q, see (8). Obtain A′

from A by exchanging Ii with −Mi for all i ∈ α. Then (Bα)−1A′ = [I,−Mα, qα].
The vertices of ψ(M, q) correspond to the subsets α ⊆ {1, . . . , n}. At vertex α,

the n adjacent edges are oriented according to the sign of qα =
(
(Bα)−1q

)
. For

exactly one α, we have qα ≥ 0, so that z = 0 is a trivial solution of the LCP
(Mα, qα); this is the sink of ψ(M, q).

For a binary discounted game Γ , each subset α ⊆ {1, . . . , n} corresponds to
a choice of right-successor function, ρα, with

ρα(s) =

{
λ(s) if s ∈ α,
ρ(s) if s /∈ α,

for all s ∈ S. The sink of ψ(M, q) is an α such that ρα is an optimal (combined)
strategy.

4.2 Strategy Improvement and the Strategy Valuation USO

In this section we outline strategy improvement algorithms for solving discounted
games. Such algorithms also exist for other classes of zero-sum games, such as
parity games, mean-payoff games, and simple stochastic games [1,20]. For the all-
switching variant of strategy improvement, no super-linear examples are known
for any of these classes of games.

Underlying strategy improvement algorithms are corresponding USOs. For
binary games, as considered here, these are USOs of cubes, for games with out-
degree larger than two, USOs of grids; see [7].

Definition 1. For a pair of strategies, a state s ∈ S is switchable if the op-
timality equation s, given by (1), does not hold. That is, for a right successor
function ρ, used to denote a strategy pair, and a left successor function λ, used to
denote the alternative choices to ρ, a state s ∈ SMax is switchable under strategy
pair ρ if

rλ(s) + β · vρ(λ(s)) > rρ(s) + β · vρ(ρ(s)), (13)

and state s ∈ SMin is switchable under ρ if

rλ(s) + β · vρ(λ(s)) < rρ(s) + β · vρ(ρ(s)). (14)



290 M. Jurdziński and R. Savani

The rewards of the game are nondegenerate if there is no strategy pair σ such
that for some state s ∈ S we have rλ(s) + β · vσ(λ(s)) = rρ(s) + β · vσ(ρ(s)).
For the purpose of defining the strategy valuation USO τ(Γ ), we only consider
nondegenerate rewards. We associate a vertex of τ(Γ ) with the strategy pair σ.

Definition 2. For a game Γ , the strategy valuation USO τ(Γ ) is defined as
follows. At vertex σ an edge is outgoing if and only if the corresponding state is
switchable.

Proposition 6. For a game Γ and the corresponding (M, q) defined by (11)-
(12), we have τ(Γ ) = ψ(M, q) .

Proof. For s ∈ S, we have qs = (−1)[s∈SMin]
(
(rρ + βvρ(ρ(s))− (rλ + βvρ(λ(s))

)
,

by Proposition 6. Thus, if s ∈ SMax, then qs < 0 if and only if (13) is satisfied,
and if s ∈ SMin, then qs < 0 if and only if (14) is satisfied. ��
For a fixed strategy χ of Max, a best response of Min, BR(χ), is a strategy that
for all s ∈ SMin does not satisfy (14). For a state s ∈ S, there are two opposite
facets, i.e., (n− 1)-dimensional faces, of τ(Γ ) such that in one all strategies are
consistent with λ(s), and in the other all are consistent with ρ(s). Thus, the
strategy χ of Max defines a subcube of τ(Γ ) as the intersection of the facets
that are consistent with χ. BR(χ) is the sink in this subcube.

Algorithm 1. [Strategy Improvement for Max]

Input: Discounted game Γ

repeat:

1. ρ′ ← (
BR(ρ�SMax), ρ�SMax

)
.

2. Obtain ρ′′ from ρ′ by switching at a nonempty subset of switchable
s ∈ SMax under ρ′.

3. ρ← ρ′′

until ρ′′ = ρ′.

The proof of correctness of strategy improvement for simple stochastic games
in Section 3.3 of [2] can be easily adapted to discounted games using the fact
that, for every strategy σ, the matrix Dσ = (I − βTσ)−1 is nonnegative and has
positive diagonal.

Algorithm 1 has the following interpretation in terms of τ(Γ ). In Step 1., find
the best response of Min as the sink in the subcube of τ(Γ ) consistent with χ.
In Step 2., from this sink, jump to the antipodal vertex in the subcube spanned
by the chosen set of outgoing edges (switchable states). The algorithm can be
seen as repeating Step 2. in the strategy-improvement USO τMax(Γ ), which is an
inherited USO where the vertices correspond to the strategies of Max only. To
obtain τMax(Γ ) from τ(Γ ), we “drop” the dimensions corresponding to Min: at



A Simple P-Matrix Linear Complementarity Problem for Discounted Games 291

vertex γ in τMax(Γ ), the orientation is consistent with that at (BR(γ), γ) in τ(Γ ),
which is the sink in the subcube of τ(Γ ) consistent with γ. For more details on
inherited USOs, see Section 3 of [19]. It is a long-standing open question whether
the all-switching variant of strategy improvement is polynomial.

With degnerate rewards, there is at least one edge that does not have a well-
defined orientation. Strategy improvement still works, by considering any such
edge as incoming to the current vertex.

4.3 Murty’s Least-Index Method

In this section we outline Murty’s least-index method for P-matrix LCPs. We
show that, applied to the LCP (M, q) derived from a discounted game Γ ac-
cording to (11) and (12), the least-index method can be considered as a strategy
improvement algorithm.

Algorithm 2. [Murty’s least-index method]

Input: LCP (M, q). Initialization: Set α := ∅, q̄ := q.

while q̄ 	≥ 0 do:

s← min{1,...,n}{i | q̄i < 0};
α← α⊕ {s};
q̄ ← (Bα)−1q.

For a proof of the correctness of this Murty’s least-index method, see [16].
Given Lemma 6, we see that, applied to the LCP derived from Γ , in each iteration
Algorithm 2 makes a single switch in a switchable state with the lowest index.

Proposition 7. Suppose Murty’s least-index method is applied to the LCP aris-
ing from a discounted game Γ . If SMax = {1, . . . , k} (SMin = {1, . . . , k}) for
some k ∈ {1, . . . , n}, then the algorithm corresponds to a single-switch variant
of strategy improvement for Min (Max).

Proof. Suppose SMax = {1, . . . , k}. Then before any states of Min are switched,
we have q1, . . . , qk ≥ 0, i.e., Max is playing a best response. Then, if possible, a
single switch for Min with lowest index is made. ��

Murty’s least-index method gives a new algorithm for binary discounted games,
and hence also for binary mean-payoff and parity games. For a given game,
the method depends on an initial strategy pair, and an ordering of the states.
As described by Proposition 7, for certain orderings of the states the method
corresponds to a single-switch variant of strategy improvement in which the
subroutine of computing best responses is also done via single-switch strategy
improvement; for general orderings however it is a different algorithm.



292 M. Jurdziński and R. Savani

5 Further Research

There are several algorithms for P-matrix LCPs that should be investigated in
the context of discounted and simple stochastic games. For example, there is the
Cottle-Dantzig prinicpal pivoting method [3] and Lemke’s algorithm [12], which
are pivoting methods. There are also interior point methods known for P-matrix
LCPs [11].

The reduction from mean-payoff games to discounted games requires “large”
discount factors. Can we design efficient algorithms for smaller discount factors?
For small enough discount factor, the matrix M is close to the identity matrix
and hence hidden-K, so the LCP can be solved as a linear program.

Whether all-switching strategy improvement is a polynomial-time algorithm
is a long-standing open question. An exponential lower bound has been given
for USOs in [18], but so far games that give rise to these example have not been
constructed. What about upper bounds for strategy improvement for one-player
discounted games? Are the inherited (strategy improvement) USOs, which we
know to be acyclic, linearly inducible? Do they at least satisfy the Holt-Klee
condition, which is known to hold for P-matrix LCPs, but is not necessarily
preserved by inheritance [7]?

Acknowledgements. We thank Hugo Gimbert for stimulating us to formulate
and study an LCP for solving discounted games.

References

1. Condon, A.: The complexity of stochastic games. Information and Computation 96,
203–224 (1992)

2. Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory, pp. 51–73. American Mathematical Society (1993)

3. Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical pro-
gramming. Linear Algebra and Its Applications 1, 103–125 (1968)

4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem.
Academic Press (1992)

5. Derman, C.: Finite State Markov Decision Processes. Academic Press (1972)
6. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg

(1997)
7. Gärtner, B., Morris, W.D., Rüst, L.: Unique sink orientations of grids. In: Jünger,

M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 210–224. Springer, Heidel-
berg (2005)

8. Gärtner, B., Rüst, L.: Simple stochastic games and P-matrix generalized linear
complementarity problems. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005.
LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005)

9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1985)
10. Johnson, C.R., Tsatsomeros, M.J.: Convex sets of nonsingular and P-matrices.

Linear and Multilinear Algebra 38, 233–239 (1995)
11. Kojima, M., Noma, T., Megiddo, N., Yoshise, A. (eds.): A Unified Approach to

Interior Point Algorithms for Linear Complementarity Problems. LNCS, vol. 538.
Springer, Heidelberg (1991)



A Simple P-Matrix Linear Complementarity Problem for Discounted Games 293

12. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Man-
agement Science 11, 681–689 (1965)

13. Mangasarian, O.L.: Linear complementarity problems solvable by a single linear
program. Mathematical Programming 10, 263–270 (1976)

14. Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD thesis,
University of California, Berkeley (1995)

15. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39, 1095–1100 (1953)
16. Stickney, A., Watson, L.: Digraph models of Bard-type algorithms for the linear

complementarity problem. Mathematics of Operations Research 3, 322–333 (1978)
17. Svensson, O., Vorobyov, S.: Linear complementarity and P-matrices for stochastic

games. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
408–421. Springer, Heidelberg (2007)

18. Szabó, T., Schurr, I.: Jumping doesn’t help in abstract cubes. In: Jünger, M.,
Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 225–235. Springer, Heidelberg
(2005)

19. Szabó, T., Welzl, E.: Unique sink orientations of cubes. In: IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 547–555 (2001)

20. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

21. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158, 343–359 (1996)



Implementing Spi Calculus

Using Nominal Techniques

Temesghen Kahsai1,� and Marino Miculan2

1 Department of Computer Science, Swansea University, UK
csteme@swan.ac.uk

2 DiMI, University of Udine, Italy
miculan@dimi.uniud.it

Abstract. The aim of this work is to obtain an interactive proof en-
vironment based on Isabelle/HOL for reasoning formally about crypto-
graphic protocols, expressed as processes of the spi calculus (a π-calculus
with cryptographic primitives). To this end, we formalise syntax, se-
mantics, and hedged bisimulation, an environment-sensitive bisimulation
which can be used for proving security properties of protocols. In order
to deal smoothly with binding operators and reason up-to α-equivalence
of bound names, we adopt the new Nominal datatype package. This sim-
plifies both the encoding, and the formal proofs, which turn out to cor-
respond closely to “manual proofs”.

1 Introduction

It is well known that proving security properties of communication protocols is
difficult and error-prone. Since Paulson’s seminal work [19], interactive (semi-
automatised) proof assistants (such as Isabelle [18]) have been recognised as valid
aid tools to this end. In principle, (a model of) the system can be formalised in a
proof assistant, the security property can be formally stated as a “theorem”, and
a formal proof can be carried out interactively by the user, and checked by the
environment. Sophisticated semi-automatic proof search tactics may simplify
some derivation steps. This approach should be seen as complementary, and
not in contrast, to the many fully automatised tools, such as those based on
(symbolic) model checking, SAT solvers, etc.; see e.g. [3,6,10,16]. Actually, both
approaches have strong and weak points: automatic tools are quite successful
on particular finite-state systems, but they naturally suffer of state-explosion
problems and usually cannot be used for proving general properties. On the
other hand, interactive tools may be tedious and slow to use, but in principle
can be used for proving any valid property. In fact, the best solution would be
integrated proof assistants, that is semi-automatic interactive tools where the
verification of decidable subgoals can be left to automatic proof search tools; see
e.g. [17,24] for some application of this approach to model checking problems.

� The author is supported by EPSRC under the grant EP/D037212/1.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 294–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Implementing Spi Calculus Using Nominal Techniques 295

Among the many formal models for security, a particularly successful one is
the spi calculus [2], a process calculus intended to describe and reason about
the behaviour of cryptographic protocols; security properties can be expressed
rigorously as statements of behavioural equivalence between processes. These
equivalences can be characterised by environmental (i.e. context-sensitive) bisim-
ulations, where the environment keeps track of the knowledge accumulated by
an attacker that observes the evolution of the protocols. Some fully automa-
tised approaches for deciding these equivalences have been proposed (notably
[6,8,14]), but their applicability is limited to small decidable fragments.

In this paper, we intend to complement these tools with an interactive proof
assistant for spi calculus. More precisely, we give a formalisation of the spi cal-
culus in the proof assistant Isabelle/HOL, using the recently developed Nomi-
nal package. We formalise syntax, operational semantics, and two environmental
bisimulations. In our opinion this work is useful for many reasons. First, we read-
ily obtain an interactive environment which can be effectively used for proving
(formally and error-free) security properties of protocols expressed as spi calculus
processes, as well as meta-theoretic results about the spi calculus itself. Secondly,
the rigorous encoding of a calculus in the metalanguage of a logical framework
is normative, since it forces to spell out in full detail all aspects of the calculus,
thus giving the possibility of identifying and fixing problematic issues which may
be overlooked on paper. Thirdly, this formalisation can be used for integrating
automatised tactics and proof search strategies, as described above. Fourthly,
this is the first application of these techniques to environmental bisimulations,
and this study can be ported to other environmental bisimulations such as those
recently studied for higher-order languages in [21]. Finally, extensive case studies
like this are useful test-beds for state-of-art and still under development logical
frameworks and proof assistants.

Regarding this last aspect, one feature of our work is that we use Isabelle/HOL
extended with the Nominal package [22] (or Isabelle/Nominal for short). The
Nominal package implements in Isabelle/HOL the ideas of Nominal Logic, in-
troduced in the seminal works by Gabbay and Pitts [11,20]. These techniques
aim to simplify the manipulation and reasoning of data with binding operators,
by automatically identifying terms up to α-equivalence of bound names. This
aspect is fundamental in the spi calculus, where (bound) variables and names
are crucially used for representing channels, keys, nonces, etc. Of course other
encoding methodologies are possible in principle, but the hassle of dealing explic-
itly with different representations of the same process would hinder the usability
of the resulting encoding in interactive proofs.

Although it is still under development, the Nominal package is already quite
usable; see [4] for an extensive implementation of the theory of π-calculus in
Isabelle/Nominal, which have been inspiration for the present work. In fact, we
think that case studies like the present work can give useful insights for further
improvements of the Nominal package, thanks to the several distinguishing fea-
tures of spi calculus with respect to π-calculus (such as message passing and
peculiar context-sensitive bisimulations).



296 T. Kahsai and M. Miculan

Synopsis. In Section 2 we recall the spi calculus: its syntax, semantics and hedged
bisimilarity. In Section 3 we give a brief introduction to the Nominal package. In
Section 4 we describe the implementation of the spi calculus in Isabelle/Nominal,
together with an example of a formal proof. Section 5 concludes the paper with
some future and related work.

The complete Isabelle source code, with further examples and an encoding of
“framed bisimulation” (which we cannot report in this paper due to lack of space),
can be found at http://www.cs.swan.ac.uk/∼csteme/SpiInIsabelle/.

2 Spi Calculus

The spi calculus [2] is a process calculus extending π-calculus [15] with primitives
for describing and reasoning about the behaviour of cryptographic protocols.
Security properties, such as secrecy, authenticity (and also authentication via a
reduction to secrecy [5]), can be expressed as statements of behavioral equiva-
lence. In this section we recall the syntax and the semantics of the shared-key
spi-calculus, following [9].1

Syntax. We assume an infinite set of names N , ranging from a, b, c, . . . k, l,m, n
and x, y, z. The set of expressions is defined by the following grammar:

ζ, η ::= a | Eη(ζ) | Dη(ζ) expressions E
δ ::= a | Eδ(δ) decryption-free expressions D

M,N ::= a | Ek(M) messagesM

Eη(ζ) represents the cipher-text obtained by encrypting the expression ζ with
the expression η as key, using some given (perfect) shared-key cryptosystem.
Dη(ζ) represents the decryption of ζ using the key η, if successful.

The guards G are defined by the following grammar:

φ, ψ ::= tt | φ ∧ ψ | ¬φ | let z = ζ in φ | is Name(δ) | [δ = δ]

Decryption constructors can occur only in the ζ of the “let” construct: the for-
mula let z = ζ in φ evaluates the expression ζ, and if evaluation succeeds (i.e., ζ
contains no encrypted expressions which cannot be decrypted), binds its value to
z and evaluates φ. Equality and name tests can be performed only on decryption-
free expressions; this means that before comparing two expressions, or checking
whether an expression is a name, all pending decryptions have to be solved.

Finally, the set of processes is defined as follows:

P,Q,R ::=0 | δ〈N〉.P | δ(x).P | P + P | P | Q
| (νn)P |!P | φP | let x = ζ in P

1 Of course more expressive languages, e.g. with primitives for public-key cryptogra-
phy, can be dealt with easily; for the sake of simplicity, in this paper we prefer to
consider a simpler language.

http://www.cs.swan.ac.uk/~csteme/SpiInIsabelle/


Implementing Spi Calculus Using Nominal Techniques 297

The name n is bound in (νn)P , and x is bound in P by let x = ζ in P
and M(x).P . For an intuitive description of spi calculus processes, see [1]. Some
syntactic conventions: fn(P ) indicates the sets of names free in process P . A
concretion is an expression of the form νm1, . . . ,mk〈M〉P , where M is a term, P
is a process, k ≥ 0, and the names m1, . . . ,mk are bound in M and P . An agent
is a process or a concretion. The meta-variables A and B range over arbitrary
agents, and fn(A) stands for the sets of free names of an agent A. An action
is either a name a with a message M (representing input), or a co-name m
(representing output) or the distinguished silent action τ .

Operational semantics. Expressions and boolean guards are evaluated by two
functions �.� : E → M ∪ {⊥}, �.� : G → {tt,ff}. The behaviour of processes is
described by the commitment relation (P α−→ A), where P is a process, α is an
action, and A is an agent. See [9] for a complete description of these two notions.

Environment-sensitive bisimulations. Bisimulations for spi calculus are based
on the idea of an environment observing a pair of processes, trying to distin-
guish one from the other using the knowledge accumulated during the evolution
of these processes. The environment typically observes the transitions derived
from the operational semantics of the processes. Hedged bisimulation is an im-
proved form of environment-sensitive bisimulation. It has been introduced in
[9], following ideas of [7], in order to highlight the differences between different
environment-sensitive bisimulation. The main idea of hedges is to keep track of
the correspondence of different names which play the same role.

Definition 1. A hedge is a finite subset of M×M. H denotes the set of all
hedges.

A hedge h is consistent iff for (M,N) ∈ h:

1. M ∈ N iff N ∈ N ;
2. if (M ′, N ′) ∈ h then M = M ′ iff N = N ′
3. if M = EM2(M1) and N = EN2(N1) then M2 /∈ π1(h) and N /∈ π2(h), where

M1,M2, N1 and N2 are expressions (and π1(h) is the first projection).

The synthesis S(.) of a hedge is defined inductively. We write h 
 M ↔ N for
(M,N) ∈ S(h). Intuitively, h 
M ↔ N means that, using the knowledge h, the
environment is unable to distinguish two processes P and Q, if the first emits
M and the second N . The rules for synthesis are the following:

(Synth. hedge)
(m,n) ∈ h
h 
 m↔ n

(Synth. enc)
h 
M ↔M ′ h 
 N ↔ N ′

h 
 EN (M)↔ EN ′(M ′)

The analysis A(h) is the smallest subset ofM×M containing h and satisfying
the following rule:

(Ea(M),Eb(N)) ∈ A(h) (a, b) ∈ A(h)
(M,N) ∈ A(h)

The irreducibles I(h) of a hedge h is I(h) � A(h)\{(Ea(M),Eb(N)) | (a, b) ∈
A(h)∧M,N ∈ N}. Intuitively, the analysis decrypts as much as possible pairs of



298 T. Kahsai and M. Miculan

messages using pairs of names that are considered equivalent by the environment;
irreducibles terms are those which cannot be decrypted further.

Definition 2 (Hedged simulation). A hedged relation R is a subset of H×
P × P . We say that R is consistent if h 
 PRQ implies that h is consistent.

A consistent hedged relation R is a hedged simulation if whenever h 
 PRQ
the following conditions hold:

1. If P τ−→ P ′ then there exists a process Q′ such that Q =⇒ Q′ and h 
 P ′RQ′.
2. If P a M−−−→ P ′, h 
 a↔ b, B is a finite set of names disjoint from fn(P ) ∪

fn(Q)∪ fn(h), and N is a message such that h∪ IdB 
M ↔ N , then there
exists Q′ such that Q b N=⇒ Q′ and h ∪ IDB 
 P ′RQ′

3. If P ā−→ (ν�c)〈M〉P ′, h 
 a ↔ b and �c is disjoint from fn(P ) ∪ fn(π1(h)),
then there exists Q′, N, �d with �d disjoint from fn(Q) ∪ fn(π2(h)) such that

Q
b̄=⇒ (ν �d)〈N〉Q′ and I(h ∪ {(M,N}) 
 P ′RQ′.

R is a hedged bisimulation if bothR andR−1 are hedged simulations. The hedged
bisimilarity is the greatest hedged bisimulation, and it is denoted by ∼h.

It turns out that hedged bisimilarity corresponds to barbed equivalence [9].

3 Isabelle/Nominal

The Nominal package [22] for Isabelle/HOL aims to provide a framework for rea-
soning about process calculi and programming languages with binding operators
in a convenient way, so that formal proofs should be easy to carry out as infor-
mal “pencil-and-paper” proofs. The work is based on the nominal logic [20]; the
main technical novelty introduced by Urban et al. [22] is that the construction
for α-equivalent terms is done without adding any axiom to the Isabelle/HOL
logic; therefore the theory is implemented just as a package of Isabelle/HOL,
without the need of changing the underlying proof assistant.

A nominal datatype definition is like an ordinary datatype, but it explic-
itly tags the binding occurrences of names. For instance, in the syntax of the
usual untyped λ-calculus the notation <<name>>term stands for “a term ab-
stracted over name”, that is, with a name bound in term. The package au-
tomatically provide the α-equivalence between terms; e.g., (lam x (var x))
and (lam y (var y)) are equal. Moreover, the package generates automatically
powerful induction rules over terms up-to α-equivalence (among other useful
properties). This saves the user much hassle in large proofs.

The core of the nominal logic relies on the notion of name swapping. Atoms
(i.e., names) are manipulated not by renaming substitutions but by permutations
(bijective mappings from atoms to atoms). In the Nominal package, permuta-
tions are represented as finite lists of atom swappings (i.e, pairs of atoms). The
operation of permutation applies to all names in a term, including the binding
and bound occurrences: if T be a term, and a and b are names then (a b) • T
denotes the term where all instances of a in T becomes b and vice versa. For
further details, the reader can refer to http://isabelle.in.tum.de/nominal/.

http://isabelle.in.tum.de/nominal/


Implementing Spi Calculus Using Nominal Techniques 299

4 Encoding Spi Calculus in Isabelle/Nominal

In this section, we describe the implementation of spi calculus in the general
purpose proof assistant Isabelle [18], using its instantiation HOL-Nominal im-
plementing higher-order intuitionistic logic and including the Nominal package.
For improving readability of theories and proofs, we use Isar [23] (Intelligible
semi-automatized reasoning), with occasionally some syntactic sugar.

4.1 Implementation of Syntax and Semantics

We introduce one type of nominal atoms name, which will be used in binders.
Expressions, decryption free expressions, messages and processes are declared as
nominal datatypes; actually, only processes have binders, but in the current ver-
sion of the Nominal package, building nominal datatypes over normal datatypes
is not easy.2

Due to the use of Isabelle syntax, there may be a slight change of notation
from Section 2, but the rationale will be clear.

nominal datatype expr = Name name | Sk enc expr expr | Sk dec expr expr
nominal datatype dfexpr = Df Name name | Df Sk enc dfexpr dfexpr
nominal datatype mess = M Name name | M Sk enc name mess
nominal datatype Proc = Pnil | in pref dfexpr �name�Proc

| out pref dfexpr dfexpr Proc | par Proc Proc
| res �name�Proc | bang Proc
| boolean guard guard Proc | letp expr �name�Proc

Sk enc and Sk dec represent Eη(ζ) and Dη(ζ) respectively. By declaring those
datatypes as nominal datatype, the nominal package generates a powerful induc-
tion rule, where bound names occurring in the inductive cases will be automati-
cally chosen to be different from any name (or variable) already used in a proof.
Thus, naming clashing are avoided automatically. The Nominal package derives
several proofs so that Isabelle’s type system can in most circumstances automat-
ically infer when a type is a permutation type. Nominal datatypes are always
permutation types and their elements are finitely supported.

Substitution operators for the different datatypes are implemented as func-
tions by using the recursion combinator that is automatically generated by the
Nominal package for the datatypes terms defined above; this allows us to define
recursively functions that respect α-equivalence classes.

subst mess Name :: mess ⇒ name ⇒ name ⇒ mess
subst mess Name m n ≡ λa. (M Name a)

subst mess enc :: mess ⇒ name ⇒ name ⇒ mess ⇒ mess ⇒ mess
subst mess enc m n ≡ λt m2 . (M Sk enc t m2 )

2 The problem is that datatypes used within nominal datatypes must satisfy several
“equivariance properties”. These properties are automatically proved for nominal
datatypes, but are left to the user for normal datatypes.



300 T. Kahsai and M. Miculan

subst mess :: mess ⇒ mess ⇒ name ⇒ mess ( [ ∼∼ ])
e[m ∼∼ n] ≡ (mess rec (subst mess Name m n) (subst mess enc m n)) e

mess rec denote the recursion combinator for mess. The notation e[m ∼∼
n] is a syntactic sugar, and it can be read as e with m for n, and represent
the substitution of all occurances of n of type name in the message e with m.
Evaluation operators for expressions and boolean guards �.� are implemented
as a nominal partial recursive function(nominal-primrec). The output of the
function that evaluates expressions is of type mess option, i.e. if the evaluation
is succesfull we expect a message otherwise an error. In Isabelle/HOL the type
t option models the result of a computation that may terminate with an error
(represented by None) or return the value v (represented by Some v).

consts
eval expr :: expr ⇒ mess option

nominal-primrec
eval expr (Name a) = Some (M Name a)
eval expr (Sk enc e1 e2 )= (case eval expr(e2 ) of

None ⇒ None
| Some M ⇒ (case eval expr(e1 ) of
None ⇒ None
| Some k ⇒ mess case k (%l . Some(M Sk enc l M )) (%x y . None)))

eval expr (Sk-dec e1 e2 )= (case eval-expr(e2 ) of
None ⇒ None

|Some X ⇒ (mess case X (%l . None)
(%k M . (case eval expr(e1 ) of

None ⇒ None
|Some N ⇒ mess case N (%k ′.(if k=k ′ then (Some M ) else None))

(%x y . None)))))

eval expr (Sk enc e1 e2) asserts if the evaluation of e2 is None then the
evaluation of (Sk enc e1 e2) is None; otherwise if the evaluation is of type
(SomeM) we make a case distinction: if the evaluation of e2 isNone the function
return None otherwise if the evaluation is of type (Some k) it returns M Sk enc
l M otherwise it returns None. eval expr (Sk dec e1 e2) follows the same kind
of evaluation. In Isabelle “case” expressions are just sugared syntax for a special
case combinator which is automatically defined whenever we define a datatype.
For nominal datatypes, however, this is not yet supported, hence we define a
case combinator (mess case) for this purpose.

consts mess case :: mess ⇒ (name ⇒ ′a) ⇒ (name ⇒ mess ⇒ ′a) ⇒ ′a
nominal-primrec

mess case (M Name n) c1 c2 = c1 n
mess case (M Sk enc n m) c1 c2 = c2 n m

The commitment relation is defined by induction; as an example, we report
the commitment of (guard) rule.

comm guard : [[ eval guard(g); P − α �−→ P ′ ]] =⇒ (g γ P) − α �−→ P ′



Implementing Spi Calculus Using Nominal Techniques 301

In �. . .� we have both the precondition and the side condition of the rule.
P − α �−→ P ′ stands for the commitment of P doing an action α and then
behaves like P ′. Guards are evaluated to a boolean value by eval guard, which is
the (encoding of) evaluation of guards defined in Section 2. eval guard is defined
by recursion on the syntax of guards, much like eval dfexpr; notice that the
guards have a binder. (gγP is the guarded process, denoted by φP in Section 2.)

4.2 Implementation of Hedged Bisimulation

In Isabelle/Nominal, hedges are just sets of term pairs. The consistency of hedges
(Cons H) is defined by a predicate formed by three clauses corresponding to Defi-
nition 1. The notions of analysis (Analysis H) and irreducibles (Irreducibles H)
are implemented as inductive sets, via the least fixed point.

Let us focus now on hedged bisimilarity, which is defined by coinduction. We
describe in detail the second condition (about input transitions):

consts HedgedBisim :: (hedge × Proc × Proc) set
coinductive HedgedBisim
intros

HedgedBisim Def : [[H ∈ Finites; (Cons H );
(clauses for τ , omitted)

∀ P ′ a b M N B .(P − (a M ) �−→ P ′)∧ (H	(a↔ b)) ∧ (B∈ Finites) ∧ (B �
(H ,P ,Q)) ∧ (((H∪(ID B)))	(M↔N )) −→ (∃Q ′.(Q ,b,N ,Q ′)∈ commIn ∧ (((H∪(ID
B)),P ′,Q ′) ∈ HedgedBisim));

(symmetric clause for input, omitted)
∀P ′ (c::name list) a b M .(c � (H ,P)) −→(P − cobarb(a) �−→ (concAgent

(ConcChain c M P ′))) ∧ ((H )	((M Name a)↔(M Name b))) −→ (∃Q ′ (d ::name
list) N .(d � (H ,Q)) ∧ ((Q ,b,(ConcChain d N Q ′))∈ commOut) ∧ (((Irreducibles(H
∪{(M ,N )})),P ′, Q ′) ∈ HedgedBisim));

(symmetric clause for output, omitted) ]] =⇒ (H ,P ,Q) ∈ HedgedBisim

(H ∈ Finites) and (Cons H) require the hedge H to be a consistent finite set
of message pairs. (Q, b,N,Q′) ∈ commIn, where b is of type name and N is of
type mess, stands for the commitment relation of the process Q and abstraction
Q′ under the input b N , possibly preceded by τ transitions. Notice that the
freshness of the names in B is easily ensured by the hypothesis (B#(H,P,Q)).

The clauses for the output transitions are represented similarly; here again,
we use the freshness predicate from Nominal package, to encode the freshness of
locally scoped (i.e., newly created) names c, d.

4.3 Example: “Perfect Encryption”

In order to explain how the implementation of spi calculus presented above can
be used, we give an example proof by proving a simple bisimilarity, that is the
simple encryption property taken from [1]. We want to prove that for all M,M ′,
the processes

(νk)c〈Ek(M)〉 and (νk)c〈Ek(M ′)〉 (1)



302 T. Kahsai and M. Miculan

are hedged bisimilar. This means that there is no way to distinguish the cleartext
message if the encryption key is kept secret.

In the proof given in [1], a bisimulation S is defined, such that

({c, n}, {}) 
 (ν k)c〈Ek(M)〉 S (ν k)c〈Ek(M ′)〉
However, instead of explicitly define such S and prove that it is a bisimulation, we
can take advantage of the coinductive support provided by the Isabelle/Nominal
environment to directly prove that

({c, n}, (ν k)c〈Ek(M)〉, (ν k)c〈Ek(M ′)〉) ∈ HedgedBisim
and the Isar proof sketch is the following:

lemma perfectEncyption:
shows ({c, n},(〈ν(a)〉( c<(a

�
M

�
)>.PNil)), (〈ν(a)〉(c<(a

�
N
�

)>.PNil))) ∈ Hedged-
Bisim (is ?x ∈ )
proof −
have ?x : {?x} by simp
then show ?thesis
proof coinduct
case (HedgedBisim z)
have ?HedgedBisim Def sorry

then show ?case by blast
qed

qed

Let us analyze how the proof proceeds. Basically, the proof is done by using
forward reasoning, through the coinduct proof method; then the proof splits
into several sub-cases, before working towards one of the disjuncts. We also need
to fill in a sensible starting point ?x : {?x} and take special care of the types
here. ?x : {?x} is solved by simp (an Isabelle method that solves the goal using
simplification rules); ?thesis stands for the current goal to be proved. At this
point the proofs is done by case analysis. Applying the rule HedgedBisim Def, we
are left with eight subgoals (the 6 clauses of coinductive definition, plus finiteness
and consistency of hedge). Each case is then proved on its own (quite tediously);
in the proof sketch above, this part is replaced by the command sorry (which
proves anything but it is very convenient for top down proof development; this
command can be replaced by the actual proofs later on). In particular, the proof
of these cases exploits the features provided by the Nominal package for handling
freshness of bound names. We are able to finish the coinduction step, working
from the case assumptions to the conclusion ?case, via the blast method (a
classical reasoner which tries to solve automatically the current goal).

5 Conclusions and Future Work

In this paper we have presented a formalization of the spi calculus, a calculus
of cryptographic processes, in the Isabelle/HOL proof assistant using the new



Implementing Spi Calculus Using Nominal Techniques 303

Nominal package. The proof environment so obtained allows for formal proofs
which closely correspond to the (traditional) manual proofs, and in some sense
are even simpler because we don’t have to figure out and define explicitly bisim-
ulations beforehand, thanks to the support provided by Isabelle to coinductive
proofs. The Nominal package really played an important role to this end: it al-
lows for a smooth handling of binding operators, thus reducing the overhead in
encoding the system and conducting a formal proof.

However, although the Nominal package is already usable and fruitful, in our
opinion some details need to be improved, in particular the support for recur-
sively defined functions and case analysis over nominal datatypes. Moreover, at
the moment is not possible to do reflection, i.e. implementing computations in-
side the logic rather than in the meta-language, and this due to the fact that
the current version does not support co-generation.

Related work. Theorem provers and proof assistants have been widely used to
model process algebra and reason about correctness. Paulson’s work [19] is ar-
guably the first application of Isabelle to the verification of cryptographic proto-
cols. Actually, the π-calculus is a paradigmatic example for proof environments
and encoding techniques designed to handle binding operators. The closest de-
velopment to ours is [4], where Bengtson and Parrow have formalised the π-
calculus in Isabelle/HOL using the Nominal package, providing a library which
allows users to carry proofs about π-calculus. Other approaches to binding man-
agement are de Bruijn indexes [12], and (weak) higher order abstract syntax [13].
De Bruijn indexes are quite cumbersome to use in interactive proofs, because
names disappear completely. On the other hand, the (weak) HOAS approach
needs to postulate some key properties (the so called Theory of Contexts) as
axioms. Although proved to be consistent with (classical) higher order logic,
the Theory of Contexts is inconsistent with the Axiom of Choice; therefore, its
portability to the Isabelle environment is still under discussion.

Future work. A first research stemming from the present work is to prove some
general meta-theoretic results about spi-calculus, similarly to the work done by
Briais in Coq [8]. Another interesting possibility is to implement special tactics
to be used during the proof developments for proving decidable equivalences.
These new commands can be written completely inside Isabelle; a possible way,
following ProVerif approach, is to translate the protocol and the goal into clas-
sical logic, and then take advantage of the powerful support provided by Is-
abelle/HOL to classical reasoning. Alternatively (and more efficiently), the new
commands can call auxiliary tools, external to Isabelle. To this end, the recent
works about symbolic bisimulation of spi calculus [8] may be useful.

References

1. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols.
Nord. J. Comput. 5(4), 267 (1998)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi calculus.
Journal of Information and Computation 148(1), 1–70 (1999)



304 T. Kahsai and M. Miculan

3. Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J.,
Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S.,
von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron,
L.: The AVISPA tool for the automated validation of internet security protocols and
applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

4. Bengtson, J., Parrow, J.: Formalising the π-calculus using nominal logic. In:
Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg
(2007)

5. Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Hei-
delberg (2002)

6. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: Proc. 20th LICS, pp. 331–340. IEEE (2005)

7. Boreale, M., Nicola, R.D., Pugliese, R.: Proof techniques for cryptographic pro-
cesses. SIAM J. Comput. 31(3), 947–986 (2001)

8. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004)

9. Borgström, J., Nestmann, U.: On bisimulations for the spi calculus. Mathematical
Structures in Computer Science 15(3), 487–552 (2005)

10. Clarke, E.M., Jha, S., Marrero, W.: Verifying security protocols with brutus. ACM
Trans. Softw. Eng. Methodol. 9(4), 443–487 (2000)

11. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: Proc. 14th LICS, pp. 214–224. IEEE (1999)

12. Hirschkoff, D.: Bisimulation proofs for the π-calculus in the Calculus of Construc-
tions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275. Springer,
Heidelberg (1997)

13. Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (co)inductive type theory.
Theoretical Computer Science 253(2), 239–285 (2001)

14. Hüttel, H.: Deciding framed bisimilarity. In: Proceedings of Infinity 2002. Electronic
Notes in Theoretical Computer Science, vol. 68, pp. 1–18 (2003)

15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. In-
form. and Comput. 100(1), 1–77 (1992)

16. Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic pro-
tocols using Murφ. In: IEEE Symposium on Security and Privacy, pp. 141–151.
IEEE Computer Society (1997)

17. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

18. Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, D. (ed.) CADE 1992. LNCS,
vol. 607, pp. 673–676. Springer, Heidelberg (1992)

19. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (1998)

20. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186, 165–193 (2003)

21. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: Proc. LICS, pp. 293–302. IEEE Computer Society (2007)



Implementing Spi Calculus Using Nominal Techniques 305

22. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

23. Wenzel, M.: Isar - a generic interpretative approach to readable formal proof doc-
uments. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)

24. Yu, S., Luo, Z.: Implementing a model checker for LEGO. In: Fitzgerald, J.S.,
Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 442–458. Springer,
Heidelberg (1997)



An Enhanced Theory of Infinite Time Register

Machines

Peter Koepke1 and Russell Miller2

1 Mathematisches Institut, Universität Bonn, Germany
koepke@math.uni-bonn.de

2 Queens College and The Graduate Center, City University of New York, USA
Russell.Miller@qc.cuny.edu

Abstract. Infinite time register machines (ITRMs) are register ma-
chines which act on natural numbers and which are allowed to run for
arbitrarily many ordinal steps. Successor steps are determined by stan-
dard register machine commands. At limit times a register content is
defined as a lim inf of previous register contents, if that limit is finite;
otherwise the register is reset to 0. (A previous weaker version of in-
finitary register machines, in [6], would halt without a result in case of
such an overflow.) The theory of infinite time register machines has sim-
ilarities to the infinite time Turing machines (ITTMs) of Hamkins and
Lewis. Indeed ITRMs can decide all Π1

1 sets, yet they are strictly weaker
than ITTMs.

Keywords: ordinal computability, hypercomputation, infinitary com-
putation, register machine.

1 Introduction

Joel D. Hamkins and Andy Lewis [3] defined infinite time Turing machines
(ITTMs) by letting an ordinary Turing machine run for arbitrarily many or-
dinal steps, taking appropriate limits at limit times. An ITTM can compute
considerably more functions than a standard Turing machine. In this paper
we introduce infinite time register machines (ITRMs) which may be seen as or-
dinary register machines running for arbitrarily many ordinal steps. Successor
steps are determined by standard register machine commands. At limit times
the register contents are defined as lim inf’s of the previous register contents, if
that limit is finite; otherwise the register is reset to 0.

Our ITRMs may be viewed as a specialization of the ordinal register machines
(ORMs) examined in [8]. The stages are still allowed to range over all ordinals,
but we now have a space bound of ω on the contents of the registers. Of course,
this requires a rule for the action of the machine when a register overflows. In
previous versions (see for example [6]), the machines halted or crashed when en-
countering an overflow; those machines exactly corresponded to hyperarithmetic
definitions. Our machines reset a register to 0 whenever it overflows. We view
this as a more natural rule, defining richer descriptive classes which are more

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 306–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Enhanced Theory of Infinite Time Register Machines 307

in analogy with the ITTM-definable classes, and we believe that the theorems
in this paper support our view. Therefore, we propose to use the name infinite
time register machine to refer to our machines in this paper. The machines de-
fined in [6] by the first author could be called non-resetting infinite time register
machines .

Our ITRMs are to ORMs as the ITTMs of Hamkins and Lewis are to or-
dinal Turing machines, or OTMs, as defined in [7]. In both cases the ordinal
machines have unbounded time and space, whereas in the operation of tradi-
tional finite time machines, both time and space were bounded by ω. ITTMs
and ITRMs fall in between, with ω-much space but unbounded time, hence are
denoted as “infinite time” machines. With the bound on space, of course, the
ITRMs necessarily follow different procedures than the ORMs at limit stages.
(For ITTMs and OTMs the corresponding difference concerns head location, not
cell contents.)

Many results for ITRMs in this paper reflect this connection with ITTMs.
Notably, we show that ITRMs are Π1

1 -complete in the sense that for any lightface
Π1

1 -set A of reals there is an ITRM such that a given real x is accepted by the
machine iff x ∈ A (Theorem 2). In particular the class WO of codes for wellorders
is ITRM-decidable (Theorem 1), and likewise ITTM-decidable (by results in [3]).
On the other hand ITRMs are strictly weaker than ITTMs because the latter are
able to solve the halting problem for the former (Theorem 3). Moreover, for a
given number N of registers, the halting problem for ITRMs with N registers is
ITRM-decidable, using of course more registers (Theorem 4). In further research
we plan to develop the theory of ITRMs along the lines of the ITTMs in [3].

2 Infinite Time Register Machines

We base our presentation of infinite time machines on the unlimited register
machines of [1].

Definition 1. An unlimited register machine URM has registers R0, R1, . . .
which can hold natural numbers. A register program consists of commands to
increase or to reset a register. The program may jump on condition of equality
of two registers.

An URM program is a finite list P = I0, I1, . . . , Is−1 of instructions, each of
which may be of one of five kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the natural number contained in Rn
by 1, leaving all other registers unaltered;

c) the oracle instruction O(n) replaces the content of the register Rn by the
number 1 if the content is an element of the oracle, and by 0 otherwise;

d) the transfer instruction T (m,n) replaces the contents of Rn by the natural
number contained in Rm, leaving all other registers unaltered;



308 P. Koepke and R. Miller

e) the jump instruction J(m,n, q) is carried out within the program P as follows:
the contents rm and rn of the registers Rm and Rn are compared, all registers
are left unaltered; then, if rm = rn, the URM proceeds to the qth instruction
of P ; if rm �= rn, the URM proceeds to the next instruction in P .

Since the program is finite, it can use only finitely many of the registers, and the
exact number of registers used will often be important. The instructions of the
program can be addressed by their indices which are called program states. At
each ordinal time τ the machine will be in a configuration consisting of a program
state I(τ) ∈ ω and the register contents which can be viewed as a function
R(τ) : ω → ω. R(τ)(n) is the content of the register Rn at time τ . We also write
Rn(τ) instead of R(τ)(n).

Definition 2. Let P = I0, I1, . . . , Is−1 be an URM program. Let Z ⊆ ω, which
will serve as an oracle. A pair

I : θ → ω,R : θ → (ωω)

is an (infinite time register) computation by P if the following hold:

a) θ is an ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;
c) If τ < θ and I(τ) �∈ s = {0, 1, . . . , s− 1} then θ = τ + 1; the machine halts if

the machine state is not a program state of P ;
d) If τ < θ and I(τ) ∈ s then τ + 1 < θ; the next configuration is determined by

the instruction II(τ), with I(τ + 1) = I(τ) + 1 unless otherwise specified:
i. if II(τ) is the zero instruction Z(n) then define R(τ + 1) : ω → Ord by

setting Rk(τ + 1) to be 0 (if k = n) or Rk(τ) (if not).
ii. if II(τ) is the successor instruction S(n) then define Rk(τ + 1) to be

Rk(τ) + 1 (if k = n) or Rk(τ) (if not).
iii. if II(τ) is the oracle instruction O(n) then define Rk(τ+1) to be Rk(τ) (if

k �= n); or 1 (if k = n and Rk(τ) ∈ Z); or 0 (if k = n and Rk(τ) /∈ Z).
iv. if II(τ) is the transfer instruction T (m,n) then define Rk(τ + 1) to be

Rm(τ) (if k = n) or Rk(τ) (if not).
v. if II(τ) is the jump instruction J(m,n, q) then let R(τ + 1) = R(τ), and

set I(τ + 1) = q (if Rm(τ) = Rn(τ)) or I(τ + 1) = I(τ) + 1 (if not).
e) If τ < θ is a limit ordinal, then I(τ) = lim infσ→τ I(σ) and

∀k ∈ ω Rk(τ) =
{

lim infσ→τ Rk(σ), if lim infσ→τ Rk(σ) < ω
0, if lim infσ→τ Rk(σ) = ω.

By the second clause in the definition of Rk(τ) the register is reset in case
lim infσ→τ Rk(σ) = ω.

The computation is obviously determined recursively by the initial register con-
tents R(0), the oracle Z and the program P . We call it the (infinite time register)
computation by P with input R(0) and oracle Z. If the computation halts then
θ = β + 1 is a successor ordinal and R(β) is the final register content. In this
case we say that P computes R(β)(0) from R(0) and the oracle Z, and we write
P : R(0), Z �→ R(β)(0).



An Enhanced Theory of Infinite Time Register Machines 309

Definition 3. An n-ary partial function F : ωn ⇀ ω is computable if there is
a register program P such that for every n-tuple (a0, . . . , an−1) ∈ dom(F ) holds

P : (a0, . . . , an−1, 0, 0, . . .), ∅ �→ F (a0, . . . , an−1).

Here the oracle instruction is not needed.

Obviously any standard recursive function is computable.

Definition 4. A subset x ⊆ ω, i.e., a (single) real number, is computable if its
characteristic function χx is computable.

A subset A ⊆ P(ω) is computable if there is a register program P , and an
oracle Y ⊆ ω such that for all Z ⊆ ω:

Z ∈ A iff P : (0, 0, . . .), Y × Z �→ 1, and Z �∈ A iff P : (0, 0, . . .), Y × Z �→ 0

where Y × Z is the cartesian product of Y and Z with respect to the pairing
function

(y, z) �→ (y + z)(y + z + 1)
2

+ z.

Here we allow a single real parameter Y (or equivalently, finitely many such
parameters), mirroring the approach in [6].

3 Computing Π1
1 -Sets

We describe an ITRM-program to check the oracle Z for illfoundedness. Illfound-
edness will be witnessed by some infinite descending chain. Initial segments of
such a chain will be kept on a finite stack of natural numbers. Code a stack
(r0, . . . , rm−1) by r = 2m ·3r0 ·5r1 · · · prm−1

m where pi is the i-th prime number. In
the subsequent program we shall treat one register as a stack, with content stack
equal to r above, and with associated operations push, pop, length-stack,
stack-is-decreasing; this last predicate checks that the elements of the stack,
except possibly the bottom element, form a decreasing sequence in the oracle Z.
All of these are computable by an ITRM. The specific coding of stack contents
leads to a controlled limit behaviour:

Proposition 1. Let α < τ where τ is a limit ordinal. Assume that in some
ITRM-computation using a stack, the stack contains r = (r0, . . . , rm−1) for
cofinally many times below τ and that all contents in the time interval (α, τ)
are endextensions of r = (r0, . . . , rm−1). Then at time τ the stack contents are
r = (r0, . . . , rm−1).

The following program P on an ITRM outputs yes/no depending on whether the
oracle Z codes a wellfounded relation. The program is a backtracking algorithm
which searches for a “leftmost” infinite descending chain in Z. A stack is used to
organize the backtracking. We present the program in simple pseudo-code and
assume that it is translated into a register program according to Definition 1



310 P. Koepke and R. Miller

so that the order of commands is kept. Also the stack commands like push
are understood as macros which are inserted into the code with appropriate
renaming of variables and statement numbers. The ensuing Lemma explains the
operation of the program and proves its correctness.

push 1; %% marker to make stack non-empty
push 0; %% try 0 as first element of descending sequence
FLAG=1; %% flag that fresh element is put on stack

Loop: Case1: if FLAG=0 and stack=0 %% inf descending seq found
then begin; output ’no’; stop; end;

Case2: if FLAG=0 and stack=1 %% inf descending seq not found
then begin; output ’yes’; stop; end;

Case3: if FLAG=0 and length-stack > 1
%% top element cannot be continued infinitely descendingly

then begin; %% try next
pop N;
push N+1;
FLAG:=1; %% flag that fresh element is put on stack
goto Loop;
end;

Case4: if FLAG=1 and stack-is-decreasing
then begin;
push 0; %% try to continue sequence with 0
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case5: if FLAG=1 and not stack-is-decreasing
then begin;
pop N;
push N+1; %% try next
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Notice that the program will always loop back to Loop until it halts.

Lemma 1. Let I : θ → ω,R : θ → (ωω) be the computation by P with oracle Z
and trivial input (0, 0, . . .). Then the computation satisfies:

a) Suppose the machine is in state Loop with stack contents (1, r0, . . . , rm−1)
so that (r0, . . . , rm−1) descend strictly in Z. Moreover suppose that Flag=1
and that Z is wellfounded below rm−1. Then the machine will reach the state
Loop with the same stack contents and Flag=0 after a certain interval of
time; during that interval, (1, r0, . . . , rm−1) will always be an initial segment
of the stack.

b) Suppose the machine is in state Loop with stack contents (1, r0, . . . , rm−1)
so that (r0, . . . , rm−1) descend strictly in Z. Moreover suppose that Flag=1



An Enhanced Theory of Infinite Time Register Machines 311

and that Z is illfounded below rm−1. Let rm be the smallest integer such
that rmZrm−1 and Z is illfounded below rm . Then the machine will reach
the state Loop with stack contents (1, r0, . . . , rm−1, rm) and Flag=1 after a
certain interval of time; during that interval, (1, r0, . . . , rm−1) will always be
an initial segment of the stack.

c) If Z is wellfounded then the computation stops with output ‘yes’.
d) If Z is illfounded then the computation stops with output ‘no’.

Proof. a) is proved by induction on rm−1 in the wellfounded part of Z. So con-
sider a situation (1, r0, . . . , rm−1) as in a) and assume that a) already holds
for all appropriate stacks (1, r′0, . . . , r

′
m′−1) with r′m′−1Zrm−1. By Case4, Case3,

and the inductive assumption, the machine will check through all extensions
(1, r0, . . . , rm−1, N) with N ∈ ω of the stack and always get to state Loop with
Flag=0. The limit of these checks is a stack (1, r0, . . . , rm−1) with Flag=0, as
required.

b) Consider the situation described in b). The program checks through all
extensions (1, r0, . . . , rm−1, N) with N < rm of the stack. Case5 rejects those
N which fail NZrm−1, and part (a) shows that the others are also rejected. So
Case3 finally puts rm on the stack, with Flag=1.

c) and d) follow from a) and b) resp.

Parts c) and d) of the Lemma imply immediately:

Theorem 1. The set WO = {Z ⊆ ω | Z codes a wellorder} is computable by
an ITRM.

Theorem 2. Every Π1
1 set A ⊆ P(ω) is ITRM-computable.

Proof. Let f be a recursive function so that Y ∈ A↔ f(Y ) ∈WO. Given a real
Y an ITRM can decide whether Y ∈ A by letting the above WO-algorithm run
on f(Y ). Note that the algorithm needs to decide whether certain integers stand
in the relation f(Y ). This can be reduced to computing a certain digit of f(Y )
which is possible using the oracle Y and a fixed algorithm for computing f .

Since Π1
1 -sets can be decided, it is also possible to decide Boolean combinations

of Π1
1 -sets by ITRMs. By induction on ordertypes one can prove a running time

estimate for the WO-algorithm:

Lemma 2. For an oracle Z coding a well order of ordertype α the WO-program
runs at least α steps before it halts.

4 ITRMs, ITTMs, and Halting Problems

A computation by an ITRM can be simulated by an ITTM. If the register Rm
contains the number i this can be represented as an initial segment of i 1’s on
the m-th tape of an ITTM. If λ is a limit ordinal and the contents of the register
Rm yield lim infτ→λRm(τ) = i∗ � ω then the m-th tape will hold an initial



312 P. Koepke and R. Miller

segment of i∗ 1’s at time λ. If i∗ is finite, this is the correct simulation of the
ITRM. If i∗ = ω this may be checked by an auxiliary program which then resets
the register to 0. Thus every class of reals which is computable by an ITRM is
computable by an ITTM, and hence must be Δ1

2, by Theorem 2.5 in [3].
In fact ITRMs are strictly weaker than ITTMs. A configuration is a tuple

(I, R) of a program state I and register contents R : ω → ω where R(n) = 0 for
almost all n < ω. The following halting criterion for ITRMs uses a wellfounded
pointwise partial order of configurations:

(I0, R0) � (I1, R1) iff I0 � I1 and ∀n < ω R0(n) � R1(n).

Lemma 3. Let
I : θ → ω,R : θ → (ωω)

be the infinite time register computation by P with input (0, 0, . . .) and oracle
Z. Then this computation does not halt iff there are τ0 < τ1 < θ such that
(I(τ0), R(τ0)) = (I(τ1), R(τ1)) and

∀τ ∈ [τ0, τ1] (I(τ0), R(τ0)) � (I(τ), R(τ)).

Proof. Assume that the computation does not halt. Let A be the set of all
configurations which occur class-many times in this computation, and fix a stage
τ− after which only configurations in A occur. We claim that A is downwards
directed in the partial order of configurations: for (I0, R0), (I1, R1) ∈ A choose
an ascending ω-sequence τ− < τ0 < τ1 < · · · of stages such that each (Ii, Ri)
occurs at all stages of the form τ2·k+i with i < 2. Then the configuration (I, R)
occuring at stage τ = supn τn has (I, R) � (I0, R0) and (I, R) � (I1, R1), by the
rules for limit stages.

Let (I0, R0) be the unique �-minimal element of A. Choose stages τ0, τ1 such
that t− < t0 < t1 < θ and (I(τ0), R(τ0)) = (I(τ1), R(τ1)) = (I0, R0). This is the
situation required by the lemma.

For the converse assume that there are τ0 < τ1 < θ such that (I(τ0), R(τ0)) =
(I(τ1), R(τ1)) and

∀τ ∈ [τ0, τ1] (I(τ0), R(τ0)) � (I(τ), R(τ)).

Then one can easily show by induction, using the lim inf rules:

If σ � τ0 is of the form σ = τ0 + (τ1 − τ0) · α+ β with β < τ1 − τ0 then

(I(σ), R(σ)) = (I(τ0 + β), R(τ0 + β)).

In particular the computation will not stop.

Theorem 3. The halting problem for ITRMs

{(P,Z) | P is a register program, Z ⊆ ω, and the computation by P
with input (0, 0, . . .) and oracle Z halts}

is decidable by an ITTM with oracle Z.



An Enhanced Theory of Infinite Time Register Machines 313

Proof. The criterion of Lemma 3 can be implemented on an ITTM with an
auxiliary tape on which we have one cell for each possible configuration of the
ITRM. We use the ITTM to simulate the ITRM computation by a program P
with input (0, 0, . . .) and oracle Z. At stage τ of the simulation we erase from
the auxiliary tape all 1’s for configurations which are not � (I(τ), R(τ)), and
put a 1 in the cell for the configuration (I(τ), R(τ)). If there was already a 1
in this cell, then we conclude from Lemma 3 that the computation never halts.
At limit stages the same procedure applies. (There may be infinitely many 1’s
on the auxiliary tape at a limit stage, of which cofinitely many will immediately
be erased. For an ITTM, this poses no difficulty.) These two processes continue
until either the simulated ITRM computation halts or we conclude as above that
it will never halt. By Lemma 3, one of these alternatives must happen.

For a fixed number of registers these ideas can be transfered to an ITRM (with
more registers).

Theorem 4. The restricted halting problem

{(P,Z) | P is a register program using at most N registers, Z ⊆ ω, and
the computation by P with input (0, 0, . . .) and oracle Z halts}

is decidable by an ITRM with oracle Z, for every N < ω.

Proof. We introduce some notation to handle configurations of the N register
machine. View a configuration (I, R) as the (N + 1)-sequence

(R(0), . . . , R(N − 1), I)

and use letters c, c′, . . . to denote configurations. Write c � c′ iff ∀m � N c(m) �
c′(m). Let I : θ → ω, R : θ → (ωω) be the infinite time resetting register
computation by P with input (0, 0, . . .) and oracle Z. The computation is a
sequence (c(τ)|τ < θ) of configurations.

By Lemma 3, the computation does not stop (θ =∞) iff

∃σ < τ < θ (c(σ) = c(τ) ∧ ∀σ′ ∈ [σ, τ ] c(σ) � c(σ′)).

This motivates the definition

C(τ) = {c(σ)|σ < τ ∧ ∀σ′ ∈ [σ, τ ] c(σ) � c(σ′)}.
Then the halting criterion is simply

∃τ(c(τ) ∈ C(τ)).

Note that the initial configuration (0, . . . , 0) is an element of C(τ) for all τ > 0.
The Theorem will be proved by showing that (a code for) C(τ) can be easily

computed, and indeed by an ITRM. For technical reasons we introduce some
auxiliary sequences of configuration sets. For m � N let Cm(τ) be the finite set

Cm(τ) = {c(σ)|σ < τ ∧ ∀σ′ ∈ [σ, τ ] c(σ) � c(σ′) ∧ ∀i � N c(σ)(i) � c(τ)(m)}.



314 P. Koepke and R. Miller

Obviously C(τ) = Cm0(τ) where c(τ)(m0) = maxi�N c(τ)(i). To handle sets of
the form Cm(τ) as natural numbers and register contents we assume that we
have a recursive enumeration or Gödelization c0, c1, . . . of configurations with N
registers. Finite sets C of configurations can be coded by the natural number

C∗ =
∏

ck∈C
pk ,

which can be stored in a machine register.
Consider a simulation of the computation (c(τ)|τ < θ) on some register ma-

chine with sufficiently many registers. We argue that the sequence (C(τ)∗|τ < θ)
can be uniformly computed alongside the simulation, which solves the halting
problem. We proceed by induction on τ < θ.
C(0) = {(0, . . . , 0)} only contains the initial configuration.
If C(τ), c(τ) and c(τ + 1) are given, then

C(τ + 1) =
{{c ∈ C(τ)|c � c(τ + 1)} ∪ {c(τ)}, if c(τ) � c(τ + 1);
{c ∈ C(τ)|c � c(τ + 1)}, else.

Hence C(τ + 1)∗ can be computed by an ordinary register machine from C(τ)∗,
c(τ), and c(τ + 1).

Finally consider the limit time λ < θ.
In case that c(λ) = (0, . . . , 0) then C(λ) = {(0, . . . , 0)}. C(λ)∗ is easily com-

putable, and moreover the criterion for divergence of the computation is fulfilled.
So consider the case that c(λ) �= (0, . . . , 0). Choose m0 such that

c(λ)(m0) = max
i
c(λ)(i) > 0.

Then Cm0(λ) = C(λ) and

(1) c(λ)(m0) = lim infτ→λ c(τ)(m0).
(2) lim infτ→λCm0(τ)∗ exists and is finite.

Proof . By (1) there is a cofinal subset T ⊆ λ such that

∀τ ∈ T c(τ)(m0) = c(λ)(m0).

For τ ∈ T we have

Cm0(τ) ⊆ {c | ∀i � N c(i) � c(λ)(m0)}.
The right-hand side is a fixed finite set. So for τ ∈ T , Cm0(τ)∗ is bounded by
some fixed integer. Thus the lim inf is finite. qed(2)
(3) Let ck � c(λ). Then pk|Cm0(λ)∗ iff pk| lim infτ→λCm0(τ)∗.

Proof . Let pk|Cm0(λ)∗. Then ck ∈ Cm0(λ). Take σ < λ with ck = c(σ) such
that for all σ′ ∈ [σ, λ], both ck � c(σ′) and c(σ′)(m0) ≥ c(λ)(m0). Then for all
τ ∈ (σ, λ) we have ck ∈ Cm0(τ) and pk|Cm0(τ)∗. Since lim infτ→λCm0(τ)∗ will
be equal to one of those Cm0(τ)∗ we get that pk| lim infτ→λCm0(τ)∗.



An Enhanced Theory of Infinite Time Register Machines 315

Conversely assume pk| lim infτ→λCm0(τ)∗. Take τ0 < λ such that ∀τ ∈ [τ0, λ]
c(τ) � c(λ). Take τ1 ∈ [τ0, λ) such that lim infτ→λCm0(τ)∗ = Cm0(τ1)∗. Then
pk|Cm0(τ1)∗, ck ∈ Cm0(τ1) and by the choice of τ0 also ck ∈ Cm0(τ) for all
τ ∈ [τ1, λ). Since ck � c(λ) we have ck ∈ Cm0(λ) and pk|Cm0(λ)∗. qed(3)

This means that Cm0(λ)∗ = C(λ)∗ can be computed from (Cm0 (τ)∗|τ <
λ) by a lim inf-operation. To compute the sequence (C(τ)∗|τ < θ) alongside
(c(τ)|τ < λ) we can use N + 1 new registers R0, . . . , RN to store the val-
ues C0(τ)∗, . . . , CN (τ)∗. Initially these registers are set to {(0, . . . , 0)}∗. Given
C0(τ)∗, . . . , CN (τ)∗, c(τ), and c(τ+1) one can compute C0(τ+1)∗, . . . , CN (τ+1)∗

by an ordinary register program on some extra registers and transfer these values
to R0, . . . , RN . For limit λ < θ the lim inf-rule sets R0, . . . , RN to

lim inf
τ→λ

C0(τ)∗, . . . , lim inf
τ→λ

CN (τ)∗.

By (3), an ordinary register program on further extra registers can compute the
value C(λ)∗ = Cm0(λ)∗, from which it can then compute

C0(λ)∗, . . . , CN (λ)∗

and transfer them to R0, . . . , RN .
This means for all τ ∈ [ω, θ), Cm(τ) will be the (τ + 1)-st value transferred to

the register Rm, concluding the proof of Theorem 4.

The Theorem implies that the machines get eventually stronger by increasing
the number of registers. As a consequence there cannot be a universal ITRM.

References

1. Cutland, N.J.: Computability: An Introduction to Recursive Function Theory. In:
Perspectives in Mathematical Logic. Cambridge University Press (1980)

2. Dimitriou, I., Hamkins, J.D., Koepke, P.(eds.): BIWOC – Bonn International Work-
shop on Ordinal Computability. Bonn Logic Reports (2007)

3. Hamkins, J.D., Lewis, A.: Infinite Time Turing Machines. J. Symbolic Logic 65(2),
567–604 (2000)

4. Hamkins, J.D., Linetsky, D., Miller, R.: The complexity of quickly ORM-decidable
sets. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497.
Springer, Heidelberg (2007)

5. Hamkins, J.D., Miller, R.: Post’s problem for ordinal register machines. In: Cooper,
S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 358–367. Springer,
Heidelberg (2007)

6. Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg
(2006)

7. Koepke, P.: Turing computations on ordinals. B. Symbolic Logic 11, 377–397 (2005)
8. Koepke, P., Siders, R.: Computing the recursive truth predicate on ordinal regis-

ter machines. In: Beckmann, A., et al. (eds.) Logical approaches to computational
barriers. Computer Science Report Series, vol. 7, pp. 160–169 (2006)



Many Facets of Complexity in Logic

Antonina Kolokolova

Memorial University of Newfoundland
kol@cs.mun.ca

Abstract. There are many ways to define complexity in logic. In finite
model theory, it is the complexity of describing properties, whereas in
proof complexity it is the complexity of proving properties in a proof
system. Here we consider several notions of complexity in logic, the con-
nections among them, and their relationship with computational com-
plexity. In particular, we show how the complexity of logics in the setting
of finite model theory is used to obtain results in bounded arithmetic,
stating which functions are provably total in certain weak systems of
arithmetic. For example, the transitive closure function (testing reach-
ability between two given points in a directed graph) is definable using
only NL-concepts (where NL is non-deterministic log-space complexity
class), and its totality is provable within NL-reasoning.

1 Introduction

How do we talk about the concept of hardness in the context of mathemat-
ical logic? Historically, there are several approaches using different notions of
hardness, including the following:

1. The hardness of describing an object (by some formula)
2. The hardness of proving properties of an object in a formal system.
3. The hardness of solving a problem (e.g., when the problem is expressed in

the language of logic. )

These notions of hardness loosely correspond to the following fields

1. Finite model theory (in particular, descriptive complexity).
2. Bounded arithmetic and proof complexity
3. Complexity theory and some areas of computational logic

Each of these fields has tight and well-studied connections to computational
complexity theory. However, the direct relationships among different notions
of hardness in logic are only now becoming a focus of attention. Here we will
present, as main example of a such a direct relationship, results in bounded
arithmetic we obtain using the notion of hardness from descriptive complexity.

We start with the canonical notion of hardness as defined in complexity
theory.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 316–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Many Facets of Complexity in Logic 317

2 The Computational Complexity Setting

The computational complexity of a problem is measured in terms of resources
used by an algorithm to solve the problem. The standard resources are space
(memory) and time. Algorithms can be deterministic and non-deterministic.
For example, the famous class NP consists of problems solvable by the non-
deterministic polynomial-time algorithms. Similarly, the problems solvable by
non-deterministic log-space algorithms comprise the class NL.

A complexity class that has very robust definitions in the context of logic is
uniform AC0, the class of problems solvable by a uniform family of constant-depth
polynomial-size boolean circuits. In bounded arithmetic, this class corresponds to
the theory V 0 or, in the first-order setting, IΔ0 (where IΔ0 is Peano Arithmetic
with induction restricted to bounded formulae). In the descriptive complexity
setting AC0 corresponds to the first-order logic (data complexity of first-order
logic is AC0 when the language contains arithmetic). We will discuss it in more
detail later.

A classical example of a problem complete for NP is 3-colorability: given a
graph as an input, determine if it can be colored with three colors so that no
edge connects vertices of the same color. A problem complete for NL is graph
reachability (determining if there is a path between two vertices). The class
AC0 is one of the few for which there are non-trivial lower bounds: the Parity
problem of determining if an input string has an even number of 1s is not in
AC0. That is, there is no first-order formula which would be true on all and only
structures with even number of elements (in fact, since this result holds in a
non-uniform setting, adding to the languages any kind of numerical predicates,
even undecidable ones, would still not help a first-order formula to express a
parity of a string). Thus binary addition can be done in AC0, but multiplication
cannot.

3 Finite Model Theory and Descriptive Complexity

Finite model theory developed as a subfield of model theory with emphasis
on finite structures. In this new setting many of the standard techniques of
model theory, most notably compactness, do not apply. Since testing if a first-
order formula has a finite model is undecidable [Tra50], our focus will be on
the complexity of model checking: given a finite structure and formula of some
logic, decide if this structure is a model of this formula. Considering both the
formula and the structure as inputs gives fairly high complexity: checking if a
first-order formula holds on a Boolean (two-element) structure is complete for
PSPACE (class of problems solvable in polynomial space). Here we consider data
complexity of the model checking, where a formula is fixed and the only input is
the structure. For example, a formula might encode the conditions for a graph
to be 3-colourable, and structures are graphs.

This leads us to descriptive complexity, the area studying the direct corre-
spondence between data complexity of logics of different power and complexity



318 A. Kolokolova

classes. In this setting a logic is said to capture a complexity class over a class
of structures if, informally, the model checking problem for the logic is solvable
in the complexity class and every problem in the class is representable in the
logic.A classical reference on the subject is the book “Descriptive complexity”
by Immerman [Imm99].

Definition 1 (Capture by a logic). Let C be a complexity class, L a logic
and K a class of finite structures. Then L captures C on K if

1. For every L-sentence φ and every A ∈ K, testing if A |= φ with φ fixed and
an encoding of A as an input can be done in C.

2. For every collection K ′ of structures closed under isomorphism, if this col-
lection is decidable in C then there is a sentence φK′ of L such that A |= φK′

iff A ∈ K ′, for every A ∈ K.

In descriptive complexity the class of structures is often fixed to be arithmetic
structures, that is, structures with min,max,+,×,≤,= in the language which
receive standard interpretations. In particular, the universe of a structure is
always considered to be {0, . . . , n− 1}.
Example 1 (Parity(X)). This is a formula over successor structures (with
min,max, S ∈ τ), models of which have interpretations of X as sets with an
odd number of 1’s. It encodes a dynamic-programming algorithm for computing
parity of X : Podd(i) is true (and Peven(i) is false) iff the prefix of X of length i
contains an odd number of 1’s.

∃Peven∃Podd∀iPeven(min) ∧ ¬Podd(min)
∧(Podd(max)↔ ¬X(max)) ∧ (¬Peven(i + 1) ∨ ¬Podd(i + 1))
∧(Peven(i) ∧X(i)→ Podd(i + 1)) ∧ (Podd(i) ∧X(i)→ Peven(i+ 1))
∧(Peven(i) ∧ ¬X(i)→ Peven(i + 1)) ∧ (Podd(i) ∧ ¬X(i)→ Podd(i + 1))

The first capture result that started this field is due to Fagin [Fag74], who showed
that existential second-order logic captures precisely the complexity class NP.
His proof has a similar structure to Cook’s original proof of NP-completeness of
propositional formula satisfiability, but instead of propositional variables Fagin
used existentially quantified second-order variables. A notable feature of Fa-
gin’s result is that it holds over all structures, whereas AC0 vs. first-order logic
only holds for arithmetic structures. A big open problem is whether there is a
logic capturing on all (including unordered) structures the complexity class P of
polynomial-time decidable languages.

3.1 Logics between First-Order and Existential Second-Order

In the data complexity setting, first-order logic captures AC0 and existential
second-order logic already captures NP. However, many interesting complexity
classes lie between these two, in particular classes P (polynomial time) and NL



Many Facets of Complexity in Logic 319

(non-deterministic logspace). The two ways to capture these classes (in the pre-
sense of order) are either by extending first-order logic with additional pred-
icates, or restricting second-order logic. In the first approach, a logic for NL
is obtained by adding a transitive closure operator to first-order logic, and
P is captured by first-order logic together with a least fixed point operator
[Imm83, Imm82, Var82]. Here we will concentrate on the second approach, due
to Grädel [Grä91].

Definition 2. Restricted second-order formulae are of the form ∃P1 . . . Pk

∀x1 . . . xlψ(P̄ , x̄, ā, Ȳ ), where ψ is quantifier-free.

Two important types of restricted second-order formulae are SO∃-Horn and
SO∃-Krom:

– SO∃-Horn: ψ is a CNF with no more than one positive literal of the form
Pi(t) per clause.

– SO∃-Krom: ψ is a CNF with no more than two Pi literals per clause.

In particular, the formula for Parity in the example above is both a second-
order Horn and a second-order Krom formula.

Theorem 1 ([Grä92]). Over structures with successor, SO∃-Horn and
SO∃-Krom capture complexity classes P and NL, respectively.

4 Bounded Arithmetic

Just like in complexity classes P and NP the computation length is bounded by a
polynomial, in bounded arithmetic quantified variables are bounded by a term in
the language (e.g., a polynomial in free variables of a formula). Here, instead of
describing functions by formulae the goal is to prove their totality within a sys-
tem; we will say that a system of arithmetic captures a function class if it proves
totality of all and only functions in this class. In this setting, arithmetic reasoning
with formulas having an unbounded existential quantifier captures primitive re-
cursive functions in the same sense that reasoning with an appropriate bounded
version of these formulae captures polynomial-time functions.

4.1 The Language and Translation from the Finite Model Theory
Setting

There are two notions of hardness appearing in the setting of theories of arith-
metic. One of them is a “descriptive” notion of arithmetic formulae representing
(that is, describing) a property; another is a more recursion-theoretic notion in
terms of the provable totality of functions (note that term “defining” is used
in both contexts in different literature). In this section we show how results in
descriptive complexity, translated into the framework of bounded arithmetic to
become representability results, give us provability of properties.



320 A. Kolokolova

Definition 3. Define ΣB
0 to be the class of bounded formulas with no second

order quantifiers over L2, and ΣB
1 as a closure of ΣB

0 under bounded existential
second-order quantification. ΣB

i is defined inductively in a natural way.

It seems that the correspondence of logics in finite model theory framework with
representability in bounded arithmetic is folklore. This translation works most
naturally in the setting of second-order systems of arithmetic such as systems Vi.
Here, by “second-order” systems we mean two-sorted, with one sort for numbers,
and another for strings (viewed as sets of numbers). For a thorough treatment
of this framework, please see [Coo03].

Let φ be a (possibly second-order) formula with free relational variables
R1, . . . , Rk over a vocabulary that contains arithmetic. The corresponding ΣB

i

formula has Ri as parameters, where non-monadic relational variables are rep-
resented using a pairing function, as well as an additional parameter n denoting
the size of the structure. It is easy to see that this formula holds on its free
variables iff the corresponding structure is a model of the original formula in the
finite model theory setting.

In particular, arithmetic versions of SO∃-Horn and SO∃-Krom are subsets of
ΣB

1 , with no existential first-order quantifier and Horn (resp. Krom) restriction
on the occurrences of quantified second-order variables. In this paper we will
abuse the notation and say SO∃-Horn and SO∃-Krom meaning their translation
into the language of arithmetic.

Example 2. The Parity formula defined in example 1 can be written as follows
in the bounded arithmetic setting:

Parity(X) ≡ ∃Peven∃Podd∀i < |X |
Peven(0) ∧ ¬Podd(0) ∧ Podd(|X |) ∧ (¬Peven(i+ 1) ∨ ¬Podd(i+ 1))
∧(Peven(i) ∧X(i)→ Podd(i+ 1)) ∧ (Podd(i) ∧X(i)→ Peven(i + 1))
∧(Peven(i) ∧ ¬X(i)→ Peven(i+ 1)) ∧ (Podd(i) ∧ ¬X(i)→ Podd(i+ 1))

Here, second-order variables are implicitly bounded by the largest value of
the indexing term (i + 1 = |X | in this example). Note that here it is possible
to reference Podd(|X |), and so we do to simplify the formula. Of course, a direct
translation would not account for such details.

4.2 Systems of Bounded Arithmetic

Early study of weak systems of arithmetic concentrated on restricted fragments
of Peano Arithmetic, e.g., IΔ0 in which induction is over bounded first-order
formulae [Par71]. This system, IΔ0, was used by Ajtai [Ajt83] to obtain lower
bounds for the Parity Principle, which implied lower bounds for the complexity
class AC0. A different approach was used by Cook: in 1975 he presented a system
PV for polynomial-time reasoning [Coo75]. PV is an equational system with a
function for every polynomial-time computable function.

The major development in bounded arithmetic came in the 1985 PhD thesis
of S. Buss [Bus86]. There, several (classes of) systems of bounded arithmetic



Many Facets of Complexity in Logic 321

were described, capturing major complexity classes such as P and EXP (viewed
as classes of functions). The best known system is S1

2 , which is a first-order
system capturing P. To capture higher complexity classes such as PSPACE and
EXP, Buss extends his systems to second-order.

In second-order systems we consider here, the richer language of Buss’s first-
order systems is simulated using second-order objects. Second-order quantified
variables are strings of bounded length; the notation ∃Z ≤ b corresponds to
∃Z |Z| ≤ b. First-order objects or numbers are index variables: their values are
bounded by a term in number variables and lengths of second-order variables.
The translation between first and second-order system is given by the RSUV
isomorphism due to [Raz93, Tak93]. Here, the isomorphism is between first-
order systems (R and S) and second-order systems (U and V). In particular, it
translates Buss’s S1

2 into V1, a system that reasons with existential second-order
definable predicates.

Let L2 be the language of Peano Arithmetic with added terms |X | (length of
X) and X(t) (membership of t in X), where X is second-order. We look at the
systems axiomatized by Peano axioms on the number variables, together with
the axioms defining length of second order variables: L1: X(y) → y < |X | and
L2: y + 1 = |X | → X(y). Additionally, there is a comprehension axiom

∃Z ≤ b∀i < b(Z(i)↔ φ(i, ā, X̄)), (Comprehension)

where φ is a class of formulae such as ΣB
1 or SO∃-Horn. Such systems of arith-

metic reason with objects of complexity allowed in the comprehension axiom.
For example, reasoning in V0 is limited to reasoning with ΣB

0 -definable objects.

Definition 4. For an integer i ≥ 0, define Vi to be the system with comprehen-
sion over ΣB

i formulas (e.g., V1 has comprehension over ∃SO formulae). For
a general class Φ of formulas, V -Φ is the system with comprehension over Φ.
In particular, V -Horn and V -Krom are the systems with comprehension over
SO∃-Horn and SO∃-Krom, respectively.

Note that even in the weakest of this class of systems, V0 with its comprehension
over formulae with no second-order quantifiers, it is possible to prove induction
and minimization principles for the respective class of formulae from compre-
hension and length axioms.

An interested reader can find more information in [Kra95, Bus86, Coo03] and
an upcoming book by Stephen Cook and Phuong Nguyen.

5 Defining Functions in the Bounded Arithmetic Setting

In the setting of bounded arithmetic, the “hardness” is usually taken to be the
complexity of properties provable in this system. In particular, the correspon-
dence with complexity-theoretic notion of hardness is via the provability of the
function totality. That is, the strength of a system of arithmetic is associated
with the computational complexity of functions that this system proves total.



322 A. Kolokolova

For example, a version of Peano Arithmetic with one unbounded existential
quantifier allowed in induction formulae (IΣ1) proves the totality of primitive
recursive functions, and V0 where all quantifiers are bounded does the same for
AC0 functions (in the second-order setting).

Definition 5. (Capture by a system of arithmetic) A system of arithmetic cap-
tures a function class if it proves totality of all and only functions in this class.

Traditionally, functions are introduced by their recursion-theoretic characteriza-
tion (see [Cob65] for the original such result or [Zam96]). For example, Cobham’s
characterization of P uses limited recursion on notation:

F (0, x̄, Ȳ ) = G(x̄, Ȳ ) (1)
F (z + 1, x̄, Ȳ ) = cut(p(z, x̄, Ȳ ), H(z, x̄, Ȳ , F (z, x̄, Ȳ ))). (2)

Here, the function cut(x, y) cuts out the rest ofH(..) beyond the bound p(z, x̄, Ȳ ),
where p() is a polynomial (that is, a term in the language).

Since we are trying to relate the expressive power of the formulas in compre-
hension and complexity of functions, we introduce function symbols by setting
their bitgraphs to be formulas from the comprehension scheme as follows.

Definition 6. Let Φ be a logic capturing a complexity class C in the descriptive
setting. We define a corresponding function class FC by defining functions f
and F in FC as follows:

z = f(x̄, Ȳ )↔ φ(z, x̄, Ȳ ) F (x̄, Ȳ )(i)↔ i < t ∧ φ(i, x̄, Ȳ )

Here, f and F are number and string functions, respectively, and φ ∈ Φ. That is,
define functions by formulae from Φ by stating that graphs of number functions
and bitgraphs of string functions are representable by formulae from Φ.

In particular, NL functions are the ones definable by SO∃-Krom formulae and
bitgraphs of polynomial-time functions are described by SO∃-Horn formulae.

With these definitions we obtain the following capture results.

– System V0 captures complexity class AC0. [Zam96, Coo02]
– Systems V -Horn and V -Krom with comprehension over SO∃-Horn and
SO∃-Krom, respectively, capture P and NL. [CK01, CK03]

– System V1 also captures P. [Zam96]

Note that the system V1, although likely stronger than V -Horn because it
reasons with NP-predicates, also captures P. That is, ΣB

1 -theorems of V1 and V -
Horn are the same, but it is likely that V -Horn does not prove the comprehension
axiom of V1, which is a ΣB

2 statement. This leads to the following question:

6 When Do Systems Based on Formulas Describing a
Complexity Class Capture the Same Class?

What makes systems such as V0, V -Horn and V -Krom “minimal” among sys-
tems capturing the corresponding classes? They operate only with objects from



Many Facets of Complexity in Logic 323

the class, and yet prove totality of all functions they can define. The informal
answer is provable closure under first-order operations. If a system can prove
its own closure under AC0 reductions such as conjunction, disjunction and com-
plementation, then, with some additional technicalities, this system can prove
totality of all functions definable by objects in its comprehension axiom.

Let C be a complexity class. Suppose that ΦC is a class of (existential second-
order) formulas that captures C in the descriptive complexity setting. We define
a theory of bounded arithmetic V -ΦC to be V0 together with comprehension over
bounded ΦC . The following is an informal statement of the general result:

Claim. [Kol04, Kol05] Let AC0 ⊆ C ⊆ P. Suppose that ΦC is closed under first-
order operations provably in V -ΦC . Also, suppose that for every φ(x̄, Ȳ ) ∈ ΦC ,
if V -ΦC  φ then there is a function F on free variables of φ which is computable
in C and witnesses existential quantifiers of φ. Then the class of provably total
functions of V -ΦC is the class of functions computable in C.

Two examples of such systems are V -Horn and V -Krom. In particular, V -Horn
formalizes and proves correctness of Horn formula satisfiability algorithm. Al-
though V -Horn is provably in the system equivalent to limited recursion-based
systems of polynomial-time reasoning, it has an additional nice feature: it is
finitely axiomatizable. The system V -Krom formalizes the non-trivial inductive
counting algorithm of Immerman [Imm88, Sze88], used to prove the closure of NL
(and thus SO∃-Krom) under complementation. However, we don’t know whether
NP = coNP and thus whether the class of predicates in the comprehension ax-
iom of V1 is closed under complementation. Moreover, even if it is proven that
NP = coNP, the proof has to be constructive enough to be formalizable within
V1 to allow us to apply the claim.

This brings up an interesting meta-question: when are the properties of a
complexity class itself provable within this class? We were able to prove the
basic properties of P and NL with reasoning no more complex then the class
itself. However, for classes such as symmetric logspace, now proven to be equal
to logspace [Rei04], it is not clear whether the proof of complementation (or the
proof of equivalence with logspace) are formalizable using only reasoning within
this class. This line of research is related to other meta-questions in complexity
theory such as what proof techniques are needed to prove complexity separations.
For example, natural proofs of Razborov and Rudich [RR97] address the question
of NP vs. P/poly, motivated by the P vs. NP question.

7 Conclusions

In this paper we touch upon one example of a connection between two different
notions of hardness: the hardness of describing a property versus the hardness
of proving a property. Another line of research that should be mentioned here
is proof complexity. In proof complexity, the object of study is proof systems
such as resolution system and Frege system; there, the lengths of proofs is the
main complexity measure. For many systems of bounded arithmetic there are



324 A. Kolokolova

proof systems that are their non-uniform counterparts (that is, the system of
arithmetic proves soundness of the proof system and the proof systems proves the
axioms of the system of arithmetic). The line of research exploring connections
between finite model theory and proof complexity is pursued by Atserias. He
uses his results in finite model theory to obtain resolution proof system lower
bounds [Ats02], and, in his later work with Kolaitis and Vardi, uses constraint
satisfaction problems as a generic basis for a class of proof system [AKV04].

Complexity in logic is a broad area of research, with many problems still
unsolved. Little is known about connections among different settings and notions
of hardness. Here we have given one such example and have mentioned a couple
more; other connections among various notions of complexity in logic are waiting
to be discovered.

Acknowledgements. The results on connections between finite model theory and
bounded arithmetic mentioned here come from my joint work with Stephen Cook
(which resulted in my PhD thesis). I am very grateful to him for suggesting many
of the ideas, as well as the framework in which these connections became natural.

References

[Ajt83] Ajtai, M.: Σ1
1-Formulae on finite structures. Annals of Pure and Applied

Logic 24(1), 1–48 (1983)

[AKV04] Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof
system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer,
Heidelberg (2004)

[Ats02] Atserias, A.: Fixed-point logics, descriptive complexity and random satisfi-
ability. PhD thesis, UCSC (2002)

[Bus86] Buss, S.: Bounded Arithmetic. Bibliopolis, Naples (1986)

[CK01] Cook, S.A., Kolokolova, A.: A second-order system for polynomial-time rea-
soning based on Grädel’s theorem. In: Proceedings of the Sixteens annual
IEEE symposium on Logic in Computer Science, pp. 177–186 (2001)

[CK03] Cook, S.A., Kolokolova, A.: A second-order system for polytime reasoning
based on Grädel’s theorem. Annals of Pure and Applied Logic 124, 193–231
(2003)

[Cob65] Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-
Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, pp. 24–30.
North-Holland, Amsterdam (1965)

[Coo75] Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In:
Proceedings of the Seventh Annual ACM Symposium on Theory of Com-
puting, pp. 83–97 (1975)

[Coo02] Cook, S.A.: CSC 2429S: Proof Complexity and Bounded Arithmetic. Course
notes (Spring 1998-2002), http://www.cs.toronto.edu/∼sacook/csc2429h

[Coo03] Cook, S.: Theories for complexity classes and their propositional transla-
tions. In: Krajicek, J. (ed.) Complexity of computations and proofs, pp.
175–227. Quaderni di Matematica (2003)

[Fag74] Fagin, R.: Generalized first-order spectra and polynomial-time recognizable
sets. Complexity of computation, SIAM-AMC proceedings 7, 43–73 (1974)

http://www.cs.toronto.edu/~sacook/csc2429h


Many Facets of Complexity in Logic 325

[Grä91] Grädel, E.: The Expressive Power of Second Order Horn Logic. In: Jantzen,
M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer,
Heidelberg (1991)

[Grä92] Grädel, E.: Capturing Complexity Classes by Fragments of Second Order
Logic. Theoretical Computer Science 101, 35–57 (1992)

[Imm82] Immerman, N.: Relational queries computable in polytime. In: 14th ACM
Symp.on Theory of Computing, pp. 147–152. Springer, Heidelberg (1982)

[Imm83] Immerman, N.: Languages that capture complexity classes. In: 15th ACM
STOC symposium, pp. 347–354 (1983)

[Imm88] Immerman: Nondeterministic space is closed under complementation. In:
SCT: Annual Conference on Structure in Complexity Theory (1988)

[Imm99] Immerman, N.: Descriptive complexity. Springer, New York (1999)
[Kol04] Kolokolova, A.: Systems of bounded arithmetic from descriptive complexity.

PhD thesis, University of Toronto (October 2004)
[Kol05] Kolokolova, A.: Closure properties of weak systems of bounded arithmetic.

In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 369–383. Springer, Hei-
delberg (2005)

[Kra95] Krajiček, J.: Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, New York (1995)

[Par71] Parikh, R.: Existence and feasibility of arithmetic. Journal of Symbolic
Logic 36, 494–508 (1971)

[Raz93] Razborov, A.: An equivalence between second-order bounded domain
bounded arithmetic and first-order bounded arithmetic. In: Clote, P.,
Krajiček, J. (eds.) Arithmetic, proof theory and computational complexity,
pp. 247–277. Clarendon Press, Oxford (1993)

[Rei04] Reingold, O.: Undirected ST-Connectivity in Log-Space. Electronic Collo-
quium on Computational Complexity, ECCC Report TR04-094 (2004)

[RR97] Razborov, A.A., Rudich, S.: Natural proofs. Journal of Computer and Sys-
tem Sciences 55, 24–35 (1997)

[Sze88] Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Informatica 26, 279–284 (1988)

[Tak93] Takeuti, G.: RSUV isomorphism. In: Clote, P., Krajiček, J. (eds.) Arith-
metic, proof theory and computational complexity, pp. 364–386. Clarendon
Press, Oxford (1993)

[Tra50] Trahtenbrot, B.: The impossibility of an algorithm for the decision problem
for finite domains. Doklady Academii Nauk SSSR, 70:569–572 (in Russian,
1950)

[Var82] Vardi, M.Y.: The complexity of relational query language. In: 14th ACM
Symp.on Theory of Computing, Springer, Heidelberg (1982)

[Zam96] Zambella, D.: Notes on polynomially bounded arithmetic. The Journal of
Symbolic Logic 61(3), 942–966 (1996)



On the Computational Power of Enhanced

Mobile Membranes

Shankara Narayanan Krishna1 and Gabriel Ciobanu2

1 IIT Bombay, Powai, Mumbai, India 400 076
krishnas@cse.iitb.ac.in

2 A.I.Cuza University, 700506 Iaşi, Romania
gabriel@info.uaic.ro

Abstract. The enhanced mobile membranes is a variant of membrane
systems which has been proposed for describing some biological mecha-
nisms of the immune system. In this paper, we study the computational
power of the enhanced mobile membranes. In particular, we focus on the
power of mobility given by the operations endo, exo, fendo and fexo.
The computational universality is obtained with 12 membranes, while
systems with 8 membranes subsume ET0L, and those with 3 membranes
are contained in MAT .

1 Introduction

Membrane systems (called also P systems) are introduced in [8] as a class of par-
allel computing models inspired from the way the living cells process chemical
compounds, energy, and information. The definition of these computing models
starts from the observation that any biological system is a complex hierarchi-
cal structure with a flow of materials and information which underlies their
functioning. The membrane computing deals with the evolution of systems com-
posed by objects, rules and membranes nested in other membranes. The ba-
sic elements of membrane computing are presented in [10]; for the state-of-the
art of the domain, the reader may consult the bibliography from the web page
http://psystems.disco.unimib.it.

Over the years, several variants of the basic model introduced in [8] have been
studied. One such model is defined by the mobile membranes [5], introduced
with the motivation to describe the movement of membranes by using simpler
operations than the model with active membranes [9]. Similar operations on
membranes have been considered in [2].

The expressive power of mobile membranes has been studied in [6,7]. This
paper is devoted to a variant of systems with mobile membranes, namely systems
with enhanced mobile membranes. These systems were introduced in [1] as an
useful model for describing the immune system. However, the computational
power of the operations used in this model has not been studied so far. We
study the operations of this variant, giving importance to the ones governing
the mobility of membranes. We show that using only mobility, 12 membranes

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 326–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Computational Power of Enhanced Mobile Membranes 327

provide the computational universality. It should be noted that unlike the results
obtained in [6,7], we have not used the context-free evolution of objects in any
of the results (proofs) of this paper.

The operations governing the mobility of the enhanced mobile membranes are
endocytosis (endo), exocytosis (exo), forced endocytosis (fendo) and forced exo-
cytosis (fexo). The interplay between these four operations is quite powerful, and
get universality with 12 membranes. However, the exact computational power
of the four operations against a subset of the operations (using more than one
operation) is not clear. However, we show that, in the case of 3 membranes, the
combination of endo and exo is equivalent to the combination of fendo and fexo.
For systems with more membranes, this is not clear and remains an interesting
problem to explore.

We refer to [3] and [12] for the elements of formal language theory we use
here. For an alphabet V , we denote by V ∗ the set of all strings over V ; λ denotes
the empty string. V ∗ is a monoid with λ as its unit element. The length of a
string x ∈ V ∗ is denoted by |x|, and |x|a denotes the number of occurrences of
symbol a in x. A multiset over an alphabet V is represented by a string over
V (together with all its permutations), and each string precisely identifies a
multiset; the Parikh vector associated with the string indicates the multiplicities
of each element of V in the corresponding multiset. We now briefly recall details
of the following:

1. Parikh Vector: For V = {a1, . . . , an}, the Parikh mapping associated with
V is ψV : V ∗ → Nn defined by ψV (x) = (|x|a1 , . . . , |x|an), for all x ∈ V ∗.
For a language L, its Parikh set ψV (L) = {ψV (x) | x ∈ L} is the set of all
Parikh vectors of all words x ∈ L. For a family FL of languages, we denote
by PsFL the family of Parikh sets of vectors associated with languages in
FL.

2. E0L systems: An E0L system is a context-free pure grammar with parallel
derivations : G = (V, T, ω,R) where V is the alphabet, T ⊆ V is the terminal
alphabet, ω ∈ V ∗ is the axiom, and R is a finite set of rules of the form a→ v
with a ∈ V and v ∈ V ∗ such that for each a ∈ V there is at least one rule
a → v in R. For w1, w2 ∈ V ∗, we say that w1 ⇒ w2 if w1 = a1 . . . an,
w2 = v1v2 . . . vn for ai → vi ∈ R, 1 ≤ i ≤ n. The generated language is
L(G) = {x ∈ T ∗ | ω ⇒∗ x}.

3. ET0L systems: An ET0L system is a construct G = (V, T, ω,R1, . . . Rn)
such that each quadruple (V, T, ω,Ri) is an E0L system; each Ri is called a
table, 1 ≤ i ≤ n. The generated language is defined as L(G) = {x ∈ T ∗ |
ω ⇒Rj1

w1 ⇒Rj2
. . . ⇒Rjm

wm = x}, where m ≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤
m. In the sequel, we make use of the the following normal form for ET0L
systems: each language L ∈ ET 0L can be generated by an ET0L system
G = (V, T, ω,R1, R2) having only two tables. Moreover, from the proof of
Theorem V.1.3 in [11], we see that any derivation with respect to G starts by
several steps of R1, then R2 is used exactly once, and the process is iterated;
the derivation ends by using R2.



328 S.N. Krishna and G. Ciobanu

4. Matrix grammars: A context-free matrix grammar without appearance
checking is a construct G = (N,T, S,M) where N,T are disjoint alphabets
of non-terminals and terminals, S ∈ N is the axiom, and M is a finite set
of matrices of the form (A1 → x1, . . . , An → xn) of context-free rules. For a
string w, a matrix m : (r1, . . . , rn) is executed by applying the productions
r1, . . . , rn one after the another, following the order in which they appear in
the matrix. We write w ⇒m z if there is a matrix m : (A1 → x1, . . . , An →
xn) in M and the strings w1, . . . , wn+1 in (N∪T )∗ such that w = w1, wn+1 =
z, and for each i = 1, 2, . . . , n we have wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i . The

language generated by G is L(G) = {x ∈ T ∗ | S ⇒∗ x}. The family of
languages generated by context-free matrix grammars is denoted by MAT .

A matrix grammar with appearance checking has an additional compo-
nent F , a set of occurrences of rules in M . For w, z ∈ (N ∪ T )∗, we write
w ⇒m z if (i) there is a matrix in M whose rules can be applied in or-
der to obtain z from w, or if (ii) the jth rule rj of M is not applicable to
wj , (w ⇒m wj in j steps), and in which case rj can be skipped obtaining
wj+1 = wj .

In [4], it has been shown that each recursively enumerable language can
be generated by a matrix grammar in the strong binary normal form. Such
a grammar is a construct G = (N,T, S,M,F ), where N = N1∪N2∪{S,#},
with these three sets mutually disjoint, two distinguished symbols
B(1), B(2) ∈ N2, and the matrices in M of one of the following forms:

(1) (S → XA), with X ∈ N1, A ∈ N2,
(2) (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
(3) (X → Y,B(j) → #), with X,Y ∈ N1, j = 1, 2,
(4) (X → λ,A→ x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

Moreover, there is only one matrix of type 1, and F consists of all the rules
B(j) → #, j = 1, 2 appearing in matrices of type 3. # is a trap-symbol,
once introduced it is never removed. Clearly, a matrix of type 4 is used only
once, in the last step of a derivation. The corresponding family of generated
languages is denoted by MAT λac.

We denote by RE,E0L,ET 0L,MAT,MAT λac, CS the families of languages gen-
erated by arbitrary, extended 0L, extended tabled 0L, matrix, matrix with ap-
pearance checking, and context-sensitive grammars, respectively. It is known
that PsE0L ⊆ PsET 0L ⊂ PsCS ⊂ PsRE; PsMAT ⊂ PsCS ⊂ PsRE.

2 Systems with Enhanced Mobile Membranes

We follow the notations used in [1] for P systems with enhanced mobile mem-
branes. A P system with enhanced mobile membranes is a construct

Π = (V,H, μ,w1, . . . , wn, R, i),

where: n ≥ 1 (the initial degree of the system); V is an alphabet (its elements
are called objects); H is a finite set of labels for membranes; μ is a membrane



On the Computational Power of Enhanced Mobile Membranes 329

structure, consisting of n membranes, labelled (not necessarily in a one-to-one
manner) with elements of H ; w1, w2, . . . , wn are strings over V , describing the
multisets of objects placed in the n regions of μ, i is the output membrane of the
system, and R is a finite set of developmental rules of the following forms:

(a) [a→ v]m, for m ∈ H, a ∈ V, v ∈ V ∗; object evolution rules.
(b) [a]h[ ]m → [ [w]h]m, for h,m ∈ H, a ∈ V,w ∈ V ∗;

endocytosis: an elementary membrane labelled h enters the adjacent mem-
brane labelled m, under the control of object a; the labels h and m remain
unchanged during this process, however, the object a may be modified to w
during the operation; m is not necessarily an elementary membrane.

(c) [ [a]h]m → [w]h[ ]m, for h,m ∈ H, a ∈ V,w ∈ V ∗;
exocytosis: an elementary membrane labelled h is sent out of a membrane
labelled m, under the control of object a; the labels of the two membranes
remain unchanged, but the object a from membrane h may be modified
during this operation; membrane m is not necessarily elementary.

(d) [ ]h[a]m → [ [ ]hw]m, for h,m ∈ H, a ∈ V,w ∈ V ∗;
forced endocytosis: an elementary membrane labelled h enters the adjacent
membrane labelled m, under the control of object a of m; the labels h and m
remain unchanged during this process, however, the object amay be modified
to w during the operation; m is not necessarily an elementary membrane.

(e) [a[ ]h]m → [ ]h[w]m, for h,m ∈ H, a ∈ V,w ∈ V ∗;
forced exocytosis: an elementary membrane labelled h is sent out of a mem-
brane labelled m, under the control of object a of m; the labels of the two
membranes remain unchanged, but the object a from membrane m may be
modified during this operation; membrane m is not necessarily elementary.

(f) [ [a]j [ b]h]k → [ [w] j [ b]h]k for h, j, k ∈ H, a, b ∈ V,w ∈ V ∗;
contextual evolution : an object a in membrane m evolves into w when mem-
branes m,h are adjacent to each other inside membrane k.

(g) [a]h → [ b]h[ c]h, for h ∈ H, a, b, c ∈ V ;
division for elementary membranes: in reaction with an object a, the mem-
brane labelled h is divided into two membranes labelled h, with the object
a replaced in the two new membranes by possibly new objects.

The rules are applied according to the following principles:

1. All rules are applied in parallel, non-deterministically choosing the rules,
the membranes, and the objects, but in such a way that the parallelism is
maximal; this means that in each step we apply a set of rules such that no
further rule can be added to the set, no further membranes and objects can
evolve at the same time.

2. The membrane m from each type (a) – (g) of rules as above is said to
be passive, while the membrane h is said to be active. In any step of a
computation, any object and any active membrane can be involved in at
most one rule, but the passive membranes are not considered involved in the
use of rules (hence they can be used by several rules at the same time as
passive membranes); for instance, a rule [a→ v]m, of type (a), is considered
to involve only the object a, not also the membrane m.



330 S.N. Krishna and G. Ciobanu

3. The evolution of objects and membranes takes place in a bottom-up manner.
After having a (maximal) set of rules chosen, they are applied starting from
the innermost membranes, level by level, up to the skin membrane (all these
sub-steps form a unique evolution step, called a transition step).

4. When a membrane is moved across another membrane, by rules (b)-(e), its
whole contents (its objects) are moved; because of the bottom-up way of
using the rules, the inner objects first evolve (if there are rules applicable
for them), and then any membrane is moved with the contents as obtained
after this inner evolution.

5. All objects and membranes which do not evolve at a given step (for a given
choice of rules which is maximal) are passed unchanged to the next config-
uration of the system.

By using the rules in this way, we get transitions among the configurations of
the system. A sequence of transitions is a computation, and a computation is
successful if it halts (it reaches a configuration where no rule can be applied).

The multiplicity vector of the multiset from a special membrane called out-
put membrane is considered as a result of the computation. Thus, the result
of a halting computation consists of all the vectors describing the multiplicity
of objects from the output membrane; a non-halting computation provides no
output. The set of vectors of natural numbers produced in this way by a sys-
tem Π is denoted by Ps(Π). A computation can produce several vectors, all of
them considered in the set Ps(Π). The family of all sets Ps(Π) generated by
systems of degree at most n using rules α ⊆ {exo, endo, fendo, fexo, cevol}, is
denoted by PsEMn(α). Here endo and exo represent endocytosis and exocy-
tosis, fendo and fexo represent forced endocytosis and forced exocytosis, and
cevol represents contextual evolution.

Note: In this paper, we do not allow exo rules where a membrane exits the
system.

3 Computational Power

Theorem 1. PsEM12(endo, exo, fendo, fexo) = PsRE.

Proof. Consider a matrix grammar G = (N,T, S,M,F ) with appearance check-
ing in the improved strong binary normal form (N = N1 ∪N2 ∪ {S,#}), having
n1 matrices m1, . . . ,mn1 of types 2 and 4 and n2 matrices of type 3. The ini-
tial matrix is m0 : (S → XA). Let B(1) and B(2) be two objects in N2 for
which there are rules B(j) → # in matrices of M . The matrices of the form
(X → Y,B(j) → #) are labelled by m′

i, 1 ≤ i ≤ n2 with i ∈ labj, for j ∈ {1, 2},
such that lab1, lab2, and lab0 = {1, 2, . . . , n1} are mutually disjoint sets.

Construct a P system Π = (V, {1, . . . , 12}, μ, w1, . . . , w12, R, 7) with

V = N1 ∪N2 ∪ T ∪ {X ′
0i, A

′
0i | X ∈ N1, A ∈ N2, 1 ≤ i ≤ n1} ∪ {Z,#}

∪ {Xji, Aji | 0 ≤ i, j ≤ n1} ∪ {X(j)
i , Xj | X ∈ N1, j ∈ {1, 2}, 1 ≤ i ≤ n2},

μ = [ [ ]7 [ ]8 [ ]9 [ ]10 [ ]11 [ [ ]3[ ]5]1 [ [ ]4[ ]6]2 ]12,
w7 = {XA | m0 : (S → XA)}, wi = ∅, i �= 7.



On the Computational Power of Enhanced Mobile Membranes 331

1. Simulation of a matrix mi : (X → Y,A→ x), 1 ≤ i ≤ n1.

1. [X ]7[ ]8 → [ [Xii]7]8, [ [A]7]8 → [Aii]7[ ]8, (endo, exo),
2. [Xji]7[ ]9 → [ [Xj−1i]7]9, [ [Aji]7]9 → [Aj−1i]7[ ]9, j > 0, (endo, exo),
3. [ ]10[X0i]7 → [X ′

0i[ ]10]7, [ ]11[A0i]7 → [A′
0i[ ]11]7, (fendo),

4. [ ]10[Xji]7 → [ #[ ]10]7, [ ]11[Aji]7 → [ #[ ]11]7, j > 0, (fendo),
[ [A0i]7]9 → [ #]7[ ]9, (exo),

5. [X ′
0i[ ]10]7 → [ ]10[Y ]7, [A

′
0i[ ]11]7 → [ ]11[x]7, (fexo)

By rule 1, membrane 7 enters membrane 8, replacing X ∈ N1 with Xii.
A symbol A ∈ N2 is replaced with Ajj , and membrane 7 comes out of
membrane 8. The suffixes i, j represent the matrices mi(mj), 1 ≤ i, j ≤ n1

corresponding to which X,A have a rule. Next, rule 2 is used until Xii and
Ajj become X0i and A0j , respectively. If i = j, then we have X0i and A0i

simultaneously in membrane 7. Then rule 3 is used, by which membranes
10 and 11 enter membrane 7 replacing X0i and A0i with X ′

0i and A′
0i, re-

spectively. This is then followed by rule 5, when membranes 10 and 11 exit
membrane 7 by fexo rules replacing X ′

0i and A′
0i with Y and x. If i > j, then

we obtain A0j before X0i. In this case, we have a configuration where mem-
brane 7 is inside membrane 9 containing A0j . Then rule 4 is used, replacing
A0j with #, and an infinite computation will be obtained (rule 13). If j > i,
then we obtain X0i before A0j . In this case, we reach a configuration with
X0iAkj , k > 0 in membrane 7, and membrane 7 is in the skin membrane.
Rule 2 cannot be used now, and the only possibility is to use rule 4, which
leads to an infinite computation (due to rule 13). Thus, if i = j, then we can
correctly simulate a type-2 matrix.

2. Simulation of a matrix m′
i : (X → Y,B(j) → #), j ∈ {1, 2}, 1 ≤ i ≤ n2.

6. [X ]7[ ] j → [ [X(j)
i ]7]j , (endo),

7. [ ]j+2[X(j)
i ]7 → [X(j)

i [ ]j+2]7, [ ]j+4[B(j)]7 → [ #[ ] j+4]7, (fendo),

8. [X(j)
i [ ]j+2]7 → [ ]j+2[Yj ]7, (fexo),

9. [Yj [ ]
j+4

]
7
→ [ ]

j+4
[Yj ]7 (fexo), 10. [ [Yj ]7]

j
→ [Y ]

7
[ ]

j
, (exo).

To simulate a matrix of type 3, we start with rule 6. Membrane 7 enters
either membrane 1 or membrane 2, depending on whether it has the symbol
B(1) or B(2) associated to it. Inside membrane j, rule 7 is used, by which
membrane j+2 enters membrane 7, and membrane j+4 enters membrane 7
if the symbol B(j) is present. In this case, B(j) is replaced with #. Otherwise,
membrane j+2 comes out of membrane 7 replacing X(j)

i with Yj . Membrane
7 exits membrane j, replacing Yj by Y , successfully simulating a matrix of
type 3.

3. Halting and simulation of mi : (X → λ,A→ x), 1 ≤ i ≤ n1. We begin with
rules 1-5 as before and simulate the matrix (X → Z,A→ x) in place of mi,



332 S.N. Krishna and G. Ciobanu

where Z is a new symbol. The special symbol Z is obtained in membrane 7
at the end.

11. [ ]8[Z]7 → [λ[ ]8]7, (fendo),
12. [A[ ]8]7 → [ ]8[ #]7, A ∈ N2, (fexo),
13. [ ]

8
[ #]

7
→ [ #[ ]

8
]
7
, [ #[ ]

8
]
7
→ [ ]

8
[ #]

7
, (fendo, fexo).

Now, use rule 11 to erase the symbol Z while membrane 8 enters membrane
7. This is followed by rule 12 if there are any more symbols A ∈ N2 remain-
ing, in which case they are replaced with the trap symbol #. An infinite
computation is obtained if the symbol # is present in membrane 7. It is
clear that if the computation proceeds correctly, then membrane 7 contains
a multiset of terminal symbols x ∈ T ∗ such that ψV (x) ∈ PsL(G). �

Theorem 2. PsEM3(cevol) = PsRE.

Theorem 3. PsET 0L ⊆ PsEM8(endo, exo, fendo, fexo).

Proof. Let G = (V, T, ω,R1, R2) be an ET0L system in the normal form. We
construct the P system Π = (V ′, H, μ, w0, . . . , w7, R, 0) as follows:

V ′ = {†, gi, g′i, g′′i , g′′′i , ji, hi, ki, j′i, j′′i , j′′′i , h′i, h′′i , h′′′i | i = 1, 2}
∪ {ai | a ∈ V, i = 1, 2}, H = {0, 1, . . . , 7},

μ = [ [ ]0 [ ]1 [ ]2 [ [ ]4 [ ]5 [ ]6 ]3 ]7, w0 = g1ω,wi = ∅, i > 0.

Simulation of table Ri, i ∈ {1, 2}
1. [ gi]0[ ]

i
→ [ [ gi]0]

i
, (endo),

2. [ [a]0] i → [wi]0[ ] i, if a→ w ∈ Ri, (exo),
3. [ gi]0[ ]3 → [ [ g′i]0]3, (endo),
4. [ ]4[ g′i]0 → [ g′′i [ ]4]0, [ ]5[ a]0 → [ † [ ]5]0, (fendo),
5. [ g′′i [ ]4]0 → [ ]4[ g′′′i ]0, (fexo), [ † [ ]5]0 → [ † ]0[ ]5 (fexo),
6. [ ]5[ † ]0 → [ † [ ]5]0, (fendo),
7. [ g′′′i ]0[ ]5 → [ [ g′′′i ]0]5, (endo),
8. [ [ai]0]5 → [a]0[ ]5, (exo),
9. [ [ g′′′i ]0]5 → [ jihiki]0[ ]5, (exo),
10. [ ]4[ ji]0 → [ j′i[ ]4]0, [ ]5[hi]0 → [h′i[ ]5]0,

[ ]6[ki]0 → [λ[ ]6]0, (fendo),
11. [ j′i[ ]4]0 → [ ]4[ j′′i h

′′
i ]0, [h′i[ ]5]0 → [ ]5[λ]0,

[ai[ ]6]0 → [ ]6[ † ]0, (fexo),
12. [ j′′i [ ]6]0 → [ ]6[ j′′′i ]0, (fexo), [ ]5[h′′i ]0 → [h′′′i [ ]5]0, (fendo),
13. [h′′′i [ ]5]0 → [ ]5[λ]0, (fexo),
14. [ [ j′′′1 ]

0
]
3
→ [ gi]0[ ]

3
, i = 1, 2, [ [ j′′′2 ]

0
]
3
→ [ g1]

0
[ ]

3
, (exo),

[ [ j′′′2 ]0]3 → [λ]0[ ]3, (exo),
15. [ † ]0[ ]1 → [ [ † ]0]1, (endo), [ [ † ]0]1 → [ † ]0[ ]1, (exo).



On the Computational Power of Enhanced Mobile Membranes 333

In the initial configuration, the string g1ω is in membrane 0, where ω is the
axiom, and g1 indicates that table 1 should be simulated first. The simulation
begins with rule 1, with membrane 0 entering membrane 1. In membrane 1 the
only applicable rule is the exo rule 2, by which the symbols a ∈ V are replaced
by w1 corresponding to the rule a → w1 ∈ R1. Rules 1 and 2 can be repeated
until all the symbols a ∈ V are replaced according to a rule in R1. Finally, if all
the symbols a ∈ V have been replaced by rules of R1, only symbols of V1 and
the symbol g1 are in membrane 0. Rule 3 can be used anytime after this; symbol
g1 is replaced with g′1, and membrane 0 enters membrane 3. No rules of Ri can
be simulated until membrane 0 comes out of membrane 3.

Inside membrane 3, rule 4 is used. Membrane 4 enters membrane 0 by an
fendo rule replacing g′1 with g′′1 ; in parallel, membrane 5 enters membrane 0 if
any symbol a ∈ V is present in membrane 0, i.e, if some symbol a ∈ V has
been left out from the simulation using a rule from R1. The trap symbol † is
introduced, and this triggers a never ending computation (rules 5 and 6). Next,
membrane 4 comes out of membrane 0 replacing g′′1 with g′′′1 . Membrane 0 now
enters membrane 5 using rule 7. Rules 8 and 7 are applied as long as required
until all the symbols of V1 are replaced with the corresponding symbols of V .
When all the symbols of V1 are replaced with symbols of V , rule 9 can be used
to replace g′′′1 with j1h1k1. We now need to check if all the symbols of V1 are
indeed replaced with symbols of V . For this, rule 10 is used. The membranes 4,5
and 6 enter membrane 0 in parallel by fendo rules replacing j1, h1 and k1 with
j′1, h

′
1 and λ, respectively. Next, by fexo rule 11, membranes 4 and 5 come out of

membrane 0 replacing j′1 with j′′1 h′′1 and h′1 with λ, respectively. If any symbol
of a1 ∈ V1 is present in membrane 0, then membrane 6 also comes out (fexo rule
11), replacing it with the trap symbol †. In case there are no symbols of V1 in
membrane 0, membrane 6 stays inside membrane 0 until we obtain j′′1 h′′1 . Using
the fexo rule 12, membrane 6 comes out replacing j′′1 with j′′′1 , while in parallel,
membrane 5 enters membrane 0 using the fendo rule 12 replacing h′′1 with h′′′1

(Note that if we choose to use the fendo rule 4 instead of 12, the trap symbol † is
introduced in membrane 0). Membrane 5 comes out of membrane 0 erasing h′′′1 .
Once membrane 0 becomes elementary, it comes out of membrane 3 replacing
j′′′1 with gi. If j′′′1 is replaced with g1, then table 1 is simulated again, else, table 2
is simulated.

The computation can stop only after simulating table 2. If table 2 is simulated,
we obtain j′′′2 at the end of the simulation. j′′′2 is replaced with either (i) g1, in
which case we simulate table 1 again, or (ii) λ, in which case membrane 0 remains
idle inside the skin membrane, in the absence of the trap symbol †. It is clear
that Ps(Π) contains only the vectors in Ps(L(G)). �

Corollary 1. PsE0L ⊆ PsEM7(endo, exo, fendo, fexo).

We can interpret the multiset of objects present in the output membrane as a set
of strings x such that the multiplicity of symbols in x is same as the multiplicity
of objects in the output membrane. This way, the multiset of objects in the
output membrane gives rise to a language. For a system Π , let L(Π) represent



334 S.N. Krishna and G. Ciobanu

this language (all strings computed byΠ), and let LEMn(α) represent the family
of languages L(Π) generated by systems having ≤ n membranes, using a set of
operations α ⊆ {endo, exo, fendo, fexo}. Then, we have the following:

Lemma 1. LEM8(endo, exo, fendo, fexo)− ET 0L �= ∅.
Proof. L={x ∈ {a, b}∗ | |x|b = 2|x|a} /∈ ET 0L [11]. We construct Π =
({a, b, b′, c, η, η′, η′′, η′′′, †}, {0, . . . , 7}, [ [ηb]1 [ [ ]3 [ ]4 ]2 [ [ ]6[ ]7 ]5 ]0, R, 1)
with rules as given below to generate L.

1. [ η]1[ ]2 → [ [ η]1]2, [ [ b]1]2 → [ b′b′]1[ ]2, (endo, exo),
[ [η]1]2 → [η]1[ ]2, (exo),

2. [ η]1[ ]2 → [ [ η′ac]1]2, (endo),
3. [ ]3[ c]1 → [ [ ]3λ]1, [ ]4[ η′]1 → [ [ ]4η

′]1, (fendo),
4. [ b[ ]3]1 → [ ]3[ † ]1, [η

′[ ]4]1 → [ ]4[ η′′]1, (fexo),
5. [ η′′[ ]3]1 → [ ]3[η′′]1, (fexo),
6. [ η′′]

1
[ ]

4
→ [ [η′′]

1
]
4
, [ [ b′]

1
]
4
→ [ b]

1
[ ]

4
, (endo, exo),

7. [ [η′′]1]4 → [ η′′′]1[ ]4, (exo),
8. [ [η′′′]1]2 → [η′′′]1[ ]2, (exo),
9. [ η′′′]1[ ]5 → [ [η′′′]1]5, (endo),
10. [ ]6[ b′]1 → [ † [ ]6]1, [ ]7[ η′′′]1 → [ η[ ]7]1, (fendo),
11. [ † [ ]6]1 → [ ]6[ † ]1, [η[ ]7]1 → [ ]7[ η]1, (fexo),
12. [ [ η]1]5 → [λ]1[ ]5, (exo),
13. [η[ ]5]1 → [ ]5[ η]1, (fexo),
14. [ † ]1[ ]2 → [ [ † ]1]2, (endo), [ [ † ]1]2 → [ † ]1[ ]2, (exo).

The system works as follows: Rule 1 is used to replace every b with b′b′. Rule 2
can be used at any point replacing η (guessing that all b’s have been replaced).
The rules 3-5 check that every b has been replaced with b′b′, and then all the b′

are replaced with b by rules 6-8. Next, rules 9-11 check that all b′ are replaced
with b. The computation can halt using rule 12, and can continue using rule
13. An infinite computation is obtained using rule 14 when (i) membrane 1
enters membrane 2 using rule 2 before replacing all b’s, or (ii) membrane 1
enters membrane 5 before replacing all the b′. It is easy to see that membrane 1
contains strings of L at the end of a halting computation. �
Theorem 4. PsEM3(endo, exo) = PsEM3(fendo, fexo).

Proof. Consider a P system Π with 3 membranes having endo, exo rules. Let the
initial configuration be μ = [ [w1]1[w2]2]3. It is easy to construct a P system Π ′

using only fendo, fexo rules having initial configuration μ′ = μ as follows: For
every endo rule [a] i[ ] j → [ [wa] i]j in Π , add the fendo rule [ ]j [a] i → [ [ ]jwa] i,
and for every exo rule [ [a] i] j → [wa] i[ ]j , add an fexo rule [ [ ]ja] i → [ ] j [wa] i
in Π ′. Note that the computation starts in Π using an endo rule only, so in Π ′,



On the Computational Power of Enhanced Mobile Membranes 335

we can start with the corresponding fendo rule. If the initial configuration of
Π was μ = [ [w2[w1]1]2]3, then the first applicable rule is an exo rule. In this
case, construct Π ′ = Πα with initial configuration μ′ = [ [α]1[w2]2]3 where α is
a string dependent on w1 and the set of exo rules applicable to w1 in Π . After
this preprocessing step, the set of fendo, fexo rules are constructed similarly as
above. �
Theorem 5. PsEM3(endo, exo, fendo, fexo) ⊆ PsMAT .

4 Conclusion

Living matter becomes a source of inspiration for defining new models of com-
putation. The enhanced mobile membranes were introduced in [1] to describe
biological mechanisms of the immune system. In this paper, we have studied the
computational power of the membrane systems with enhanced mobile operations.
The universality results uses 12 membranes and the four mobility operations
endo, exo, fendo and fexo. An interesting problem to look at is whether systems
using all the four rules can be simulated by systems using only a pair of rules from
{endo, exo, fendo, fexo}, namely either pair (endo, exo) or pair (fendo, fexo).
The optimality of the results presented in this paper is also an open problem.

References

1. Aman, B., Ciobanu, G.: Describing the Immune System Using Enhanced Mobile
Membranes. In: Proceedings FBTC, CONCUR 2007, pp. 1–14 (2007)

2. Cardelli, L.: Brane Calculi, Interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

3. Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

4. Freund, R., Păun, G.: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU
2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)

5. Krishna, S.N., Paun, G.: P Systems with Mobile Membranes. Natural Comput-
ing 4(3), 255–274 (2005)

6. Krishna, S.N.: The Power of Mobility: Four Membranes Suffice. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 242–251. Springer,
Heidelberg (2005)

7. Krishna, S.N.: Upper and Lower Bounds for the Computational Power of P Systems
with Mobile Membranes. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V.
(eds.) CiE 2006. LNCS, vol. 3988, pp. 526–535. Springer, Heidelberg (2006)

8. Paun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

9. Paun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

10. Paun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
11. Rozenberg, G., Salomaa, A. (eds.): The Mathematical Theory of L Systems. Aca-

demic Press (1980)
12. Salomaa, A.: Formal Languages. Academic Press (1973)



Recursion in Higher Types and Resource

Bounded Turing Machines

Lars Kristiansen

Department of Mathematics, University of Oslo
P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

larsk@math.uio.no

http://www.iu.hio.no/~larskri

Abstract. We prove that neat and natural fragments of Gödel’s T and
Plotkin’s PCF capture complexity classes defined by imposing resource
bounds on Turing machines.

1 Introduction

Some years ago the author, and others, noted that interesting things tend to hap-
pen when successor-like functions and operations are removed from a standard
model of computation, e.g. a function algebra, a rewriting system or a program-
ming language. See e.g. Kristiansen [7,9], Kristiansen & Voda [11], Jones [5,6].
Our investigations of such successor-free models of computation have turned out
to be fruitful and have spawned some surprising theorems, particularly when
the models permit recursion in higher types. Gödel’s system T and Plotkin’s
programming language PCF are prime examples of models of computation per-
mitting recursion in higher type. We will refer to their successor-free variants as
respectively T− and PCF−.

This is a compact and technical paper where we show that neat and natu-
ral fragments of T− and PCF− capture complexity classes defined by imposing
resource bounds on Turing machines. PCF− is studied for the first time in the
present paper. The results on T− are published in joint papers with Paul Voda,
but we reprove some of these results here in order to elucidate the relationship
between T− and PCF−, and in general, we have tried to tailor our definitions and
proofs such that the nature of this relationship becomes apparent. Besides, the
proof given here are more direct, and presumably more transparent, than those
published elsewhere. Our results on PCF− are related to the results published
in Jones [5].

We expect the reader to be familiar with the typed λ-calculus; Gödel’s T and
primitive recursion in finite types (see e.g. Avigad & Feferman [1]); PCF and the
fundamentals of domain theory (see e.g. Streicher [16]); and Turing machines and
the fundamentals of complexity theory (see e.g. Odifreddi [15]). Subjects related
to T− are studied in Barra et al. [2], Kristiansen & Voda [12,13,14], Kristiansen
& Barra [10], Kristiansen [8,9]. The author wants to thank Dag Normann for his
help in preparing this paper and for numerous insightful lectures on PCF and
domain theory.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 336–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Recursion in Higher Types and Resource Bounded Turing Machines 337

2 A Brief Discussion

Before we turn to the technical work, we will briefly discuss the relevance of the
results proved in this paper.

Let time 2lin

i (space 2lin

i ) be the set of problems decidable by a deterministic
Turing machine working in time (space) 2c|x|i for some fixed c ∈ N (where 2x0 = x
and 2xi+1 = 22x

i ). It is trivial that time 2lin
i ⊆ space 2lin

i and space 2lin
i ⊆

time 2lin

i+1, and thus, we have an alternating space-time hierarchy

space 2lin

0 ⊆ time 2lin

1 ⊆ space 2lin

1 ⊆ time 2lin

2 ⊆ space 2lin

2 ⊆ time 2lin

3 ⊆ . . . .

The three classes at the bottom of the hierarchy are often called respectively
linspace, exp, and expspace in the literature. It is well known, and quite
obvious, that we have space 2lin

i ⊂ space 2lin

i+1 and time 2lin

i ⊂ time 2lin

i+1 for
any i ∈ N. Thus, we know that at least one of the two inclusions

space 2lin

i ⊆ time 2lin

i+1 ⊆ space 2lin

i+1

is strict; similarly, we know that at least one of the inclusions

time 2lin

i ⊆ space 2lin

i ⊆ time 2lin

i+1

is strict, and the general opinion is that they all are. Still, no one has ever been
able to prove that any particular of the inclusions actually is strict.

The classes in the alternating space-time hierarchy are defined by imposing
explicit bounds on a particular machine model, but the classes are not uniformly
defined as some of the classes are defined by imposing space-bounds whereas
others are defined by imposing time-bounds. In contrast, the classes in our T−-
hierarchy G0 ⊆ G1 ⊆ G2 ⊆ . . . are uniformly defined. They are also defined
without referring to explicit bounds. (Each class Gi is defined as the set of prob-
lems decidable in a natural fragment of T−.) Thus, it is surprising and interesting
that the T−-hierarchy matches, level by level, the alternating space-time hierar-
chy. How can it be that such a uniformly defined hierarchy contains both space
and time classes?

The match between the T−-hierarchy and the alternating space-time hierarchy
was proved for the first time in [13]. In this paper we introduce a PCF−-hierarchy
P0 ⊆ P1 ⊆ P2 ⊆ . . .. The definition of the PCF−-hierarchy is very similar to
definition of the T−-hierarchy, and it is natural to as how these two hierarchies
relate to each other. We will prove that Pn+1 = G2n+1 for n ∈ N. Hence, only
time classes occur in the PCF−-hierarchy.

T− and PCF−

Definition (Types). We define the types recursively: ι is a type (primitive
type); σ × τ is a type if σ and τ are types (product types); σ → τ is a type if
σ and τ are types (arrow types). We define the cardinality of the type σ at base



338 L. Kristiansen

b, written |σ|b, the domain height of the type σ at base b, written �σ�b, and the
degree of the type σ, written dg(σ), by recursion on the structure of the type
σ: |ι|b = b; �ι�b = 1; dg(ι) = 0; |ρ × τ |b = |ρ|b × |τ |b; �ρ × τ�b = �ρ�b + �τ�b;
dg(ρ × τ) = max(dg(ρ), dg(τ)); |ρ → τ |b = |τ ||ρ|bb ; �ρ → τ�b = |ρ|b+1 × �τ�b;
and dg(ρ → τ) = max(dg(ρ) + 1, dg(τ)). The notation σ1, σ2, . . . , σn → τ is
shorthand for σ1 → (σ2 → (. . . (σn → τ) . . .)). �	
The proof of the next lemma is straightforward.

Lemma 1 (Growth Rates). Let 2x0 = x and 2xi+1 = 22x
i . (i) For any type

σ of degree n, there exists a polynomial p(x) such that |σ|x < 2p(x)n . (ii) For
any n ∈ N and polynomial p(x), there exists a type σ of degree n such that
2p(x)n < |σ|max(x,2). (iii) For any type σ of degree n + 1 there exists a type τ of
degree n such that �σ�b < |τ |b.
Definition (Calculi). We define the terms of the typed λ-calculus: We have an
infinite supply of variables xσ0 , x

σ
1 , x

σ
2 , . . . for each type σ. A variable of type σ is

a term of type σ; λxM is a term of type σ → τ if x is a variable of type σ and
M is a term of type τ (λ-abstraction); (MN) is a term of type τ if M is a term
of type σ → τ and N is a term of type σ (application); 〈M,N〉 is a term of type
σ×τ if M is a term of type σ and N is a term of type τ (pairing); fstM (sndM)
is a term of type σ (τ) if M is a term of type σ× τ (projections). Next we define
the reduction rules of the typed λ-calculus. We have the following β-conversions:
(λxM)N �M [x := N ] if x �∈ FV (N); fst〈M,N〉�M ; snd〈M,N〉�N . Further,
we have α-conversion, η-conversion and all the other standard reduction rules,
i.e., (MN) � (MN ′) if N � N ′; (MN) � (M ′N) if M � M ′; . . . etcetera. The
calculus T− is the typed λ-calculus extended with (i) for each i ∈ N a constant ki
of type ι; (ii) recursor terms Rσ(Gσ, F ι,σ→σ, N ι) of type σ, that is, Rσ(G,F,N)
is a term of type σ if G and F and N are terms of, respectively, types σ and
ι, σ → σ and ι; (iii) reduction rules of the form

Rσ(G,F, k0) � G and Rσ(G,F, kn+1) � F (kn,Rσ(G,F, kn)) .

The calculus PCF− is the calculus T− extended with with a fixed-point term
(YσM) of type σ for each term M of type σ → σ and reduction rules of the form
YσM �M(YσM).

We will use the standard conventions in the literature: M [x := N ] denotes
the term M where every occurrence of the variable x is replaced by the term N ;
the notations Mσ and M : σ are two alternative ways to signify that the term
M is of type σ; M(M1,M2) denotes the term ((MM1)M2), etcetera. If we write
Mk where M is a term and k is a natural number, then Mk denotes the term
M repeated k times in a row , e.g., M3N denotes the term M(M(M(N))). We

will use
�
� to denote the transitive-reflexive closure of the reducibility relation

�; and = to denote the symmetric-transitive-reflexive closure of �; and ≡ to
denote syntactical equality between terms.

We define the total terms of type σ recursively over the structure of σ: the
term M : ι is total if M

�
� kn for some constant kn; the term M :σ → τ is total



Recursion in Higher Types and Resource Bounded Turing Machines 339

if for every total term N :σ there exists a total term P :τ such that (MN)
�
� P ;

and the term M :σ × τ is total if fstM and sndM are total terms. A term M
is hereditary total if any subterm of M is total. (The reader should note that
our notion of hereditary total is stronger than the standard notion of hereditary
total.)

A term M is of rank n if dg(σ) ≤ n for any recursor term Rσ(. . .) and any
fixed-point term Yσ(. . .) occurring in M . We use Rk(M) to denote the smallest
rank of M . �	
To achieve a laconic presentation, we have defined PCF− as a parsimonious
extension of T−. Our main results would still hold if PCF− were based on a
standard version of PCF, that is, PCF without recursor terms, but with boolean
types, predecessor terms, etcetera. Note that any T−-term is a hereditary total
PCF−-term.

There are various different definitions of T− in the literature. The reason for
this is mathematical convenience, and all the definitions are essentially equivalent
to the definition given above.

Every hereditary total PCF−-term M : σ has a natural interpretation as a
functional of type σ over the finite domain {0, 1, . . . , b − 1}. We will interpret
terms as natural numbers. The interpretation valb(M) defined below evaluates
the closed term M to a natural number, moreover, if M is of type σ and b > 1, we
have valb(M) < |σ|b. There is a natural bijection between the finite functionals
of type σ over the domain {0, 1, . . . , b − 1} and the set {0, . . . , |σ|b − 1}. Our
interpretation is nothing but the composition of this bijection with the obvious
interpretation of a hereditary total term as a finite functional.

Definition (Interpretation). If a < |σ → τ |b, then a can be viewed as a |σ|b
digit number in base |τ |b, and hence, uniquely written in the form

v0 + v1|τ |1b + . . . + vk|τ |kb
where k = |σ|b − 1 and vj < |τ |b for j = 0, . . . , k. The numbers v0, . . . , vk are
the digits in a, and for any i < |σ|b, we denote the i’th digit of a by a[i]b, that
is, a[i]b = vi. A valuation V is a total function from the set of variables into N.
We define the valuation Vxi by Vxi (x) = i and Vxi (y) = V(y) for any variable y
different from x. We define the value of the term M at the base b under valuation
V , written valVb (M), recursively over the structure of M :

1. Let valVb (xσ) = V(x) (mod |σ|b).
2. Let valVb (λxσM τ ) =

∑
i<|σ|b valV

x
i

b (M)× |τ |ib.
3. Let valVb ((MN)) = valVb (M)[valVb (N)]b.
4. Let valVb (〈Mσ, N τ 〉) = valVb (M)× |τ |b + valVb (N).
5. Let valVb (fstMσ×τ ) = valVb (M) div |τ |b (integer division).
6. Let valVb (sndMσ×τ ) = valVb (M) (mod |τ |b).
7. Let valVb (kn) = n (mod |ι|b)
8. Let valVb (Rσ(G,F,N)) = f(valVb (N)) where f(k+1) = (valVb (F )[k]b)[f(k)]b

and f(0) = valVb (G).
9. Let valVb (YσM) = f �σ�b (0) where f(x) = valVb (M)[x]b.



340 L. Kristiansen

For any closed term M , we have valV0
b (M) = valV1

b (M) for any valuations
V0,V1, and we will simply write valb(M) when M is closed. �	
Any reader that finds Clause 9 in the definition of valVb surprising, should study
the proof of the next lemma.

Lemma 2 (Adequacy). (i) Let M and M ′ be hereditary total PCF−-terms
such that M �M ′, and let b be such that b > m for every constant km occurring
in M . We have valVb (M) = valVb (M ′). (ii) Let M : ι be a a closed hereditary
total PCF−-term, and let b = max{m | km is a subterm of M}. Then we have
valb+1(M) = n iff M

�
� kn.

Proof. Now, (ii) follows straightforwardly from (i) since a total term of type ι
normalise to a unique constant kn. We have to prove (i) for each reduction rule
M �N . All the cases are straightforward apart from the case YσM �M(YσM).
In this nontrivial case we need the following claim.

(Claim) Let M,M1, . . . ,Mn be arbitrary PCF−-terms of proper types,
and assume that

(YσM)(M1, . . . ,Mn)
�
� km .

Then we have
(Mk(Ωσ))(M1, . . . ,Mn)

�
� km

for any k ≥ �σ�b where
– b = max{k� | k� occurs in the terms M,M1, . . . ,Mn}
– Ωσ is the totally undefined term defined by

Ωι ≡ Yι(λxι.x) Ωσ→τ ≡ λXσ.Ωτ Ωσ×τ ≡ 〈Ωσ, Ωτ 〉 .
Let PCF−

b be PCF− where the set of constants is restricted to {k0, . . . , kb−1},
and let Dσb

be the standard Scott domain interpreting the type σ when the base
type ι is interpreted by Dιb = {⊥, 0, 1, . . . , b− 1}. The reader should note that
domain height of the type σ at base b, i.e. �σ�b, is the greatest m such that there
exist d0, . . . , dm ∈ Dσb

where di � di+1 and di �= di+1 for all i < m.
The claim suggests the following interpretation [[ · ]]V of the PCF−

b -terms:
let [[YσM ]]V = [[M ]]kV(⊥) where k = �σ�b; let [[k�]]V = � for any constant k�; let
[[x]]V = V(x) for any variable x; let [[(MN)]]V = [[M ]]V([[N ]]V); let [[λxσM τ ]]V = f
where the function f : Dσb

→ Dτb
is given by f(d) = [[M ]]Vx

d
; etcetera. (We omit

the rather obvious interpretations of pairs, projections and recursor terms.) In
this interpretation of PCF−

b -terms, we have

– [[YσM ]]V = [M ]]kV(⊥) for any k ≥ �σ�b
– [[M ]]jV(⊥) � [[M ]]jV(d) for any j ∈ N, d ∈ Dσb

. (†)
Furthermore, there exists a natural bijection ‖ · ‖ between the total elements of
Dσb

and the set {n | n < |σ|b}, and it is straightforward to prove that

‖[[M ]]V‖ = valVb (M) (‡)
for any PCF−

b -term M not containing fixed-point terms.



Recursion in Higher Types and Resource Bounded Turing Machines 341

We are now ready to prove that valVb (YσM) = valVb (M(YσM)) where YσM
is an arbitrary hereditary total PCF−

b -term. Let f(x) = valVb (M)[x]b and let k =
�σ�b. Hence, we have valVb (YσM) = fk(0) by the definition of valVb . Pick a total
d0 ∈ Dσb

such that ‖d0‖ = 0. By (†), we have [[YσM ]]V = [M ]]kV(⊥) � [M ]]kV(d0)
and [[YσM ]]V = [M ]]k+1

V (⊥) � [M ]]k+1
V (d0), and thus, as YσM is total, we also

have

[[M ]]kV(d0) = [[YσM ]]V = [[M ]]k+1
V (d0) . (*)

Furthermore, by (‡) we have

‖[[M ]]V‖ = valVb (M) = f (**)

if M contains no fixed-point terms. If M contains fixed-point terms, we still have
(**), now by an easy induction argument. Finally, by (*) and (**), we have

valVb (YσM) = fk(0) = ‖[[M ]]kV(d0)‖ = ‖[[M ]]k+1
V (d0)‖ =

ffk(0) = valVb (M(YσM)) . �	

Arithmetic in T− and PCF−

Lemma 3 (Conditionals). For any type σ there exists a T−-term Condσ of
type ι, σ, σ → σ such that Condσ(k0,M1,M2) = M1 and Condσ(kn,M1,M2) =
M2 when n > 0. Moreover, Rk(Condσ) = 0.

A proof of Lemma 3 can be found in [13]. Proofs of the two next lemmas can
also be found in [13], but we will repeat the core of the proofs here.

Lemma 4 (Long Iterations in T−). For all types σ and τ there exists a
T−-term Itστ : (ι, τ → τ, τ)→ τ such that Itστ (kb, F,G) = F |σ|b+1G. Moreover, we
have Rk(Itστ ) = dg(σ) + dg(τ). (We will call Itστ an iterator.)

Proof. We prove the lemma by induction on the structure of σ.
Assume σ = ι. Let Itιτ ≡ λnιY τ→τXτ .Rτ (Y (X), λxι.Y, n). Obviously, we

have Rk(Itιτ ) = dg(ι) + dg(τ), and it is straightforward to prove by induction
on b that Itστ (kb, F,G) = F b+1(G). Thus, the lemma holds when σ = ι since
|ι|b+1 = b + 1.

Assume σ = σ1 → σ2. Let Itστ ≡ λxιY τ→τXτ .(Itσ1
τ→τ (x, Itσ2

τ (x), Y )X). We
have

Rk(Itστ ) = max(Rk(Itσ1
τ→τ ),Rk(Itσ2

τ )) def. of Rk

= max(dg(σ1) + dg(τ → τ), dg(σ2) + dg(τ)) ind. hyp.

= max(dg(σ1) + dg(τ) + 1, dg(σ2) + dg(τ)) def. of dg

= max(dg(σ1) + 1, dg(σ2)) + dg(τ)
= dg(σ) + dg(τ) . def. of dg

So, the iterator has the right rank. We will now prove that we indeed have
Itστ (kb, F,G) = F |σ|b+1G. Let A ≡ (Itσ2

τ kb). We prove by induction on k that



342 L. Kristiansen

(AkF )G = F |σ2|kb+1G (*). We have (A0F ) = F , and hence (A0F )G = F |σ2|0b+1G.
Moreover, (Ak+1F )G = (A(AkF ))G = Itσ2

τ (kb, AkF,G) = (AkF )|σ2|b+1G =
F |σ2|k+1

b+1G. The two last equalities hold respectively by induction hypothesis on
σ2 and by induction hypothesis on k. This proves (*). Furthermore, we have

Itστ (kb, F,G) = Itσ1
τ→τ (kb, (Itσ2

τ kb), F )G =

(Itσ2
τ kb)

|σ1|b+1F )G (*)= F |σ2||σ1|b+1
b+1 G = F |σ|b+1G .

The first equality holds by the definition of Itστ , the second by induction hypoth-
esis on σ1.

When σ = σ1×σ2, let Itστ ≡ λxιY τ→τXτ .Itσ1
τ (x, Itσ2

τ (x, Y ), X) and the lemma
holds. We omit the details. �	
Lemma 5 (Arithmetic in T−). For any type σ there exists T−-terms

0σ : ι , Sucσ : ι, σ → σ , Predσ : ι, σ → σ , Leσ : ι, σ, σ → ι and Eqσ : ι, σ, σ → ι

of rank 2dg(σ)−̇2 such that (i) valb+1(0σ) = 0

(ii) valb+1(Sucσ(kb,M)) = valb+1(M) + 1 (mod |σ|b+1)
(iii) valb+1(Predσ(kb,M)) = valb+1(M)− 1 (mod |σ|b+1)
(iv) Leσ(kb,M1,M2) = 0 iff valb+1(M1) ≤ valb+1(M2)
(v) Eqσ(kb,M1,M2) = 0 iff valb+1(M1) = valb+1(M2)

for any closed T-terms M , M1 and M2.

Proof. Let 0ι ≡ k0; 0π×τ ≡ 〈0π, 0τ 〉; and 0π→τ ≡ λxπ0τ . Obviously, we have
valb+1(0σ) = 0 and Rk(0σ) = 0 ≤ 2dg(σ)−̇2 for any σ.

We will define Sucσ, Leσ and Eqσ in parallel recursively over the structure
of σ. We omit the definition of Predσ as this definition is very similar to the
definition of Sucσ.

Let σ = ι. We omit the details for this case. See [13].
Let σ = π → τ . We define F by

F ≡ λbιXσY σzι×π.Condι×π(Eqτ (b,X(sndz), Y (sndz)),
〈fstz, Sucπ(b, sndz)〉,Condι×π(Leτ (b,X(sndz), Y (sndz)),

〈k0, Sucπ(b, sndz)〉, 〈k1, Sucπ(b, sndz)〉)) .
By the induction hypothesis, we have

F (kb,M,N, 〈i, j〉) =
⎧
⎨

⎩

〈i, Sucπ(j)〉 if valb+1(M)[valb+1(j)]b+1 = valb+1(N)[valb+1(j)]b+1

〈0, Sucπ(j)〉 if valb+1(M)[valb+1(j)]b+1 < valb+1(N)[valb+1(j)]b+1

〈1, Sucπ(j)〉 otherwise.

Thus, we have

fst(F (kb,M,N)|π|b(〈k0, 0π〉)) =
{
k0 if valb+1(M) ≤ valb+1(N)
k1 otherwise.



Recursion in Higher Types and Resource Bounded Turing Machines 343

and then (iii) holds when

Leσ ≡ λbXY.fst Itπι×π(b, F (b,X, Y ), 〈k0, 0π〉). (†)
Now, let Eqσ ≡ λbXY.Condι(Leσ(b,X, Y ),Condι(Leσ(b, Y,X), k0, k1), k1) and
(iv) holds. We will now argue that Leσ and Eqσ have the required rank. First,
we note that Rk(F ) ≤ max(2dg(π)−̇2, 2dg(τ)−̇2) (*). (Lemma 3 states that
Rk(Condι×π) = 0, and then (*) follows from the induction hypothesis.)

Rk(Eqσ) = Rk(Leσ) def. of Rk, def. of Eqσ

= max(Rk(F ),Rk(Itπι×π)) def. of Rk, def. of Leσ

≤ max(Rk(F ), dg(π) + dg(ι × π)) Lemma 4

≤ max(2dg(π)−̇2, 2dg(τ)−̇2, 2dg(π)) (*)

= 2(max(dg(π) + 1, dg(τ))−̇1)
= 2dg(σ)−̇2 . def. of dg, σ = π → τ

Thus, Eqσ and Leσ have the required rank. Next we define Sucσ. Any number
a < |σ|b can be uniquely written in the form a = v0|τ |0b + v1|τ |1b + · · · + vk|τ |kb
where k = |π|b − 1 and vj < |τ |b for j = 1, . . . , k. There exists i ≤ k such that

a+ 1 = v′0|τ |0b + · · · + v′i|τ |ib + vi+1|τ |i+1
b + · · · + vk|τ |kb (mod |σ|b)

where v′j = vj + 1 (mod |τ |b) for j = 0, . . . , i. We call such an i the carry border
of the number a. Let

Cσ ≡ λbX.snd Itπι×π(b,G(b,X), 〈0, 0π〉) (‡)
where

G ≡ λbιXπ→τzι×π.Condι(fst z,Condι×π(Eqτ (b, Sucτ (X(sndz)), 0τ ),
〈0, Sucπ(sndz)〉, 〈1, Sucπ(sndz)〉), 〈1, Sucπ(sndz)〉) .

Then valb+1(Cσ(kb,M)) equals the carry border of valb+1(M) when M : σ is
a closed term. Let Sucσ ≡ λbιXσiπ.Condτ (Leπ(b, i,Cσ(b,X)), Sucτ (X(i)), X(i))
and (i) holds. An argument similar to the one showing that the ranks of Eqσ and
Leσ are bounded by 2dg(σ)−̇2, will show that also the rank of Cσ is bounded
by 2dg(σ)−̇2. The rank of Sucσ equals the rank of Cσ.

Let σ = π × τ . Define Sucσ such that

Sucσ(b, 〈F,G〉) =
{ 〈Sucπ(F ), Sucτ (G)〉 if Eqτ (b, Sucτ (G)) = 0τ
〈F, Sucτ (G)〉 otherwise.

Define Leσ such that Leσ(b, 〈F,G〉, 〈F ′, G′〉) = 0 iff

(Leπ(b, F, F ′) = 0 ∧ Eqπ(b, F, F ′) > 0) ∨
(Leπ(b,G,G′) = 0 ∧ Eqπ(b, F, F ′) = 0)

Define Eqσ as above. It is easy to construct the required terms, and we skip the
details. �	



344 L. Kristiansen

Lemma 6 (Arithmetic in PCF−). For any type σ there exists PCF−-terms

0σ : ι , Sucσ : ι, σ → σ , Predσ : ι, σ → σ , Leσ : ι, σ, σ → ι and Eqσ : ι, σ, σ → ι

of rank dg(σ) such that (i), (ii), (iii), (iv) and (v) of Lemma 5 hold.

Proof. This proof is nearly identical to the proof of Lemma 5. We define the terms
Sucσ, Predσ, Leσ and Eqσ as we do in the proof of Lemma 5, i.e., in parallel
recursively over the structure of σ, but now we will use fixed-point terms in place
of the iterators. This will reduce the ranks of the terms we are defining.

When σ = π → τ , the statement marked (†) in the proof of Lemma 5 defines
the T−-term Leσ by Leσ ≡ λbXY.fst Itπι×π(b, F (b,X, Y ), 〈k0, 0π〉) where F is a
term such that

fst(F (kb,M,N)|π|b(〈k0, 0π〉)) =
{
k0 if valb+1(M) ≤ valb+1(N)
k1 otherwise. (*)

and Rk(F ) = max(Rk(Eqτ ),Rk(Sucπ)) (**).
Given a term F with the this properties, we can define a PCF−-term Leσ by

Leσ ≡ λbXY.fst((Yπ→ ι×πA)0π) where

A ≡ λUπ→ ι×πWπ.Condι×π( Eqπ(b, Sucπ(b,W ), 0π) ,
〈k0, 0π〉 , F (b,X, Y )U(Sucπ(b,W )) ) .

It follows from (*) and the induction hypotheses that clause (iv) of the lemma
holds. Furthermore Leσ has the required rank since

Rk(Leσ) = max(Rk(Eqτ ),Rk(Sucπ), dg(π → ι× π)) (**), def. of Leσ

= max(Rk(Eqτ ),Rk(Sucπ), dg(π) + 1) def. of dg

= max(dg(τ), dg(π), dg(π) + 1) ind. hyp.

= dg(σ) . def. of dg

Along this line, we can also find a PCF−-term Sucσ satisfying the lemma
by eliminating the iterator Itπι×π from the formula marked (‡) in the proof of
Lemma 5. The definition of the term Predσ is very similar to the definition of
Sucσ. Let Eqσ ≡ λbXY.Condι(Leσ(b,X, Y ),Condι(Leσ(b, Y,X), k0, k1), k1). �	

Complexity Classes and Fragments of T− and PCF−

Definition. A problem is a subset of N. A term M : ι→ ι decides a problem A

when M(kx)
�
� k0 if x ∈ A, and M(kx)

�
� k1 if x �∈ A. We define the sets of

problems Gk and Pk by respectively (i) A ∈ Gk iff A is decided by a T−-term M
where k ≤ Rk(M) and (ii) A ∈ Pk iff A is decided by a PCF−-term M where
k ≤ Rk(M). A deterministic Turing machine M decides a problem A when M on
input x ∈ N halts in a distinguished accept state if x ∈ A, and in a distinguished
reject state if x �∈ A. The input x ∈ N should be represented in binary on
the Turing machine’s input tape. We will use |x| to denote the length of the



Recursion in Higher Types and Resource Bounded Turing Machines 345

standard binary representation of the natural number x. For i ∈ N, we define
time 2lin

i (space 2lin

i ) to be the set of problems decidable by a deterministic
Turing machine working in time (space) 2c|x|i for some fixed c ∈ N. �	

Theorem 1. We have space 2lin
n ⊆ G2n time 2lin

n+1 ⊆ G2n+1. Furthermore, we
have time 2lin

n+1 ⊆ Pn+1.

Proof. Let m be a one-way 1-tape deterministic Turing machine solving some
problem A in time t(|x|) and space s(|x|). The input x is a natural number,
and we assume that s(|x|) < 2xn for some fixed n ∈ N. Let {a0, . . . , aı} and
{q0, . . . , qj} be respectively m’s alphabet and m’s set of states. Let q0 and q1 be
respectively the reject and accept state.

First we will construct a T−-term Tm
π,σ and a PCF−-term PCFm

π,σ which sim-
ulate m. There exists a type σ such that s(|x|) < |σ|x for x > 1. Fix such
a σ. We can w.l.o.g. assume that the input x is greater that 1, and thus, we
can represent a configuration of m by a closed term 〈T σ→ι, 〈Hσ, Sι〉〉 of type
ξ = (σ → ι)× (σ × ι) where T represent the tape, H the current position of the
head, and S the current state:

– valx(T )[i]x = j iff the i’th cell of the tape contains aj
– valx(H) = i iff the head scans the i’th cell of the tape
– valx(S) = i iff qi is the current state.

Furthermore, we can use the functionals given by Lemma 5 and Lemma 6 to
simulate the execution of m on input x. The functionals Predσ(kx) :σ → σ and
Sucσ(kx) :σ → σ will move the head back and forth, and the functional

Md ≡ λF σ→ιXσV ιY σ.Condι(Eqσ(kx, X, Y ), V, F (Y ))

will modify the tape, e.g., Md(T,H, k17) writes the symbol a17 in the scanned
cell. We construct terms Stepσ : ι, ξ → ξ and Initσ : ι→ ξ such that Initσ(kx)
represents the initial configuration of m on input x, and Stepσ(kx, Initσ(kx))
represents the configuration after one transition, Stepσ(kx, Stepσ(kx, Initσ(kx)))
represents the configuration after two transitions, and so on. We construct Stepσ
such that Stepσ(kx, C) = C when C represents a halt configuration.

It is easy to see that these terms can be constructed such that Rk(Stepσ) =
Rk(Initσ) = Rk(Sucσ) = Rk(Predσ) = Rk(Eqσ). Thus, by Lemma 5, Stepσ and
Initσ are of rank 2dg(σ)−̇2 if we are working in T−, and by Lemma 6, Stepσ
and Initσ are of rank dg(σ) if we are working in PCF−.

Now, fix a type π such that t(|x|) < |π|x for x > 1. Assume we are working
in T−. Let Tm

π,σ ≡ λyιItπξ (y, Stepσ(y), Initσ(y)) where the T−-term Itσξ is given
by Lemma 4. We have Tm

π,σ(kx) = Stepσ(kx)|π|x(Initσ(kx)), and thus, Tm
π,σ sim-

ulates m since m runs in time |π|x. Furthermore, since dg(ξ) = dg(σ) + 1, we
have

Rk(Tm
π,σ) = Rk(Itπξ ) = dg(π) + dg(ξ) = dg(π) + dg(σ) + 1 . (*)



346 L. Kristiansen

Next, assume we are working in PCF−. Let PCFm
π,σ ≡ λxι.((Yπ→ξP )0π) where

P ≡ λXπ→ξZπ.Condξ(Eqπ(xι, Sucπ(xι, Z), 0π), Initσ(xι), Stepσ(xι, XZ))) .

Then PCFm
π,σ simulates m and

Rk(PCFm
π,σ) = dg(π → ξ) = max(dg(π) + 1, dg(ξ)) =

max(dg(π) + 1, dg(σ → ι)) = max(dg(π), dg(σ)) + 1 . (**)

Let A ∈ time 2lin
n+1, and let m be a Turing machine which decides A in

time, and thus also in space, 2k|x|n+1 for some fixed number k. We have 2k|x|n+1 ≤
2k log2(x+2)
n+1 ≤ 2log2(x+2)k

n+1 ≤ 2(x+2)k

n , and hence, there exists a type σ of degree
n such that 2k|x|n+1 ≤ |σ|x for x > 1. Let M ≡ λxι.snd sndTm

σ,σ(x) and M ′ ≡
λxι.snd snd PCFm

σ,σ(x). Both the T−-term M and the PCF−-term M ′ decide the

problem A. We have Rk(M) = Rk(Tm
σ,σ) (*)= dg(σ)+dg(σ)+1 = 2n+1, and thus

A ∈ G2n+1. Furthermore, Rk(M ′) = Rk(PCFm
σ,σ) (**)= dg(σ)+1 = n+1, and thus

A ∈ Pn+1. This proves the inclusions time 2lin
n+1 ⊆ G2n+1 and time 2lin

n+1 ⊆ Pn+1

for all n ∈ N.
Let A ∈ space 2lin

n+1. Thus, there exists a Turing machine m deciding A in

space 2k|x|n+1 and time 2k
′|x|
n+2 for some k, k′. We can find a type σ of degree n and

a type ρ of degree n + 1 such that 2k|x|n+1 ≤ |σ|x and 2k
′|x|
n+2 ≤ |ρ|x. Let M ≡

λxι.snd snd Tm
ρ,σ(x). The T−-term M decides the problem A, and Rk(M) =

2n+ 2. Hence, the inclusion space 2lin
n ⊆ G2n holds for all n > 0. The inclusion

space 2lin
0 ⊆ G0 requires a tailored proof, and we omit the details. �	

Theorem 2. We have Pn+1 ⊆ time 2lin
n+1.

Proof. We need the following claim.

(Claim) Let M :σ be a PCF−-term where dg(σ) ≤ n+ 1 and Rk(M) ≤
n+ 1, and let V be any valuation. The value valVx (M) can be computed
by a Turing machine running in time 2k|x|n+1 for some k ∈ N.

Assume A ∈ Pn+1. The definition of Pn+1 says that there exists a closed PCF−-
term M ι→ι of rank n + 1 such that Mkx

�
� k0 if x ∈ A, and Mkx

�
� k1

if x �∈ A. We can w.l.o.g. assume that M is hereditary total. Let fA(x) =
valmax(x,m)+1(Mkx) where m is the greatest m such that km occurs in M . By
Lemma 2 (ii), fA(x) = 0 if x ∈ A, and fA(x) = 1 if x �∈ A. By (Claim), fA(x)
can be computed by a Turing machine running in time 2k|x|n+1 for some k ∈ N.
Hence, we have A ∈ time 2lin

n+1 and the inclusion Pn+1 ⊆ time 2lin
n+1 holds.

Next we prove the claim. We will give an informal recursive algorithm for
computing the number valVx (M) where M has the properties stated in the claim.
The algorithm is meant to be carried out by pen and paper, and we will argue
that the number of symbols written down during the execution is bounded by
2p(x)n for some polynomial p. It is to easy to see that the informal algorithm



Recursion in Higher Types and Resource Bounded Turing Machines 347

can be implemented by a Turing machine m running in time 2p0(x)n for some
polynomial p0, and hence, there exists k ∈ N such that m runs in time 2k|x|n+1.

We can w.l.o.g. assume that dg(π) = 0 for any recursor term Rπ(. . .) occurring
in M , and if dg(ξ) > n+ 1 for some subterm N : ξ of M , then N is of the form
N ≡ λXσ.P σ and occur in the context Yσ(N) where dg(σ) = n+ 1.

Let y1, . . . , y� be an enumeration of the (bound and unbound) variables oc-
curring in M . The algorithm keeps track of the values assigned to the variables
in a list y1/a1, . . . , y�/a� where the value ai is the value currently assign to the
variable yi. The number � is fixed (rename variables to avoid name conflicts),
and we have ai < |σ|x if ai is assigned to a variable of type σ. Since we have
dg(τ) ≤ n+1 for any variable yτi in the list, there exists a polynomial p0 such that
2p0(x)n+1 bounds bounds every ai in the list, and thus each ai can be represented
by a bit string of length 2p0(x+2)

n . Thus, there exists a polynomial p(x) such
that the algorithm can assign values to variables, and retrieve values assigned
to variables, in time 2p(x)n .

The algorithm computes the value valVx (M) recursively over the structure
of M . (Note that the structure of M does not depend on the input x.) Case
M ≡ km: return m (mod x + 1). The number of symbols we will write down
is obviously bounded by 2p(x)n for some polynomial p. Case M ≡ yi: return ai.
The number ai is stored as a bit string in the assignment list, and the number
of symbols we have to write down to retrieve this number is bounded by 2p(x)n

for some polynomial p. Case Mσ ≡ λzπN τ :

sum:=0;
for i = 0, . . . , |π|x − 1 do { assign i to z; sum:= sum× |τ |x + valVx (N) };
return sum

We have dg(π) ≤ n and dg(τ) ≤ n + 1 since dg(σ) ≤ n + 1. Hence, there exist
polynomials p0 and p1 such that the loop will be executed 2p0(x)n times and any
number assigned to sum will be bounded by 2p1(x)n+1 . The number of bits required
to represent such a number will be bounded by 2p1(x+2)

n . Assume inductively
that there exists a polynomial p2 such that the number of symbols we have
to write down to compute valVx (N) is bounded by 2p2(x)n . It follows that there
exists a polynomial p such that the number of symbols we have to write down
to compute valVx (M) is bounded by 2p(x)n . Case Mσ ≡ Yσ(λzσP σ):

a:=0; for i = 0, . . . , �σ�x do { assign a to z; a:=valVx (P ) }; return a

The argument that this algorithm satisfies our efficiency requirements is similar
to the argument for the case M ≡ λzN , and we leave the details to the reader.
Note that there exists a polynomial p0 such that �σ�x < 2p0(x)n .

The remaining cases, i.e. M ≡ (M1M2), M ≡ fstM1, M ≡ sndM ′, M ≡
〈M1,M2〉 and M ≡ Rπ(G,F,N), are fairly straightforward, and we omit the
details. �	



348 L. Kristiansen

We have not proved the inclusions G2n ⊆ space 2lin
n and G2n+1 ⊆ time 2lin

n+1,
but both inclusions hold. Fairly detailed proofs based on an idea of Goerdt &
Seidl [3,4], are published in Kristiansen & Voda [13]. Alternative, and essentially
different, proofs can be found in Kristiansen & Voda [14].

These two inclusions and the theorems above yield the following corollary.

Corollary 1. We have time 2lin
n+1 = Pn+1 = G2n+1 and space 2lin

n = G2n.

References

1. Avigad, J., Feferman, S.: Gödel’s functional interpretation. In: Buss, S. (ed.) Hand-
book of Proof Theory. Elsevier (1998)

2. Barra, G., Kristiansen, L., Voda, P.: Nondeterminism without Turing machines.
In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497. Springer,
Heidelberg (2007), http://www.mat.unisi.it/∼sorbi/Proceedings.pdf

3. Goerdt, A., Seidl, H.: Characterizing complexity classes by higher type primitive re-
cursive definitions, part ii. In: Dassow, J., Kelemen, J. (eds.) Aspects and prospects
of theoretical computer science, Smolenice. LNCS, vol. 464, pp. 148–158. Springer,
Heidelberg (1990)

4. Goerdt, A.: Characterizing complexity classes by higher type primitive recursive
definitions. Theoretical Computer Science 100, 45–66 (1992)

5. Jones, N.: The expressive power of higher-order types or, life without CONS.
Journal of Functional Programming 11, 55–94 (2001)

6. Jones, N.: LOGSPACE and PTIME characterized by programming languages. The-
oretical Computer Science 228, 151–174 (1999)

7. Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and
LINSPACE. Computational Complexity 14, 72–88 (2005)

8. Kristiansen, L.: Complexity-theoretic hierarchies. In: Beckmann, A., Berger, U.,
Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 279–288. Springer,
Heidelberg (2006)

9. Kristiansen, L.: Complexity-theoretic hierarchies induced by fragments of Gödel’s
T. In: Theory of Computing Systems. Springer, Heidelberg (2007)

10. Kristiansen, L., Barra, G.: The small Grzegorczyk classes and the typed λ-calculus.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
252–262. Springer, Heidelberg (2005)

11. Kristiansen, L., Voda, P.: Complexity classes and fragments of C. Information
Processing Letters 88, 213–218 (2003)

12. Kristiansen, L., Voda, P.: The surprising power of restricted programs and Gödel’s
functionals. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp.
345–358. Springer, Heidelberg (2003)

13. Kristiansen, L., Voda, P.: Programming languages capturing complexity classes.
Nordic Journal of Computing 12, 1–27 (2005); Special issue for NWPT 2004

14. Kristiansen, L., Voda, P.: The trade-off theorem and fragments of Gödel’s T. In:
Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 654–674.
Springer, Heidelberg (2006)

15. Odifreddi, P.: Classical recursion theory II. Studies in Logic and the Foundations
of Mathematics, vol. 143. North-Holland Publishing Co., Amsterdam (1999)

16. Streicher, T.: Domain-theoretic foundations of functional programming. World Sci-
entific Publishing Co. Pte. Ltd, Singapore (2006)

http://www.mat.unisi.it/~sorbi/Proceedings.pdf


Computability and Complexity in Self-assembly

James I. Lathrop, Jack H. Lutz�, Matthew J. Patitz, and Scott M. Summers��

Department of Computer Science
Iowa State University

Ames, IA 50011, U.S.A.
{jil,lutz,mpatitz,summers}@cs.iastate.edu

Abstract. This paper explores the impact of geometry on computability
and complexity in Winfree’s model of nanoscale self-assembly. We work
in the two-dimensional tile assembly model, i.e., in the discrete Euclidean
plane Z×Z. Our first main theorem says that there is a roughly quadratic
function f such that a set A ⊆ Z

+ is computably enumerable if and only
if the set XA = {(f(n), 0)|n ∈ A} – a simple representation of A as a set
of points on the x-axis – self-assembles in Winfree’s sense. In contrast,
our second main theorem says that there are decidable sets D ⊆ Z × Z

that do not self-assemble in Winfree’s sense.
Our first main theorem is established by an explicit translation of an

arbitrary Turing machine M to a modular tile assembly system TM , to-
gether with a proof that TM carries out concurrent simulations of M on
all positive integer inputs.

Keywords: computability, computational complexity, molecular com-
puting, self-assembly.

1 Introduction

A major objective of nanotechnology is to engineer systems that, like many sys-
tems in nature, autonomously assemble themselves from molecular components.
One promising approach to this objective, pioneered by Seeman in the 1980s
[9], is DNA tile self-assembly. This approach exploits the information-processing
and structural properties of DNA to construct nanoscale components (DNA
tiles) that, with moderate control of physical conditions (temperature, concen-
tration in solution, etc.), spontaneously assemble themselves into larger struc-
tures. These structures, which may be complex and aperiodic, are programmed,
in the sense that they are determined by a designer’s selection of the short,
single-strand nucleotide sequences (“sticky ends”) that appear on each side of
each type of DNA tile to be used.

� Corresponding author. This author’s research was supported in part by National Sci-
ence Foundation Grants 0344187, 0652569 and 0728806 and by Spanish Government
MEC Project TIN 2005-08832-C03-02

�� This author’s research was supported in part by NSF-IGERT Training Project in
Computational Molecular Biology Grant number DGE-0504304.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 349–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



350 J.I. Lathrop et al.

In the late 1990s, Winfree [13] introduced a mathematical model of DNA tile
assembly called the Tile Assembly Model. This model, which was soon refined
by Rothemund and Winfree [7,8], is an extension of Wang tiling [11,12]. (see also
[1,6,10].) The Tile Assembly Model, which is described in section 2 below, uses
square tiles with various types and strengths of “glue” on their edges as abstrac-
tions of DNA tiles adsorbing to a growing structure on a very flat surface such
as mica. Winfree [13] proved that the Tile Assembly Model is computationally
universal, i.e., that any Turing machine can be encoded into a finite set of tile
types whose self-assembly simulates that Turing machine.

The computational universality of the Tile Assembly Model implies that self-
assembly can be algorithmically directed, and hence that a very rich set of
structures can be formed by self-assembly. However, as we shall see, this com-
putational universality does not seem to imply a simple characterization of the
class of structures that can be formed by self-assembly. The difficulty is that
self-assembly (like sensor networks, smart materials, and other topics of current
research [2,3]) is a phenomenon in which the spatial aspect of computing plays
a crucial role. Two processes, namely self-assembly and the computation that
directs it, must take place in the same space and time.

In this paper, we focus on the self-assembly that takes place in the discrete
Euclidean plane Z

2 = Z × Z, where Z is the set of integers. Roughly, a tile as-
sembly system T (defined precisely in section 2) is a finite set T of tile types,
together with a finite seed assembly σ consisting of one or more tiles of these
types. Self-assembly is then the process in which tiles of the types in T succes-
sively adsorb to σ (more precisely, to the assembly which is thereby dynamically
growing from σ) in any manner consistent with the rules governing the glue
types on the edges of the given tile types. Note that self-assembly is, in general,
a nondeterministic, asynchronous process.

We say that a set X ⊆ Z
2 self-assembles in a tile assembly system T if every

possible “run” of self-assembly in T results in the placement of black tiles on
the set X and only on the set X . (Some of the tile types in T are designated to
be black. Non-black tiles may appear on some or all points in the complement
Z

2 − X .) This is the sense in which Winfree [13] has demonstrated the self-
assembly of the standard discrete Sierpinski triangle. (In [5] this is called weak
self-assembly to contrast it with a stricter notion in which, essentially, all tiles
are required to be black.)

This paper presents two main theorems on the interplay between geometry
and computation in tile self-assembly. To explain our first main theorem, define
the function f : Z

+ → Z
+ by

f(n) =
(
n+ 1

2

)

+ (n+ 1)�logn�+ 6n− 21+�log(n)� + 2.

Note that f is a reasonably simple, strictly increasing, roughly quadratic function
of n. For each set A ⊆ Z

+, the set

XA = {(f(n), 0)|n ∈ A}



Computability and Complexity in Self-assembly 351

is thus a straightforward representation of A as a set of points on the positive
x-axis.

Our first main theorem says that every computably enumerable set A of pos-
itive integers (decidable or otherwise) self-assembles in the sense that there is
a tile assembly system TA in which the representation XA self-assembles. Con-
versely, the existence of such a tile assembly system implies the computable
enumerability of A.

In contrast, our second main theorem says that there are decidable sets D ⊆ Z
2

that do not self-assemble in any tile assembly system. In fact, we exhibit such
a set D for which the condition (m,n) ∈ D is decidable in time polynomial in
|m|+ |n|.

Taken together, our two main theorems indicate that the interaction between
geometry and computation in self-assembly is not at all simple. Further inves-
tigation of this interaction will improve our understanding of tile self-assembly
and, more generally, spatial computation.

The proof of our first main theorem has two features that may be useful
in future investigations. First, we give an explicit transformation (essentially
a compiler, implemented in C++) of an arbitrary Turing machine M to a tile
assembly system TM whose self-assembly carries out concurrent simulations ofM
on (the binary representation of) all positive integer inputs. Second, we prove
two lemmas – a pseudoseed lemma and a multiseed lemma – that enable us
to reason about tile assembly systems in a modular fashion. This modularity,
together with the local determinism method of Soloveichik and Winfree [10],
enables us to prove the correctness of TM .

2 Preliminaries

We work in the 2-dimensional discrete Euclidean space Z
2. We write U2 for the

set of all unit vectors, i.e., vectors of length 1, in Z
2. We regard the 4 elements

of U2 as (names of the cardinal) directions in Z
2.

We now give a brief and intuitive sketch of the Tile Assembly Model that
is adequate for reading this paper. More formal details and discussion may be
found in [7,8,13].

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, so it has a well-defined “side u” for each u ∈ U2. Each side u is covered
with a “glue” of “color” colt(u) and “strength” strt(u) specified by its type t.
If two tiles are placed with their centers at adjacent points m,m + u ∈ Z

2,
where u ∈ U2, and if their abutting sides have glues that match in both color
and strength, then they form a bond with this common strength. If the glues
do not so match, then no bond is formed between these tiles. In this paper, all
glues have strength 0, 1, or 2. When drawing a tile as a square, each side’s glue
strength is indicated by whether the side is a dotted line (0), a solid line (1), or
a double line (2). Each side’s “color” is indicated by an alphanumeric label.

Given a set T of tile types and a “temperature” τ ∈ N, a τ-T-assembly
is a partial function α : Z

2 ��� T - intuitively, a placement of tiles at some



352 J.I. Lathrop et al.

locations in Z
2 - that is stable in the sense that it cannot be “broken” into

smaller assemblies without breaking bonds of total strength at least τ . If α
and α′ are assemblies, then α is a subassembly of α′, and we write α � α′, if
dom α ⊆ dom α′ and α(m) = α′(m) for all m ∈ dom α.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. A tile assembly system (TAS)
is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ ∈ N. In this paper we always have τ = 2.
A generalized tile assembly system (GTAS) is defined similarly, but without the
finiteness requirements. We write A [T ] for the set of all assemblies that can arise
(in finitely many steps or in the limit) from T . An assembly α is terminal, and
we write α ∈ A� [T ], if no tile can be stably added to it. A GTAS T is directed,
or produces a unique assembly, if it has exactly one terminal assembly.

A set X ⊆ Z
2 (weakly) self-assembles if there exist a TAS T = (T, σ, τ) and

a set B ⊆ T such that α−1(B) = X holds for every terminal assembly α. That
is, there is a set B of “black” tile types such that every terminal assembly has
black tiles on X and only on X .

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence α =
(α0, α1, α2, . . .) of assemblies in which α0 = σ and each αi+1 is obtained from
αi by the addition of a single tile. In general, even a directed TAS may have a
very large (perhaps uncountably infinite) number of different assembly sequences
leading to its terminal assembly. This seems to make it very difficult to prove
that a TAS is directed. Fortunately, Soloveichik and Winfree [10] have recently
defined a property, local determinism, of assembly sequences and proven the
remarkable fact that, if a TAS T has any assembly sequence that is locally
deterministic, then T is directed.

3 Pseudoseeds and Multiseeds

This section introduces two conceptual tools that enable us to reason about tile
assembly systems in a modular fashion.

The idea of our first tool is intuitive. Suppose that our objective is to design
a tile assembly system T in which a given set X ⊆ Z

2 self-assembles. The set X
might have a subset X∗ for which it is natural to decompose the design into the
following two stages.

(i) Design a TAS T0 = (T0, σ, τ) in which an assembly σ∗ with domain X∗

self-assembles.
(ii) Extend T0 to a tile set T such that X self-assembles in the TAS T ∗ =

(T, σ∗, τ)

We would then like to conclude that X self-assembles in the TAS T = (T, σ, τ).
This will not hold in general, but it does hold if (i) continues to hold with T in
place of T0 and σ∗ is a pseudoseed in the following sense.



Computability and Complexity in Self-assembly 353

Definition 1. Let T = (T, σ, τ) be a GTAS. A pseudoseed of T is an assembly
σ∗ ∈ A[T ] with the property that, if we let T ∗ = (T, σ∗, τ), then, for every
assembly α ∈ A[T ], there exists an assembly α′ ∈ A[T ∗] such that α � α′.

The following lemma says that the above definition has the desired effect.

Lemma 1 (pseudoseed lemma). If σ∗ is a pseudoseed of a GTAS T =
(T, σ, τ) and T ∗ = (T, σ∗, τ), then A� [T ] = A� [T ∗].

Note that the pseudoseed lemma entitles us to reason as though the self-assembly
proceeds in stages, even though this may not actually occur. (E.g., the pseu-
doseed σ∗ may itself be infinite, in which case the self-assembly of σ∗ and the
self-assembly from σ∗ must occur concurrently.)

Our second tool for modular reasoning is a bit more involved. Suppose that
we have a tile set T and list σ0, σ1, σ2, . . . of seeds that, for each i, the TAS Ti =
(T, σi, τ) has a desired assembly αi as its result. If the assemblies α0, α1, α2, . . .
have disjoint domains, then it might be possible for all these assemblies to grow
from a “multiseed” σ∗ that has σ0, σ1, σ2, . . . embedded in it. We now define a
sufficient condition for this.

Definition 2. Let T and T ′ be sets of tile types with T ⊆ T ′, and let σ =
(σi | 0 ≤ i < k) be a sequence of τ-T -assemblies, where k ∈ Z

+ ∪ {∞}. A
σ-T -T ′-multiseed is a τ-T ′ assembly σ∗ with the property that, if we write

T ∗ = (T ′, σ∗, τ)

and
Ti = (T, σi, τ)

for each 0 ≤ i < k, then the following four conditions hold.

1. For each i, σi � σ∗.
2. For each i �= j, α ∈ A [Ti], α′ ∈ A [Tj ], m ∈ dom α, and m′ ∈ dom α′,

m −m′ ∈ U2 ∪ {0} ⇒ m,m′ ∈ dom σ∗. (Recall that U2 is the set of unit
vectors in Z2.)

3. For each i, and each α ∈ A [Ti], there exists α∗ ∈ A [T ∗] such that α � α∗.
4. For each α∗ ∈ A [T ∗], there exists, for each 0 ≤ i < k, αi ∈ A [Ti] such that

α∗ � σ∗ +
∑

0≤i<k αi.
5. For each α ∈ A [T ∗], α−1 (T ′ − T ) ⊆ dom σ∗.

Note: In condition 4 we are using the operation + defined as follows. If α, α′ :
Z

2 ��� T are consistent, in the sense that they agree on dom α ∩ dom α′, then
α + α′ : Z

2 ��� T is the unique partial function satisfying dom (α+ α′) =
dom α ∪ dom α′, α � α+ α′, and α′ � α+ α′. This is extended to summations∑

0≤i<k αi in the obvious way. The assemblies being summed in condition 4 are
consistent by conditions 1 and 2.

Intuitively, the four conditions in the above definition can be stated as follows.

1. The seeds σi are embedded in σ∗.
2. Assemblies in A [Ti] and assemblies in A [Tj ] do not interfere with each other.



354 J.I. Lathrop et al.

3. σ∗ does not interfere with assemblies in A [Ti].
4. σ∗ does not produce anything other than what its embedded seeds σi pro-

duce.
5. Tile types in T ′ − T cannot occur outside σ∗.

The following lemma says that the multiseed definition has the desired effect.

Lemma 2 (multiseed lemma). Let T ⊆ T ′ be sets of tile types, and let σ =
(σi | 0 ≤ i < k) be a sequence of τ-T -assemblies, where k ∈ Z

+ ∪ {∞}. If σ∗

is a σ-T -T ′-multiseed of T ∗ and Ti (0 ≤ i < k) are defined as in the multiseed
definition, then

A� [T ∗] =

⎧
⎨

⎩
σ∗ +

∑

0≤i<k
αi

∣
∣
∣
∣
∣
∣

each αi ∈ A� [Ti]
⎫
⎬

⎭
.

4 Self-assembly of Computably Enumerable Sets

In [13], Winfree proved that the Tile Assembly Model is Turing universal in two
dimensions. In this section, we prove a stronger result: for every TM M , there
exists a directed TAS that simulates M on (the binary representation of) every
input x ∈ N in the two dimensional discrete Euclidean plane. We state our result
precisely in the following theorem.

Theorem 1 (first main theorem). If f : Z
+ → Z

+ is defined as in section
1, then, for all A ⊆ Z

+, A is computably enumerable if and only if the set
XA = {(f(n), 0)|n ∈ A} self-assembles.

The “⇐” direction is easy. To prove the “⇒” direction, we exhibit, for any TM
M , a directed TAS TM = (T, σ, τ) that correctly simulates M on all inputs x ∈
Z

+ in the two dimensional discrete Euclidean plane. We sketch our construction
in the remainder of this section. Note that the full details of our construction
can be found at the following url: http://www.cs.iastate.edu/∼lnsa.

4.1 Overview of Construction

Intuitively, TM self-assembles a “gradually thickening bar”, immediately below
the positive x-axis with upward growths emanating from well-defined intervals
of points. For each x ∈ Z

+, there is an upward growth that simulates M on
x. If M halts on x, then (a portion of) the upward growth associated with the
simulation of M(x) eventually stops, and sends a signal down along the right
side of the upward growth via a one-tile-wide-path of tiles to the point (f(x), 0),
where a black tile is placed. See Figure 1 for a finite, yet intuitive snapshot of
this infinite process.

Our tile assembly system TM is divided into three modules: the ray, the
planter, and the TM module, which control the spacing between successive sim-
ulations, the initiation of upward growth, and the actual simulations of M on
each positive integer, respectively.

http://www.cs.iastate.edu/~lnsa


Computability and Complexity in Self-assembly 355

Fig. 1. Simulation of M on every input x ∈ N. Notice that M(2) halts - indicated by
the black tile along the x-axis. Note that this image should be viewed in color.

4.2 The Ray Module

The first module in our construction is the ray module (middle shade of gray
squares in Figure 1). For any 3 ≤ w ∈ Z

+, a ray of width w is a fixed-width,
periodic, binary counter that repeatedly counts from 0 to 2w− 1, such that each
integer is counted once, and then immediately copied once before the value of
the binary counter is incremented. Essentially, a ray of width w is a discrete
line of constant thickness w, having a kind of “slope” that depends on w in the
following way. In every other row (except for two special cases), the first tile to
attach does so on top of the second-to-left most tile in the previous row. Thus, a
ray of width w will have a slope of 2w

2w−1−1 = 2 + 2
2w−1−1 . This implies that the

set of points occupied by properly spaced, consecutive rays of strictly increasing
width, will not only be disjoint but the width of the gap in between such rays
will increase without limit.

4.3 The Planter Module

The next module is the planter module because it “plants the seeds” from which
the ray modules will ultimately grow (the darkest gray squares in Figure 1). At
the core of the planter module is a log-width, horizontal binary counter that



356 J.I. Lathrop et al.

counts every positive integer, starting at 1, in order. A key feature of the binary
counter embedded in the planter module is that, after each integer is counted,
a number of columns, equal to the current value of the binary counter, plus
the number of bits in the binary representation of this value, plus a few extra
“dummy” spacing columns, self-assemble. This has the effect of spacing out
successive ray modules according to the function f (given in the introduction).

4.4 The Computation Module

The final module is, for any TM M , an algorithmically generated tile set that,
in conjunction with the ray and planter modules, achieves the simulation of
M on (the binary representation of) every input x ∈ Z

+. The simulation of M
on bin(x) proceeds vertically, immediately above the planter, while following the
contour defined by the rightmost edge of the ray of width x+2 (Note that by our
construction of the planter module, there is one, and only one ray of such width).
As with other standard Turing machine constructions (see [8,10,13]), each row
in our simulation represents a configuration of M . However, the frequency with
which transitions occur is a novel feature of our construction, and is controlled
by “color” signals that are received from the abutting ray module.

4.5 Sketch of Correctness Proof

Let f : Z
+ → Z

+ be defined as in section 1, and stipulate that f(0) = −1. For
each n ∈ Z

+, let σn be the portion of the planter lying in the rectangle

Qn = {f(n− 1) + 2, . . . , f(n)− 1} × {−2,−1},
and let ρn be the ray of width n+ 2, translated so that its base is the leftmost
2(n+ 2) tiles of σn. Let σ∗

n = σn + ρn.
Let T = (T, σ, τ) be our TAS, noting that σ consists of a single tile at the

origin. For each n ∈ N, let Tn = (T, σn, τ). We use local determinism to prove
that each σ∗

n is a pseudoseed of Tn and that each T ∗
n = (T, σ∗

n, τ) has the unique
terminal assembly αn = σ∗

n + γn, where γn is the assembly that simulates M(n)
as in section 4.4. It follows by the pseudoseed lemma that each αn is the unique
terminal assembly of Tn. We then use local determinism to prove that our planter
σ∗ has the following two properties.

(i) σ∗ is a pseudoseed of T .
(ii) σ∗ is a σ-T -multiseed, where σ = (σ0, σ1, . . .).

Let T ∗ = (T, σ∗, τ). By (ii) and the multiseed lemma, we now have that

α = σ∗ +
∞∑

n=0

αn

is the unique terminal assembly of T ∗. It follows by (i) and the pseudoseed
lemma that α is the unique terminal assembly of T .



Computability and Complexity in Self-assembly 357

5 A Decidable Set That Does Not Self-assemble

We now show that there are decidable sets D ⊆ Z
2 that do not self-assemble in

the Tile Assembly Model.
For each r ∈ N, let

Dr = { (m,n) ∈ Z
2
∣
∣ |m|+ |n| = r}.

This set is a “diamond” in Z
2 with radius r (i.e., a sphere of radius r with respect

to the “taxicab metric” on Z× Z) and center at the origin. For each A ⊆ N, let

DA =
⋃

r∈A
Dr.

This set is the “system of concentric diamonds” centered at the origin with radii
in A.

Lemma 3. If A ⊆ N and DA self-assembles, then A ∈ DTIME
(
24n

)
.

The proof of this lemma exploits the fact that a tile assembly system in which
DA self-assembles must, for sufficiently large r, decide the condition r ∈ A from
inside the diamond Dr.

We now have the following result.

Theorem 2 (second main theorem). There is a decidable set D ⊆ Z
2 that

does not self-assemble.

Proof. By the time hierarchy theorem [4], there is a set A ⊆ N such that

A ∈ DTIME
(
25n

)−DTIME
(
24n

)
.

Let D = DA. Then D is decidable and, by Lemma 3, D does not self-assemble.

6 Conclusion

Our first main theorem says that, for every computably enumerable set A ⊆ Z
+,

the representation XA = {(f(n), 0)|n ∈ A} self-assembles. This representation
of A is somewhat sparse along the x-axis, because our f grows quadratically. A
linear function f would give a more compact representation of A. We conjecture
that our first main theorem does not hold for any linear function, but we do not
know how to prove this.

Let D be the set presented in the proof of our second main theorem. It is easy
to see that the condition (m,n) ∈ D is decidable in time polynomial in |m|+ |n|,
but |m|+ |n| is exponential in the length of the binary representation of (m,n),
so this only tells us that D ∈ E = DTIME

(
2linear

)
. Is there a set D ⊆ Z

2 such
that D ∈ P, and D does not self-assemble?

More generally, we hope that our results lead to further research illuminating
the interplay between geometry and computation in self-assembly.



358 J.I. Lathrop et al.

Acknowledgment. The authors wish to thank Dave Doty and Aaron Sterling
for useful discussions. We also thank the reviewers for useful suggestions.

References

1. Adleman, L.: Towards a mathematical theory of self-assembly, Tech. report, Uni-
versity of Southern California (2000)

2. Bachrach, J., Beal, J.: Building spatial computers, Tech. report, MIT CSAIL (2007)
3. Beal, J., Sussman, G.: Biologically-inspired robust spatial programming, Tech. re-

port, MIT (2005)
4. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Transactions of the American Mathematical Society 117, 285–306 (1965)
5. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski

triangles. In: Proceedings of The Third Conference on Computability in Europe,
Siena, Italy, June 18-23, 2007 (2007)

6. Reif, J.H.: Molecular assembly and computation: From theory to experimental
demonstrations. In: Proceedings of the Twenty-Ninth International Colloquium on
Automata, Languages and Programming, pp. 1–21 (2002)

7. Paul, W.K.: Rothemund, Theory and experiments in algorithmic self-assembly,
Ph.D. thesis, University of Southern California (December 2001)

8. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pp. 459–468 (2000)

9. Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biol-
ogy 99, 237–247 (1982)

10. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36, 1544–1569 (2007)

11. Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical
Journal XL(1), 1–41 (1961)

12. Wang, H.: Dominoes and the AEA case of the decision problem. In: Proceedings of
the Symposium on Mathematical Theory of Automata New York, 1962, Polytechnic
Press of Polytechnic Inst. of Brooklyn, pp. 23–55 (1963)

13. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology (June 1998)



Extraction in Coq: An Overview

Pierre Letouzey

Laboratoire PPS, Université Paris Diderot - Paris 7
Case 7014, F-75205 Paris Cedex 13, France

letouzey@pps.jussieu.fr

Abstract. The extraction mechanism of Coq allows one to transform
Coq proofs and functions into functional programs. We illustrate the
behavior of this tool by reviewing several variants of Coq definitions for
Euclidean division, as well as some more advanced examples. We then
continue with a more general description of this tool: key features, main
examples, strengths, limitations and perspectives.

1 Introduction

This article describes the current status of the extraction mechanism avail-
able in the Coq proof assistant [7, 8]. The extraction mechanism of Coq is a
tool for automatic generation of programs out of Coq proofs and functions.
These extracted programs are expressed in functional languages such as Ocaml,
Haskell or Scheme, these three languages being the ones currently supported
by Coq extraction. The main motivation for this extraction mechanism is to
produce certified programs: each property proved in Coq will still be valid after
extraction.

Through a series of examples about Euclidean division, we will review several
alternatives that allow the user to express in Coq an algorithm that does not fit
naturally in this system. We will also see how these alternatives influence the
shape of the program obtained by extraction. We will then mention two advanced
situations that illustrate the fact that Coq’s current extraction can handle any
Coq objects, even the ones defined via high-end features of Coq and without
direct counterpart in Ocaml or Haskell. We will summarize the key features of
Coq extraction, mention some significant Coq developments taking advantage of
the extraction, and conclude on the current strengths of this tool, its limitations
and future research perspectives.

2 Extraction in Practice : Div

In this section, we illustrate the use of Coq extraction on a small yet revealing
example: Euclidean division amongst natural numbers. For sake of simplicity, we
will use the unary nat datatype for representing these natural numbers: every
number is stored as either zero or the successor S of another number. Even if this
representation is inherently inefficient, the discussion that follows would be quite

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 359–369, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



360 P. Letouzey

similar with more clever coding of numbers. Coq’s Standard Library provides
basic operations and relations on nat, such as +, *, <, ≤. In Coq, logical relations
do not necessarily have corresponding boolean test functions, but here a result
named le lt dec, noted ≤? afterwards, can be used as an effective comparison
function for determining whether n≤m or m<n for any numbers n and m.

Each Coq snippet proposed below is taken verbatim from a valid session1 with
Coq 8.2, including unicode notations and other syntactic improvements.

2.1 A Division That Fulfills the Structural Constraint

One usual algorithm for division on natural numbers is to proceed by successive
subtractions: div x y = 0 when x<y and div x y = S (div (x-y) y) other-
wise. But this cannot be written directly in Coq. Due to the intimate relationship
between proofs and programs in Coq, no Coq objects may be allowed to trigger
infinite computations. A rather drastic constraint is hence required on recursive
functions in order to ensure their termination: they should have at least one
inductive parameter such that recursive calls are done on an immediate subterm
of this parameter2. Here, our recursive call fails this criterion, since (x-y) is
not an immediate subterm of x, and second parameter y has not changed. Even
worse, trying this algorithm with y=0 leads to an infinite computation: Coq’s
rejection is here quite legitimate.

For defining nonetheless our division in Coq, a first solution is to try to live
with this structural constraint, and adapt our algorithm accordingly. For in-
stance:

Fixpoint div x y := match x with

| 0 => 0

| S x’ =>

let z := div x’ y in

if (S z)*y ≤? x then S z else z

end.

Knowing the quotient for the predecessor of x can indeed be used to infer the
quotient for x. But proceeding this way leads to a costly test repeated x times.
This is a common situation with Coq: intended algorithms can be adapted to be
“structural”, but this may result in an awkward and/or less efficient algorithm.

Command Extraction div can then be used to convert this division to Ocaml
code3:

let rec div x y =

match x with

| O -> O

| S x’ ->

let z = div x’ y in if le_lt_dec (mult (S z) y) x then S z else z

1 See http://www.pps.jussieu.fr/∼letouzey/download/examples CiE2008.v
2 For a more precise definition of this structural constraint, see Chap. 4 of Coq Ref-

erence Manual at http://coq.inria.fr.
3 The complete list of extraction commands can be found in the Coq Reference Manual.

http://www.pps.jussieu.fr/~letouzey/download/examples_CiE2008.v
http://coq.inria.fr


Extraction in Coq: An Overview 361

This first extracted div highlights the fact that on basic Coq functions, ex-
traction is mainly performing a straightforward syntactic translation. But even
on such a simple function, some proof elimination occurs during extraction. In
fact, comparison le lt dec a b is not producing a mere boolean, but rather
a proof-carrying boolean type {a≤b}+{b<a}, which is an inductive type inter-
nally named sumbool, with two constructors left and right both having a
proof as parameter, here respectively a proof of a≤b and a proof of b<a. Ex-
traction removes these proofs, hence obtaining an extracted sumbool datatype
with two constant constructors, isomorphic to bool. In order to get precisely the
extracted code shown above, one could then teach Coq to take advantage of this
isomorphism, via : Extract Inductive sumbool => bool [ true false ].

One should note that the proof elimination done during extraction is based on
earlier declarations by the user (or by the library designer). Here, proof-carrying
boolean {a≤b}+{b<a} is exactly isomorphic to logical disjunction a≤b ∨ b<a
(instead of left and right, constructors are named or introl and or intror).
Simply, the former is declared in the logical world named Prop and is pruned
during extraction whereas the latter is declared in Set, the world of Coq pro-
grams, and simply loses at extraction the logical parameters of its constructors.
Similarly, two existential types coexist in Coq: the logical one ∃x:A,P x and the
informative one { x:A | P x }.

2.2 A Division with an Explicit Counter

Let’s now try to implement a function closer to our intended division algorithm,
instead of the ad-hoc structural version of the last section. A solution is to
artificially add a new structurally decreasing parameter that will control the
number of allowed recursive calls. Here for instance, if y �=0, it is clear that at
most x successive subtractions can occur before the algorithm stops. A common
presentation is to separate the function to iterate div F from the actual counter-
based recursive iterator div loop. The main function div is then a simple call
to div loop with the right initial counter value.

Definition div_F div x y := if y ≤? x then S (div (x-y) y) else 0.

Fixpoint div_loop (n:nat) :=

match n with

| 0 => fun _ _ => 0

| S n => div_F (div_loop n)

end.

Definition div x y := div_loop x x y.

One more time, extraction is straightforward and mostly amounts to replacing
Coq keywords with Ocaml ones. The counter, whose type is nat, is kept by
the extraction, even though it is morally useless for the computation. At the
same time, removing it and replacing div loop by an unbounded loop would
change the semantics of the program at least for y=0: with the above definition,



362 P. Letouzey

div 5 0 computes to 5, while a Ocaml version without counter would loop
forever. As a consequence, the extraction cannot be expected to detect and
remove automatically such a “useless” parameter.

Using such an explicit counter is often an interesting compromise: the written
Coq code is not exactly what we intended in the first place, but is close to it,
there is no complex internal Coq object as with the methods we will study in the
next sections, computations can be done both in Coq and after extraction, and
the additional cost induced by the presence of the counter is often modest. Here
for instance the x value would have been computed anyway. Another example
of this technique can be found in module Numtheory of the Standard Library,
where a gcd function is defined on binary numbers thanks to a counter that can
be the depth (i.e. the logarithm) of these binary numbers.

2.3 A Division by General Recursion, Historical Approach

We can in fact build a Coq div function that will produce exactly the intended
algorithm after extraction. Before presenting the modern ways of writing such a
function with two frameworks recently added to Coq, let us first mention the his-
torical approach. For a long time, the only possibility has been to play with acces-
sibility predicates and induction principles such as well founded induction4.
In this case, recursive functions do satisfy the structural constraint of Coq, not
via their regular arguments, but rather via an additional logical argument ex-
pressing that some quantity is accessible. Recursive calls can then be done on
quantities that are “more easily accessible” than before. This extra logical pa-
rameter is then meant to disappear during extraction. In practice, non-trivial
functions are impossible to write as a whole with this approach, due to the nu-
merous logical details to provide. Such functions are hence built piece by piece
using Coq interactive tactics, as for proofs. Reasoning a posteriori on the body
of such functions is also next to impossible, so key properties of these func-
tions are to be attached to their output, via post-conditions { a:A | P a }.
Pre-conditions can also be added to restrict functions on a certain domain: for
instance, div will be defined only for y �=0. Here comes the complete specification
of our div and its implementation in a proof-like style:

Definition div : ∀x y, y�=0 → { z | z*y ≤ x < (S z)*y }.

Proof.

induction x as [x Hrec] using (well_founded_induction lt_wf).

intros y Hy.

destruct (y ≤? x) as [Hyx|Hyx]. (* do we have y≤x or x<y ? *)

(* first case: y≤x *)

assert (Hxy : x-y < x) by omega.

destruct (Hrec (x-y) Hxy y Hy) as [z Hz]. (* ie: let z = div (x-y) y *)

exists (S z); simpl in *; omega. (* ie: z+1 fits as (div x y) *)

(* second case: x<y *)

exists 0; omega.

Defined.

4 See for instance Chap. 1 of [8] for more details on this topic.



Extraction in Coq: An Overview 363

We use lt wf, which states that < is well-founded on natural numbers. When
combined with well founded induction, this allows us to perform recursive
calls at will on any strictly smaller numbers. Doing such a recursive call can be
quite cumbersome: for calling Hrec on x-y, we need to have already built a proof
Hxy stating that x-y < x. Without additional help such as comments, it is also
very tedious to keep track on the algorithm used in such a proof. Fortunately,
extraction can do it for us:

let rec div x y =

if le_lt_dec y x then S (div (minus x y) y) else O

2.4 A Division by General Recursion with the Russell Framework

The function-as-proof paradigm of the last section can be used on a relatively
large scale, see for instance union and the few other non-structural operations on
well-balanced trees in early versions of module FSetAVL in the Standard Library.
But such Coq functions are hardly readable and maintainable, consume lots of
resources during their definitions and in practice almost always fail to compute
in Coq.

Recent versions of Coq include Russell, a framework due to M. Sozeau [10] that
greatly eases the design of general recursive and/or dependently-typed functions.
With this framework, bodies of functions can be written without being bothered
by proof parts or by structural constraints. Simply, such definitions are fully
accepted by Coq only when some corresponding proof obligations have been
proved later on. For instance:

Definition id (n:nat) := n.

Program Fixpoint div (x:nat)(y:nat|y�=0) { measure id x }

: { z | z*y ≤ x < (S z)*y }

:= if y ≤? x then S (div (x-y) y) else 0.

Next Obligation. (* Measure decreases on recursive call : x-y < x *)

unfold id; simpl; omega.

Qed.

Next Obligation. (* Post-condition enforcement : z*y ≤ x < (S z)*y *)

destruct_call div; simpl in *; omega.

Qed.

After this definition and the proofs of corresponding obligations, a Coq object
div is added to the environment, mixing the pure algorithm and the logical
obligations. This object is similar to the dependently-typed div of the previous
section, and its extraction produces the very same Ocaml code.

Russell framework can be seen as a sort of anti-extraction, in the spirit of
C. Parent’s earlier works [9]. Even if it is still considered as experimental, it
is already quite usable. For instance, we have a version of FSetAVL where the
aforementioned non-structural operations on well-balanced trees are written and
proved using Russell.



364 P. Letouzey

2.5 A Division by General Recursion with the Function Framework

An alternative framework can also be used to define our div function: Function,
due to J. Forest and alii [4]. It is similar to Russell to some extent: algorithms
can be written in a natural way, while proof obligations may have to be solved
afterwards. Here, as for Russell, these proof obligations are trivial:

Function div (x y:nat)(Hy:y�=0) { measure id x } : nat :=

if y ≤? x then S (div (x-y) y Hy) else 0.

Proof.

intros; unfold id; omega.

Defined.

Moreover, as for Russell, this framework builds complex internal Coq objects,
and extraction of these objects produces back precisely the expected code. But
unlike Russell, Function is not meant to manipulate dependent types: in partic-
ular the y �=0 pre-condition is possible here only since it is passed unmodified
to the recursive call. On the contrary, Function focuses on the ease of reasoning
upon functions defined with it, see for instance the functional induction tac-
tics, allowing to prove separately properties of div that would have been post-
conditions with Russell. Once again, the sensitive operations on well-balanced
trees have be successfully tried and defined using Function.

3 Examples Beyond ML Type System

All our experiments on defining and extracting a division algorithm lead to
legitimate Ocaml (or Haskell) code. But the type system of Coq allows us to
build objects that have no counterparts in Ocaml nor Haskell. In this case,
the type-checkers of these systems are locally bypassed by unsafe type casts
(Obj.magic or unsafeCoerce). These unsafe type casts are now automatically
inserted by the extraction in the produced code. We present now two of the
various situations where such type casts are required.

3.1 Functions of Variable Arity

In Coq, a type may depend on an object such as a number. This allows us to
write the type nArrow of n-ary functions (over nat), such that nArrow 0 = nat
and nArrow 1 = nat → nat and so on.

Fixpoint nArrow n : Set := match n with

| O => nat

| S n => nat → nArrow n

end.

Furthermore, we can write a function nSum whose first parameter determines
the number of subsequent parameters this function will accept (and sum to-
gether):



Extraction in Coq: An Overview 365

Fixpoint nSum n : nArrow (S n) :=

match n return nArrow (S n) with

| O => fun a => a

| S m => fun a b => nSum m (a+b)

end.

Eval compute in (nSum 2) 3 8 5.

The example (nSum 2) expects (S 2) = 3 arguments and computes here
3+8+5=16. Without much of a surprise nSum cannot be typecheked in ML,
so unsafe type casts are inserted during extraction:

let rec nSum n x =

match n with

| O -> Obj.magic x

| S m -> Obj.magic (fun b -> nSum m (plus x b))

3.2 Existential Structures

Another situation is quite common in developments on algebra: records can
be used in Coq to define structures characterized by the existence of various
elements and operations upon a certain type, with possibly some constraints on
these elements and operations. For instance, let’s define a structure of monoid,
and show that (nat,0,+) is indeed a monoid:

Record aMonoid : Type :=

{ dom : Type;

zero : dom;

op : dom → dom → dom;

assoc : ∀x y z:dom, op x (op y z) = op (op x y) z;

zerol : ∀x:dom, op zero x = x;

zeror : ∀x:dom, op x zero = x }.

Definition natMonoid :=

Build_aMonoid nat 0 plus plus_assoc plus_0_l plus_0_r.

Proofs concerning monoids can then be done in a generic way upon an abstract
object of type aMonoid, and be applied to concrete monoids such as natMonoid.
This kind of approach is heavily used in CoRN development at Nijmegen. For
the point of view of extraction, this aMonoid type hides from the outside the
type placed in its dom field. Such dependency is currently translated to unsafe
cast by extraction:

let natMonoid =

{ zero = (Obj.magic O); op = (Obj.magic plus) }

In the future, it might be possible to exploit recent and/or planned extensions
of Haskell and Ocaml type-checkers to allow a nicer extraction of this example.
Considering Haskell Type Classes and/or Ocaml’s objects might also help.



366 P. Letouzey

4 Key Features of Extraction

Let us summarize now the current status of Coq extraction. The theoretical
extraction function described in [7] is still relevant and used as the core of the
extraction system. This function collapses (but cannot completely remove) both
logical parts (living in sort Prop) and types. A complete removal would induce
dangerous changes in the evaluation of terms, and can even lead to errors or non-
termination in some situations. Terms extracted by this theoretical function are
untyped λ-terms with inductive constructions, they cannot be accepted by Coq
in general, nor by ML-like languages. Two separate studies of correctness have
been done for this theoretical phase.

The correctness of this theoretical phase is justified in several steps. First, we
prove that the reduction of an extracted term is related to the reduction of the
initial term in a bisimulation-alike manner (see [7] or Sect. 2.3 of [8]. Since this
first approach is really syntactic and cannot cope for instance with the presence
of axioms, we then started a semantical study based on realizability (see Sect. 2.4
of [8]). Finally, differences between theoretical reduction rules and the situation
in real languages have been investigated, especially in the case of Haskell (see
Sect. 2.6 of [8]).

Even if the actual implementation of the extraction mechanism is based on
this theoretical study, it also integrates several additional features. First, the
untyped λ-terms coming from the theoretical phase are translated to Ocaml,
Haskell or Scheme syntax. In addition, several simplifications and optimizations
are performed on extracted terms, in order to compensate the frequent awkward
aspect of terms due to the incomplete pruning of logical parts. Indeed, complete
removal of proof parts is often unsafe. Consider for instance a partial application
of the div function of section 2.5, such as div 0 0 : 0 �=0→nat. This partial
application is quite legal in Coq, even if it does not produce much, being blocked
by the need of an impossible proof of 0 �=0. On the opposite, an extraction that
would brutally remove all proof parts would produce div 0 0 : nat for this ex-
emple, leading to an infinite computation. The answer of our theoretical model
of extraction is to be very conservative and produce anonymous abstractions
corresponding to all logical preconditions such as this Hy:y �=0. The presence of
these anonymous abstractions permits a simple and safe translation of all terms,
including partial applications. At the same time, dangerous partial applications
are quite rare, so our actual implementation favors the removal of these anony-
mous abstractions, at least in head position of extracted functions, leading here
to the expected div of type nat→nat→nat, whereas a special treatment is done
for corresponding partial applications: any occurrences of div 0 0 would become
fun -> div 0 0, preventing the start of an infinite loop during execution.

Moreover, the extraction embeds an type-checker based on [5] whose purpose
is to identify locations of ML type errors in extracted code. Unsafe type cast
Obj.magic or unsafeCoerce are then automatically inserted at these locations.
This type-checking is done accordingly to a notion of approximation of Coq types
into ML ones (see Chap. 3 of [8]). In addition, Coq modules and functors are



Extraction in Coq: An Overview 367

supported by the Ocaml extraction, while coinductive types can be extracted
into Ocaml, Haskell or Scheme.

5 Some Significant Coq Developments Using Extraction

A list of user contributions related to extraction can be found at http://coq.
inria.fr/contribs/extraction-eng.html. Let us highlight some of them, and
also mention some developments not (yet?) in this list.

– CoRN: This development done in Nijmegen contains in particular a con-
structive proof of the fundamental theorem of algebra. But all attempts
made in order to compute approximations of polynomial roots by extraction
have been unsuccessful up to now [2]. This example illustrates how a large,
stratified, mathematically-oriented development with a peculiar notion of
logical/informative distinction can lead to a nightmare in term of extracted
code efficiency and readability.

– Tait: This proof of strong normalization of simply typed λ-calculus produces
after extraction a term interpretor [1]. This study with H. Schwichtenberg et
alii has allowed us to compare several proof assistants and their respective
extractions. In particular Minlog turned out to allow a finer control of what
was eliminated or kept during extraction, while Coq Prop/Set distinction
was rather rigid. At the same time, Coq features concerning proof manage-
ment were quite helpful, and the extracted code was decent, even if not as
nice as the one obtained via Minlog.

– FSets: Started with J.C. Filliâtre some years ago [3], this certification of
Ocaml finite set and map libraries is now included in the Coq Standard
Library. This example has allowed us to investigate a surprisingly wide range
of questions, in particular concerning specifications and implementations via
Coq modules, or concerning the best style for expressing delicate algorithms
(tactics or Fixpoint or Russell or Function). It has been one of the first large
example to benefit from extraction of modules and functors.

– CompCert: X. Leroy and alii have certified in Coq a compiler from C (with
minor restrictions) to powerpc assembly [6]. While this development is quite
impressive, its extraction is rather straightforward, since Coq functions have
been written in a direct, structural way. The compiler obtained by extraction
is performing quite well.

– Fingertrees: In [10], M. Sozeau experiments with his Russell framework.
The fingertrees structure, relying heavily on dependent types, is a good test-
case for both this framework and the extraction. In particular, the code
obtained by extraction contains several unsafe type casts, its aspect could
be improved but at least it can be executed and is reasonably efficient.

6 Conclusion and Future Works

Coq extraction is hence a rich framework allowing to obtain certified programs
expressed in Ocaml, Haskell or Scheme out of Coq developments. Even if some

http://coq.inria.fr/contribs/extraction-eng.html
http://coq.inria.fr/contribs/extraction-eng.html


368 P. Letouzey

details can still be improved, it is already quite mature, as suggested by the va-
riety of examples mentioned above. This framework only seems to reach its limit
when one tries to discover algorithm buried in large mathematical development
such as CoRN, or when one seeks a fine control a la Minlog on the elimination
performed by extraction. Most of the time, the Prop/Set distinction, which is
a rather simple type-based elimination criterion, is quite efficient at producing
reasonable extracted terms with little guidance by the user. Moreover, new tools
such as Russel or Function now allow to easily define general recursive functions
in Coq, hence allowing a wider audience to play with extraction of non-trivial
Coq objects.

The correctness of this extraction framework currently rely on the theoretical
studies made in [7, 8]. The next perspective is to obtain a mechanically-checked
guarantee of this correctness. Work on this topic has already started with a
student, S. Glondu. Starting from B. Barras CCI-in-Coq development, he has
already defined a theoretical extraction in this framework and proved one of the
main theorem of [7]. Another interesting approach currently under investigation
is to use a Coq-encoded Mini-ML syntax as output of the current uncertified
extraction, and have an additional mechanism try to build a proof of semantic
preservation for each run of this extraction. Such extracted terms expressed in
Mini-ML could then be fed to the certified ML compiler which is currently being
built in the CompCert project of X. Leroy.

Some additional work can also be done concerning the typing of extracted
code. For instance, thanks to advanced typing aspects of Haskell and/or Ocaml,
examples such as the existential structure aMonoid may be typed some day
without unsafe type casts. This would help getting some sensible program out of
CoRN, which make extensive use of such structures. Manual experiments seem to
show that Ocaml object-oriented features may help in this prospect. At the same
time, some preliminary work has started in Coq in order to propose Haskell-like
type classes, adding a support for these type classes to the Haskell extraction
may help compensating the lack of module and functor extraction to Haskell.

References

[1] Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction
from normalization proofs. Studia Logica 82 (2005); Special issue

[2] Cruz-Filipe, L., Letouzey, P.: A Large-Scale Experiment in Executing Extracted
Programs. In: 12th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning, Calculemus 2005 (2005)

[3] Filliâtre, J.-C., Letouzey, P.: Functors for Proofs and Programs. In: Schmidt, D.
(ed.) ESOP 2004. LNCS, vol. 2986. Springer, Heidelberg (2004)

[4] Pichardie, D., Barthe, G., Forest, J., Rusu, V.: Defining and reasoning about
recursive functions: a practical tool for the coq proof assistant. In: Hagiya, M.,
Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945. Springer, Heidelberg (2006)

[5] Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algo-
rithm. ACM Transactions on Programming Languages and Systems 20(4), 707–
723 (1998)



Extraction in Coq: An Overview 369

[6] Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd symposium Principles of Programming Languages,
pp. 42–54. ACM Press, New York (2006)

[7] Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.)
TYPES 2002. LNCS, vol. 2646. Springer, Heidelberg (2003)

[8] Letouzey, P.: Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Université Paris-Sud (July 2004), http://

www.pps.jussieu.fr/ letouzey/download/these letouzey English.ps.gz

[9] Parent, C.: Synthèse de preuves de programmes dans le Calcul des Constructions
Inductives. thèse d’université, École Normale Supérieure de Lyon (January 1995)

[10] Sozeau, M.: Program-ing Finger Trees in Coq. In: ICFP 2007, pp. 13–24. ACM
Press (2007)

http://www.pps.jussieu.fr/~letouzey/download/these_letouzey_English.ps.gz
http://www.pps.jussieu.fr/~letouzey/download/these_letouzey_English.ps.gz


Joining to High Degrees�

Jiang Liu and Guohua Wu

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore 639798

Abstract. Cholak, Groszek and Slaman proved in [1] that there is a nonzero
computably enumerable (c.e.) degree cupping every low c.e. degree to a low c.e.
degree. In the same paper, they pointed out that every nonzero c.e. degree can cup
a low2 c.e. degree to a nonlow2 degree. In [2], Jockusch, Li and Yang improved
the latter result by showing that every nonzero c.e. degree c is cuppable to a high
c.e. degree by a low2 c.e. degree b. It is natural to ask in which subclass of low2

c.e. degrees b in [2] can be located. Wu proved [6] that b can be cappable. We
prove in this paper that b in Jockusch, Li and Yang’s result can be noncuppable,
improving both Jockusch, Li and Yang, and Wu’s results.

1 Introduction

Cholak, Groszek and Slaman proved in [1] the existence of almost deep degrees. That is,
there is a nonzero computably enumerable (c.e.) degree cupping every low c.e. degree
to a low c.e. degree. In the paper, they pointed out that every nonzero c.e. degree can
cup a low2 c.e. degree to a nonlow2 c.e. degree. In [2], Jockusch, Li and Yang improved
the latter result by showing that every nonzero c.e. degree c is cuppable to a high c.e.
degree by a low2 c.e. degree b. It is natural to ask in which subclass of low2 c.e. degrees
b in [2] can be located. The existence of almost deep degrees says that the class of low
c.e. degrees cannot be a candidate of such a subclass. In [6], Wu proved that b in [2] can
be low2 and cappable. It is well-known that the cappable degrees form a definable ideal
of the computably enumerable degrees, which is denoted asM . We ask whether b in [2]
can be further restricted to a subideal of M — the ideal consisting of all noncuppable
degrees. In this paper, we give a positive answer to this question.

Theorem 1. Given a nonzero c.e. degree c, there is a noncuppable low2 degree b such
that c ∨ b is high.

Note that if c is noncuppale, the c∨b is a high noncuppable degree, whose existence was
first proved by Harringtion (see Miller [4]). We actually prove that following theorem,
and Theorem 1 follows from it immediately, as every nonzero c.e. degree bounds a
nonzero cappable degree.

Theorem 2. If c is a nonzero cappable degree, then there is a low2 noncuppable degree
b such that c ∨ b is high.

� Wu is partially supported by a research grant No. RG58/06 (M52110023.710079) from NTU.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 370–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Joining to High Degrees 371

We note that in [2], Jockusch, Li and Yang considered whether c > 0 is cappable or not.
If c is cappable, then they proved that there is a low2 degree b such that c ∨ b is high.
If c is noncappable, then as pointed out in [2], by a well-known fact of Ambos-Spies,
Jockusch, Shore and Soare, c cups a low c.e. degree to 0′. Our Theorem 1 says that no
matter what c is, if it is incomplete, then c ∨ b is always incomplete.

We present in this paper the basic idea of how to prove Theorem 2. Our notation and
terminology are standard and generally follow Soare [5]. A number is referred to as big
in the construction if it is the least natural number (in an effective way) bigger than any
number mentioned so far.

2 Requirements and Strategies

Let c > 0 be a given cappable degree and C be a fixed c.e. set in c. We will con-
struct a low2 noncuppable set B, a c.e. set F (an auxiliary set) and partial computable
functionals Γ and Δe for all e ∈ ω satisfying the following requirements:

Ne: ΦB,We
e = K ⊕ F =⇒ ∃Δe(K = ΔWe

e ),
Pe: TotB(e) = lim

x→∞Γ
B,C(e, x),

where {(Φe,We) : e ∈ ω} is an effective enumeration of {(Φi,Wj) : i, j ∈ ω}, where
Φi is a partial computable functional and Wj is a c.e. set. TotB = {e : ΦBe is total} is a
ΠB

2 -complete set.
By the N requirements, B is noncuppable. By the P requirements and Shoenfield

Limit Lemma,
TotB ≤T (B ⊕ C)′ ≤T ∅′′.

Therefore,B′′ ≡T (B ⊕ C)′ ≡T ∅′′, B is low2 and B ⊕ C is high.

2.1 An N Strategy

AnNe-strategy, β say, is devoted to the construction of a partial computable functional
Δβ such that if ΦB,We

e = K ⊕ F , then K = ΔWe

β . As usual, we have the length of
agreement function between ΦB,We

e and K ⊕ F as follows:

– l(β, s) = max{x < s : ∀y < x[ΦB,We
e (y)[s] = (K ⊕ F )(y)[s]]},

– m(β, s) = max{l(β, t) : t < s and t is a β-stage}.
Say a stage s is a β-expansionary if s = 0 or s is a β-stage with l(β, s) >

m(β, s). We only define Δβ at β-expansionary stages. That is, if s is β-expansionary,
and ΔWe

β (x)[s] is not defined with 2x + 1 < l(β, s), then define ΔWe

β (x) = K(x)[s]
with use s, which is bigger than both ϕe(2x)[s] and ϕe(2x + 1)[s]. After stage s,
ΔWe

β (x) can be undefined only when We changes below ϕe(2x+ 1). So, in case that x
entersK later, we should forceWe to change below ϕe(2x+1) so that we can redefine
ΔWe

β (x) as K(x) afterwards. If We does not change below ϕe(2x + 1), then K ⊕ F
and ΦA,We

e will differ at 2x+ 1, and Ne is satisfied vacuously.
β has two possible outcomes: infinitary outcome i and finitary outcome f .



372 J. Liu and G. Wu

Problem arises when numbers are enumerated into B by the P-strategies (to make
B ∨ C high) below the infinitary outcome i of β. Suppose that at stage s, ΔWe

β (x)[s]
is defined and a number n less than ϕe(2x)[s] is enumerated into B, and such an enu-
meration can lift the use ϕe(2x) up to a bigger number. Now suppose that x enters K ,
before the next β-expansionary stage s′ say. Then

ΦB,We
e (2x)[s′] = 1 = (K ⊕ F )(2x)[s′].

However, as We has no changes below ϕe(2x)[s], ΔWe

β (x)[s′] is defined as ΔWe

β (x)[s],
and is equal to 0, so ΔWe

β is not correct at x.
To avoid such a scenario, when we want to put a number, n say, into B, at stage

s, where n is selected at stage s0 < s, we want to ensure that no ΔWe

β (x) defined at

stage s is actually defined after stage s0. Thus, if ΔWe

β (x)[s] has definition at stage s,
then it is defined before stage s0, and the enumeration of n into B will not change the
computation ΦB,We

e (2x), as n is bigger than the corresponding use.
Now we explain the idea of ensuring that all ΔWe

β (x) having definition at stage s
are actually defined before stage s0. When we choose n at stage s0, we also choose an
auxiliary number, anβ big, and we think that the next β-expansionary stage, t say, should
be a stage with l(β, t) > m(β, t) and also l(β, t) > 2anβ + 1 (we extend the definition
of Δβ at this stage). In this way, the construction is delayed a little bit, but if there are
infinitely many β-expansionary stages, then it makes no difference.

Assume thatΔWe

β (x) is defined at stage t, but before stage s (remember that we want
to put n into B at stage s), then we first put anβ into F . There are two cases. The first
case is that We does not change below ϕe(2anβ + 1), then ΦB,We

e (2anβ + 1) = 0 and
(K⊕F )(2anβ+1) = 1, and β is satisfied vacuously, and of course, there are no more β-
expansionary stages. The other case is that a new β-expansionary stage appears, which
means that We does change below ϕe(2anβ + 1). This We-change undefines ΔWe

β (x),
which are defined after stage t. As no ΔWe

β (x) is defined between stages s0 and t,

at stage s′ > s, the next expansionary stage, no ΔWe

β (x) is defined between stages
s0 and s′, and as pointed above, we can now put n into B as wanted. Definitely, this
enumeration keeps the definition of ΔWe

β (x) correct.
We now consider a general situation. On the priority tree, when we want to put a

number, a γ-use, into B at a P-strategy, α say, we need to make sure that α works
consistently with all the N -strategies with priority higher than α. Without loss of gen-
erality, we assume that β�0 i ⊆ β�1 i ⊆ · · · ⊆ β�n i ⊆ α are the N -strategies with
priority higher than α and outcome i. Then, when α defines a γ-use, at stage s0, say, it
also defines a sequence of auxiliary numbers z0, z1, · · · , zn. Now, for each i ≤ n, say

that a stage s is βi-expansionary only when the length of agreement between Φ
B,Wβi

βi

and K ⊕ F is greater than 2zi + 1. When α wants to put γ(e(α), y) into B, α puts zn
into F first, and waits for the next βn-expansionary stage. We create a link between α
and βn, and at the next βn-expansionary stage, we go to α via this link, and do further
actions. If there is no such a βn expansionary stage, then βn has finitary outcome, and
we do not need to satisfy α at all. Otherwise, at the next βn-expansionary stage, we
cancel the link between α and βn, put zn−1 into F , and create a link between α and
βn−1. Again, we wait for the next βn−1-expansionary stage, and so on. Such a process



Joining to High Degrees 373

can be iterated at most n + 1 many times, each of which will have the corresponding

Wβi-changes on some small numbers, undefining thoseΔ
Wβi

βi
defined after stage s0. So

if eventually we cancel the link between α and β0, we have actually forced that all of

the Δ
Wβi

βi
defined after stage s0 are undefined, and now, we can enumerate γ(e(α), y)

intoB, and this enumeration is consistent with all theN -strategies with higher priority.

2.2 A P Strategy

The basic idea of a Pe strategy is to approximate TotB(e) via ΓB,C(e,−) at the limit,
where Γ is a (global) partial computable functional defined in the whole construction.
With this in mind, we need to ensure that ΓB,C is totally defined, and that for all e ∈ ω,

ΦBe is total iff lim
x→∞ΓB,C(e, x) = 1.

We first consider a single P strategy. This is a modified version of the gap-cogap
argument developed in [2] by Jockusch, Li and Yang.

Let α be a Pe strategy. Assume that |α| = e. For convenience, we write Φα for Φe.
When we can know from the context that α is a Pe strategy, we just write γ(e, y) for
γ(e(α), y). In needed for clarity, we will still write γ(e(α), y) from time to time.
α will do two jobs simultaneously. α’s first job is to define ΓB,C(e, x) for almost x

to make sure that ΓB,C(e, x) has a limit and computes TotB(e) correctly. That is, the
following equality is guaranteed:

TotB(e) = lim
x→∞ΓB,C(e, x).

In the construction, whenever α defines ΓB,C(e, x) at stage s, the γ-use γ(e, x) is
defined as a big number. In particular, γB,C(e, x) > s. ΓB,C(e, x) is undefined auto-
matically if some number less than or equal to γB,C(e, x) is enumerated into B. As
a consequence, γ(e, x) may be lifted when ΓB,C(e, x) is redefined later. If C has a
change below γB,C(e, x) (it can happen when we get a cogap permission as specified
later), unless we explicitly set ΓB,C(e, x) to be undefined,ΓB,C(e, x) is redefined with
same value and the same use (it is not necessary to lift γB,C(e, x) to big number) to
ensure that ΓB,C(e, x) is defined eventually. Such rules also apply to the following
Θα-functionals defined later.

As in our construction, a Pe needs to be consistent with theN -strategies with higher
priority, when we define γ(e, x), we also select several other big numbers, zj , associ-
ated. We do so, because when we want to enumerate γ(e, x) into B, we will put these
numbers into F one by one, as described in the N -strategy, to force changes of W to
undefine ΔW

β defined after stage s.
α’s second job is to preserve ΦBe (x), to ensure that if ΓB,C(e, x) has limit 1, then

ΦBe is total. At stage s, we define

– l(α, s) = max{x < s : ΦBα (y)[s] ↓ for all y < x},
– m(α, s) = max{0, l(α, t) : t < s and t is an α-stage}.

Say that s is an α-expansionary stage if s = 0 or m(α, s) < l(α, s).



374 J. Liu and G. Wu

If there are only finitely many α-expansionary stages, then ΦBα is obviously not total.
Thus, TotB(e) = 0, and α will define ΓB,C(e, x) = 0 for (almost) all x ∈ ω, and
eventually, we have that lim

x→∞Γ
B,C(e, x) = 0 = TotB(e).

Suppose that there are infinitely many α-expansionary stages. Then we should en-
sure that ΦBα is total, and ΓB,C(e, x) are defined to be 1 for (almost) all x ∈ ω such that
TotB(e) = lim

x→∞Γ
B,C(e, x) = 1. Here comes a direct conflict: to preserve a computa-

tion ΦBα (x), we need to preserve B on the use ϕα(x), and to change ΓB,C(e, x) from
0, defined by a strategy on the right, to 1, we may need to enumerate γ(e, x) into B
to undefine ΓB,C(e, x) first. Fortunately, it is not a fatal conflict, as we can use the C-
changes to undefine ΓB,C(e, x). With this in mind, to preserve a computation ΦBα (x),
we introduce the following substrategies, Sα,i, i ∈ ω, of α, to undefine ΓB,C(e, x), and
to preserve ΦBα (x), if needed.

For the sake of the consistency between defining ΓB,C and preserving ΦBα (x), x ∈
ω, α will construct an auxiliary c.e. set Eα and a partial functional ΘEα,C

α , which at-
tempts to satisfy the following requirements:

Sα,i : E′
α(i) = ΘEα,C

α (i).

An Sα,i-strategy works at α-expansionary stages. It definesΘEα,C
α (i) withΘEα,C

α (i) =
E′
α(i), and if it fails, then it will ensure that ΦBα is total and lim

x→∞Γ
B,C(e, x) = 1,

and TotB(e) = lim
x→∞Γ

B,C(e, x) satisfying Pe. As C is given as a set with cappable

degree, not every Sα,i can be satisfied, as otherwise, Eα would be a low set, and C is
low-cuppable, which is a contradiction. Therefore, there is a least i such that Sα,i is not
satisfied.

Fix i. Say that Sα,i is in the x-turn (or x-turn is in progress) if Sα,i attempts to
make ΦBα (x) clear of the γ(e,−) uses. Here we say that Sα,i attempts to make ΦBα (x)
clear of the γ(e,−) uses at stage s, we mean that Sα,i sees ΦBα (x)[s] ↓, and Sα,i wants
to prevent the construction of Γ from enumerating smaller numbers into B to injure
this computation. The basic idea of an Sα,i-strategy is to force a C-change to lift the
γ-uses to bigger numbers or to undefine ΘEα,C

α (i). In the first case, the computation
ΦBα (x)[s] is clear of the γ-uses, and henceΦBα (x) converges. In the latter case,ΘEα,C

α (i)
is undefined, and we can make E′

α(i) = ΘEα,C
α (i), satisfying Sα,i.

Sα,i works as follows:

1. Suppose that the x-turn is in progress.

Wait for an α-expansionary stage s1 > 0 with l(α, s1) > x. If ΘEα,C
α (i) is unde-

fined at stage s1, then defineΘEα,C
α (i)[s1] as 0 if ΦEα

i (i)[s1] ↑, and 1 otherwise. In
both cases, set use θα(i)[s1] big.

2. Wait for an α-expansionary stage s2 > s1 with ΦEα

i (i)[s2] ↓ and ΘEα,C
α (i)[s2] ↓=

0. We say that we are ready to open a gap at stage s2, and we will put those numbers
associated to γ(e, x) into F one by one, as described in theN -strategy.

When γ(e, x) is defined by a strategy α′, for the sake of the consistency between the
Pe-strategies and the N -strategies, we also select several numbers zξ0 , z

ξ
1, · · · , zξe ,

where ξ is a Sβ,j-strategy to the left of α′, in case when γ(e, x) is enumerated into
B by ξ, ξ needs to enumerate the associated numbers zξ0 , z

ξ
1, · · · , zξe into F to force



Joining to High Degrees 375

the correspondingW s to have needed changes. As there are only finitely many such
ξ-strategies on the left of α′, it is fine for us to select these auxiliary numbers. We
point out here that α, a Pe strategy wanting to put γ(e, x) into B, can be the same
as α′, or on the left of α′, as the Pe strategy on the true path will be responsible for
the definition of ΓB,C(e, x) for almost all x, and hence, it needs to first undefine
ΓB,C(e, x) defined by those strategies on the right.

Whenαwants to putγ(e, x) intoB,αwill do as in theN -strategies to put numbers
zα0 , z

α
1 , · · · , zαe into F in reverse order, and creates and cancels the corresponding

links. After the last link is cancelled, α puts γ(e, x) into B. This delays the opening
of a gap — we open a gap only when γ(e, x) is put intoB, because before γ(e, x) is
put intoB, a C-change below γ(e, x) can always undefine ΓB,C(e, x), and we can
protectΦBα (x) successfully. Obviously, this delay does not affect theSα,i-strategy. So
at a stage s3 > s2 at which the last link betweenα and the highestN -strategy above
α is cancelled, we open a gap. This is a new, crucial feature of our construction.

It may happen that α′ is on the left of α, then we will not allow α to enumerate
γ(e, x) into B, as α has lower priority. If α is on the true path, then only finitely
many S-strategies on the left can be accessible during the whole construction, and
as a consequence, there are only finitely many x with ΓB,C(e, x) defined by these
higher priority strategies. This will not affect the limit lim

x→∞Γ
B,C(e, x), which is in

the control of α.
3. Let s3 > s2 be a stage at which the last link between α and the highestN -strategy

above α is cancelled. Open a gap as follows:

– Set r(α, i) = 0. Define fxα,i(y) = Cs3(y) for those y < θα(i)[s2] with fxα,i(y)
not defined yet.

(Here, fxα,i is an auxiliary partial computable function defined during the
x-turn, threatening the incomputability of C if the x-turn do not terminate.)

– Enumerate γ(e, x) into B.

4. Wait for the least α-expansionary stage s4 > s3. α closes the gap which is opened
at stage s3. There are two cases, depending on whether C has a wanted change.

– (Successful close)C has a change below θα(i)[s2]+1 between stages s2 and s4.
Then redefineΘEα,C

α (i) = 1. Note that this C-change undefines all ΘEα,C
α (j),

j ≥ i. Declare that the gap is closed successfully and that Sα,i is satisfied. (Sα,i
succeeds in defining ΘEα,C

α (i) = E′
α(i) because the computation ΦEα

i (i)[s2]
is preserved from now on and hence ΦEα

i (i) ↓.)
– (Unsuccessful close) C has no change below θα(i)[s2] + 1 between stages
s2 and s4. Then define r(α, i) = s4 and enumerate θα(i)[s2] into Eα. This
enumeration undefines all ΘEα,C

α (j), j ≥ i. Declare that the gap is closed
unsuccessfully. Go to (1) and simultaneously, wait for a C-change on a number
in dom(fxα,i), till the stage when the next gap is open. If so, go to (5).

(Here, we set r(α, i) = s4 as a restraint to preserve the computationΦBe (x)
the same as ΦBe (x)[s4] until this restraint is cancelled in (3), when a new gap is
open, in which case, ΦBe (x) may be injured by the enumeration of the γ(e, x),
or when (5) is reached. If before we open a new gap, C does have a change
below θα(i)[s2] + 1, as this C change lifts the γ-uses to big numbers, Sα,i
succeeds in preserving the computation ΦBe (x) as ΦBe (x)[s4].)



376 J. Liu and G. Wu

In any case, find the least y with ΓB,C(e, y) undefined, and define ΓB,C(e, y) = 1
with use γB,C(e, y) big.

5. Define r(α, i) = 0. Declare that the computation ΦBe (x) is preserved by Sα,i.
Terminate the x-turn (and hence stop defining fxα,i, as it is not correct anymore),
and start the x+ 1-turn (to preserve ΦBe (x+ 1)). We call such a C-change a cogap
permission, because it happens inside a cogap. The action performed at (5) is called
a cogap permission action.

Say that Sα,i requires attention at an α-expansionary stage s if one of the following
holds:

1. Sα,i is inside a gap, and it is ready to close a gap (at step 4). α will act by closing
this gap, no matter whether it is a successful close or not.

2. Sα,i is inside a cogap and ΘEα,C
α (i)[s] ↑ (we will define ΘEα,C

α (i)). α will act by
defining ΘEα,C

α (i) = 1 if ΦEα

i (i)[s] ↓, or 0 if ΦEα

i (i)[s] ↑.
3. Sα,i is inside a cogap and is ready to open a gap (at step 2, and will put the associ-

ated numbers into F one by one). α will act by enumerating the numbers zαj , j ≤ e
into F one by one, as described in theN -strategy.

4. Sα,i is at a stage at which a last link between α and an N -strategy above α with
the highest priority is cancelled (at step 3, and will open a new gap). α will act by
enumerating γ(e, x) into B and open a gap.

5. Sα,i is at a cogap and C changes below fxα,i (step 5 is reached). We will start the
x+ 1-turn.

Sα,i has three possible outcomes:

si: Sα,i waits at step 1 or closes a gap successfully. In the latter case, Sα,i succeeds
in defining ΘEα,C

α (i) = E′
α(i). Sα,i is satisfied. We will consider the definition of

ΘEα,C
α (i + 1), so we will not put outcome on the construction tree. In the former

case, there are only finitely many α-expansionary stages and α is satisfied, because
ΦBα is not total. In this case, we have an outcome f , under which ΓB,C(e, x) will be
defined as 0 for almost all x. Sα,i is again satisfied, because lim

x→∞Γ
B,C(e, x) = 0,

and equals to TotB(e).
gi: α opens infinitely many gaps and closes these gaps unsuccessfully, and for each

x ∈ ω, the x-turn stops by reaching step 5 (a wanted C-change appears). As a
consequence, Sα,i ensures that ΦBe (x) converges. So ΦBe is total. As we always
define ΓB,C(e, x) = 1 for x ∈ ω when we open a gap at step 3, lim

x→∞Γ
B,C(e, x) =

1. Thus, TotB(e) = lim
x→∞Γ

B,C(e, x). Thus, Pe is satisfied;

fi: After some sufficiently large stage, Sα,i has an x-turn opening and closing (un-
successfully) infinitely many gaps and never reaching step 5. Then ΘEα,C

α (i), and
ΦBα (x) diverge, but fxα,i is totally defined and computesC correctly becauseC does

not change in a gap (otherwise we can undefineΘEα,C
α (i) and preserveΦEα

i (i)) nor
in a cogap (otherwise, the x-turn is terminated and the x+1-turn would be started).
So C is computable, contradicting our assumption on C. In the construction, as fi
will not happen, we do not put this outcome on the priority tree.



Joining to High Degrees 377

In the construction, we do not put the Sα,i-substrategy on the priority tree. We just
attach the outcome ofSα,i toα. As explained above, for each i ∈ ω, Sα,i has exactly one
outcome gi listed on the priority tree. As a consequence, α has ω + 1 many outcomes,

g0 <L g1 <L · · · <L gi <L · · · <L f,
where f denotes the case that there only finitely many α-expansionary stages and gi
denotes the case that Sα,i requires attention (and hence receive attentions) infinitely
often.

Now, we consider how to make two (and more) P-strategies consistent. Note that at
step 5 of the Sα,i-strategy, α successfully ensures that the computation ΦBα (x) is clear
of the γ(e,−) uses, and set r(α, i) = 0 when step 5 is reached. It may happen that
a computation ΦBα (x) can still be changed by another P-strategy (the enumeration of
other γ-uses) below outcome gi. We will explain how we can deal with such disturbance
from lower priority strategies. In the construction, we will ensure that for any x, ΦBα (x)
can be changed by the strategies below outcome gi at most finitely often, and finally if
we have a new α-expansionary stage, at whichΦBα (x) converges, then again, no strategy
can change this computation and hence it is preserved forever.

Here is the point. Let α, α′ be two P-strategies with α �gi ⊆ α′. Suppose that α′

wants to define ΓB,C(e(α′), y) for some y, we first set ky as a big number, and wait for
a stage, s say, such that Sα,i has completed the ky-turn, and then define ΓB,C(e(α′), y).
That is, at stage s, all computations, ΦBα (z), z < ky , are clear of the γ(e(α),−)-uses.
Again, it delays the definition of ΓB,C(e(α′), y) and we know that such an s exists
because α′ guesses that α has outcome gi, and hence ΦBα is total. We will call ky an
α-bound at y. Obviously, γ(e(α′), y) is defined as a number bigger than s, and hence
if it is enumerated into B, it will not change the computations ΦBα (z), z < ky. So
for a fixed x < ky , after stage s, ΦBα (x) can be changed by α′ at most finitely often
by the enumeration of those γ(e(α′), y′), y′ < y, and if there are infinitely many α-
expansionary stages, then we will finally have a computation ΦBα (x) not injured by α′.
Also note that by stage s, as the x-turn has already been completed, ΦBα (x) is clear of
the γ(e(α),−)-uses, wheneverα′ enumerates a number intoB, changing a computation
ΦBα (x), the corresponding γ(e(α),−)-uses are also lifted up to even bigger numbers,
and once ΦBα (x) settles down, we can make sure keep these γ(e(α),−)-uses the same.
Therefore, α′ is consistent with α.

Now we consider how α′ can work below α �gi, where α′ knows that α will open
infinitely many gaps and hence put infinitely numbers into B. As usual, when α sees a
computation, α′ first check whether all γ(e(α), z)s (for ΓB,C(e(α), z) = 0) below the
associated use of this computation have been enumerated into B. If yes, then α′ knows
that this computation will not be changed by the enumeration of α, and will preserve
this computation, as described above in theN and P-strategies. In this case, we say that
this computation is believable at α′. Otherwise, because α′ is below the outcome gi of
α, and α′ knows that all these γ(e(α),−)-uses will be put intoB sooner or later, α′ will
just wait until all these uses are bigger than the associated use — wait till a computation
is believable at α′. Again, it is a kind of delaying, and such a delay will not affect the
whole construction at all.

Now, for a fixed y, we define γ(e(α′), y) only when ΦBα′(y) is a believable computa-
tion at α′. So α’s enumeration will not affect the definition of ΦBα′(y), and we can argue



378 J. Liu and G. Wu

as usual that eventually, after all these γ(e(α′), y′) become fixed, y′ < y, settles down,
γ(e(α′), y) can be changed only when the corresponding substrategy of α′ at step 3,
or by a C-change at step 5. As C is assumed to be incomputable, step 5 is eventually
reached, after which we will not change γ(e(α′), y) anymore.

This gives the basic ideas of strategies of satisfying N and P strategies, together
with the idea of making these strategies work consistently. The full construction and
the verification part will appear in [3], where more detail will be included.

References

1. Cholak, P., Groszek, M., Slaman, T.: An almost deep degree. J. Symbolic Logic 66, 881–901
(2001)

2. Jockusch Jr., C.G., Li, A., Yang, Y.: A join theorem for the computably enumerable degrees.
Trans. Amer. Math. Soc. 356, 2557–2568 (2004)

3. Liu, J., Wu, G.: Joining to high degrees via noncuppables (in preparation)
4. Miller, D.: High recursively enumerable degrees and the anti-cupping property. In: Lerman,

Schmerl, Soare (eds.) Logic Year 1979-80: University of Connecticut. Lecture Notes in Math-
ematics, vol. 859, pp. 230–245 (1981)

5. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Heidelberg (1987)
6. Wu, G.: Quasi-complements of the cappable degrees. Math. Log. Quart. 50, 189–201 (2004)



Factoring Out Intuitionistic Theorems:

Continuity Principles and the Uniform
Continuity Theorem

Iris Loeb

Department of Mathematics and Statistics, University of Canterbury,
Private Bag 4800, Christchurch, New Zealand

I.Loeb@math.canterbury.ac.nz

Abstract. We prove the equivalence between some intuitionistic the-
orems and the conjunction of a continuity principle and a compactness
principle over Bishop’s Constructive Mathematics within the programme
of Constructive Reverse Mathematics. To clarify our line of thought, we
first point out the relation between quasi-equicontinuity, quasi-uniform
convergence, and the continuity principle saying that the limit of a con-
vergent sequence of continuous functions is again continuous. Finally, as
a spin-off, we conclude that we have found a new, more economic proof of
the statement that every convergent sequence of functions on a compact
metric space converges uniformly.

Keywords: Constructive Mathematics, Reverse Mathematics, Intuition-
istic Mathematics, Continuity Principle, Compactness Principle.

1 Introduction

Intuitionistic mathematics has two clearly separable traits. Firstly, that all func-
tions from a complete, separable metric space are continuous (a property that is
also true in the recursive interpretation) [12], and secondly that all continuous
functions on a compact metric space are uniformly continuous (a property that
is also classically valid).

This cognitive distinction can be found back in the results obtained within
the programme of Constructive Reverse Mathematics [13]. Many theorems have
been proved equivalent over Bishop’s constructive mathematics (BISH, [7]) to
either a continuity principle [12] or a compactness principle [3,4,5,6,8,10,14] but
not much is known about the interplay between principles of these two classes.

In this paper we will study convergent sequences of functions and we will
single out theorems that are equivalent to the conjunction of a continuity and a
compactness principle over BISH1. This contributes not only to the programme
of Constructive Reverse Mathematics, but also to our understanding of intuition-
istic mathematics in itself: One of our results is a new intuitionistic proof of the
1 However, we do not adopt Bishop’s terminology: for our purposes it is important to

make the distinction between continuity and uniform continuity.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 379–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



380 I. Loeb

statement that every pointwise convergent sequence of real-valued (continuous)
functions on a compact metric space converges uniformly. We will compare the
principles used in the new proof with the ones used in [15] and conclude that
the new proof is more economic.

Before giving the main results (Sections 3 and 4), we will first take a closer look
at the continuity principles and compactness principle that play an important
role here (Section 2).

2 The Continuity and Compactness Principles

The continuity principles that we consider are the Continuity Principle for Lim-
its on Compact Spaces (CPLcp) and the Continuity Principle for Compact
Spaces (CONTcp).

CPLcp: Every pointwise convergent sequence of continuous functions
from a compact metric space to a metric space has a continuous limit.

CONTcp: Every function from a compact metric space to a metric space
is continuous.

To our knowledge, these principles have not been examined before, although
the principles CONTc (a continuity principle for complete spaces) and CONTcs

(a continuity principle for complete, separable spaces), which imply CONTcp,
were dealt with in [12]. Remark that it thus follows from that paper that
CONTcp and CPLcp are true intuitionistically.

Furthermore, we will use the compactness principle Uniform Continuity The-
orem (UCT, [8,10]),

UCT: Every continuous function from a compact metric space to a
metric space is uniformly continuous.

Because the principle CPLcp has not been studied before, we will now show
some important equivalents of it that are well-known to hold classically [1,2].
This also connects more clearly the results in this paper with the ones of [10],
where we investigated (uniform) equicontinuity and (uniform) convergence.

Let X and Y be metric spaces. A sequence (fn)n≥0 of functions from X to Y
is called quasi-equicontinuous if for each ε > 0 and each x ∈ X we can find
δ > 0 such that for each y ∈ X there exists n ∈ N with the property that for all
m ≥ n:

If ρ(x, y) < δ, then ρ(fm(x), fm(y)) < ε.

Clearly the notion of quasi-equicontinuity on a compact metric space X is
weaker than that of equicontinuity onX , as not all terms of a quasi-equicontinuous
sequence need be continuous. Even if we require all terms of a quasi-equicontinuous
sequence to be continuous, this will not be enough make the sequence equicontin-
uous, as we show in Theorem 3.



Factoring Out Intuitionistic Theorems 381

The next theorem shows a connection between converging sequences having
a continuous limit and being quasi-equicontinuous. Note that we do not require
that the terms of the sequence are continuous.

Theorem 1. Let X and Y be metric spaces, and let (fn)n≥0 be a sequence of
functions from X to Y that converges to a limit f. Then the following statements
are equivalent.

(i) The limit function f is continuous on X.
(ii) The sequence (fn)n≥1 is quasi-equicontinuous.

Proof. Assume (i), let ε > 0 and x ∈ X . Determine δ > 0 such that if ρ(x, y) < δ,
then ρ(f(x), f(y)) < ε/3. Consider y ∈ X such that ρ(x, y) < δ. We can find
n0, n1 such that ρ(fm(x), f(x)) < ε/3 for all m > n0, and ρ(fm(y), f(y)) < ε/3
for all m > n1. Setting

N := max{n0, n1},
we see that if m > N, then

ρ(fm(x), fm(y)) ≤ ρ(fm(x), f(x)) + ρ(f(x), f(y)) + ρ(f(y), fm(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus (i) implies (ii).
For the reverse implication, assume (ii), and again let ε > 0 and x ∈ X.

Determine δ > 0 such that for each y ∈ X there exists n such that if ρ(x, y) < δ,
then ρ(fm(x), fm(y)) < ε/3 for all m > n. Consider such a point y and the
corresponding n. There exist n0, n1 such that ρ(fm(x), f(x)) < ε/3 for all m >
n0, and ρ(fm(y), f(y)) < ε/3 for all m > n1. Setting

N := max{n, n0, n1},
we see that if m > N, then

ρ(f(x), f(y)) ≤ ρ(f(x), fm(x)) + ρ(fm(x), fm(y)) + ρ(fm(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus (ii) implies (i).

Let X and Y be metric spaces, and let (f)n≥0 be a sequence of functions from
X to Y converging pointwise to a limit f . We say that the sequence is quasi-
uniformly convergent if for each ε > 0 and each x ∈ X we can find δ > 0 and
n ∈ N with the property that for each y ∈ X :

If ρ(x, y) < δ, then ρ(fn(y), f(y)) < ε.

Usually the definition of quasi-uniformly convergence is formulated in the
following way (see for example [11]), which we will refer to as finite-cover
quasi-uniform convergence: Let X and Y be metric spaces, and let (f)n≥0



382 I. Loeb

be a sequence of functions from X to Y converging pointwise to a limit f . We
say that the sequence is finite-cover quasi-uniformly convergent if for each
ε > 0, there exists a finite family {V0, V1, . . . , Vk} of open sets of X and a finite
family {n0, n1, . . . , nk} of natural numbers2, such that

X = V0 ∪ V1 ∪ . . . ∪ Vk, (1)

and
Vi ⊆ {x ∈ X : ρ(fni(x), f(x)) < ε} (i = 0, 1, . . . , k). (2)

The next theorem shows that the notions of quasi-uniform convergence and
finite-cover quasi-uniform convergence coincide on compact spaces in both clas-
sical and intuitionistic mathematics.

Let the Principle of Choice for Compact Spaces be the following state-
ment:

For every compact metric space X , if P ⊆ X × N, and for each x ∈ X
there exists n ∈ N such that (x, n) ∈ P , then there is a function f : X →
N such that (x, f(x)) ∈ P for all x ∈ X .

Note that this principle follows from the Principle of Continuous Choice, and
is hence intuitionistically valid. The Axiom of Choice ensures that it is also
classically valid.

Theorem 2. Let X be compact metric space, Y a metric space, and (fn)n≥0 a
sequence of continuous functions from X to Y that converges to a limit f . Then
the following statements are equivalent under the assumption of the Heine-Borel
Covering Lemma and the Principle of Choice for Compact Spaces.

(i) The sequence (fn)n≥0 converges quasi-uniformly.
(ii) The sequence (fn)n≥0 converges finite cover quasi-uniformly.

Proof. Supposing that (i) holds, let ε > 0. For every x ∈ X determine (with the
Principle of Choice for Compact Spaces) mx, nx ∈ N such that for all y ∈ X

ρ(x, y) < 2−mx ⇒ ρ(fnx(y), f(y)) < ε.

Define for every x ∈ X
Vx := {y ∈ X : ρ(x, y) < 2−mx}.

Suppose that y ∈ Vx for a certain x ∈ X . Then ρ(x, y) < 2−mx and thus

y ∈ {z ∈ X : ρ(fnx(z), f(z)) < ε}.
This means that if (Vx)x∈X has a finite subcover, then (2) holds. We get a finite
subcover by the Heine-Borel Covering Lemma, because (Vx)x∈X is indeed a cover
of X . Note that (1) holds by the definition of Vx. Hence (i) implies (ii).
2 We remark that [11] requires additionally that these numbers be arbitrarily large.

This requirement can be omitted [9].



Factoring Out Intuitionistic Theorems 383

To prove the converse, assume (ii), let ε > 0 and x ∈ X . With V0, . . . , Vk

as in the definition of “finite-cover quasi-uniform convergence”, pick i such that
x ∈ Vi. Because Vi is open, we can find δ > 0 such that

{y ∈ X : ρ(x, y) < δ} ⊆ Vi.

Let y ∈ X be such that ρ(x, y) < δ. Then y ∈ Vi and thus ρ(fni(y), f(y)) < ε.

In the rest of the paper we will only use quasi-uniform convergence. The next
theorem connects the property of having a continuous limit to the property of
being quasi-uniformly convergent. This also shows that for sequences of continu-
ous functions, quasi-uniform convergence (resp., quasi-equicontinuity) is strictly
weaker than uniform convergence (resp., equicontinuity), since classically there
are convergent sequences of continuous functions on [0, 1] with a continuous limit
that are not uniformly convergent (resp., equicontinuous).

Theorem 3. Let X and Y be metric space, and let (fn)n≥0 be a sequence of
continuous functions from X to Y that converges to a limit f. Then the following
statements are equivalent.

(i) The limit function f is continuous.
(ii) The sequence (fn)n≥0 converges quasi-uniformly.

Proof. Assuming (i), let ε > 0 and x ∈ X . Determine δ0 > 0 such that for all
y ∈ X if ρ(x, y) < δ0 then ρ(f(x), f(y)) < ε/3. Also determine n such that
ρ(fm(x), f(x)) < ε/3 for all m ≥ n. Using the continuity of fn, we can find
δ1 > 0 such that for all y ∈ X if ρ(x, y) < δ1, then ρ(fn(x), fn(y)) < ε/3. Let

δ := min{δ0, δ1},
and consider y ∈ X such that ρ(x, y) < δ. We have

ρ(fn(y), f(y)) ≤ ρ(fn(y), fn(x)) + ρ(fn(x), f(x)) + ρ(f(x), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus (i) implies (ii).
Now assume (ii), and again let ε > 0 and x ∈ X . Determine δ0 > 0 and n ∈ N

such that for each y ∈ X , if ρ(x, y) < δ0, then ρ(fn(y), f(y)) < ε/3. By the
continuity of fn, there exists δ1 > 0 such that for all y ∈ X , if ρ(x, y) < δ1, then
ρ(fn(x), fn(y)) < ε/3. Setting

δ := min{δ0, δ1},
consider y ∈ X such that ρ(x, y) < δ. We have

ρ(f(x), f(y)) ≤ ρ(f(x), fn(x)) + ρ(fn(x), fn(y)) + ρ(fn(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof that (ii) implies (i).



384 I. Loeb

Corollary 1. The following are equivalent over BISH.

(i) CPLcp.
(ii) Every convergent sequence of continuous functions on a compact metric

space is quasi-equicontinuous.
(iii) Every convergent sequence of continuous functions on a compact metric

space is quasi-uniformly convergent.

Proof. Immediate, by Theorems 1 and 3.

3 Equivalents of UCT ∧ CPLcp

In this section and the next we present some equivalents of a UCT and a conti-
nuity principle. These theorems are a strengthening of results in [10]. There we
proved the following equivalences:

Theorem 4. The following statements are equivalent over BISH:

(i) UCT.
(ii) For each equicontinuous sequence (fn)n�0 of real-valued continuous func-

tions on [0, 1], if {fi(x) : i ∈ N} is totally bounded for every x ∈ [0, 1], then
(fn)n�0 is uniformly equicontinuous.

(iii) Every equicontinuous, convergent sequence of real-valued continuous func-
tions on [0, 1] has a uniformly continuous limit.

(iv) Every equicontinuous, convergent sequence of real-valued continuous func-
tions on [0, 1] is uniformly convergent.

This will be used to obtain equivalences to UCT ∧CPLcp. If we compare The-
orem 4 with Theorem 5, we see illustrated how CPLcp in the latter replaces the
requirement of equicontinuity in the former.

Theorem 5. The following statements are equivalent over BISH:

(i) UCT ∧CPLcp.
(ii) For every compact metric space X: for each sequence (fn)n≥0 of continuous

functions from X to a metric space, if {fi(x) : i ∈ N} is totally bounded for
every x ∈ X, then (fn)n≥0 is uniformly equicontinuous.

(iii) Every convergent sequence of continuous functions from a compact metric
space to a metric space has a uniformly continuous limit.

(iv) Every convergent sequence of continuous functions from a compact metric
space to a metric space is uniformly convergent.

Before giving the proof of Theorem 5, we generalise two results of [10].

Lemma 1. Let X,Y be two metric spaces. Then every uniformly equicontinu-
ous, convergent sequence of functions from X to Y has a uniformly continuous
limit.



Factoring Out Intuitionistic Theorems 385

Proof. Let X,Y be two metric spaces, and let (fn)n≥0 be a uniformly equicon-
tinuous sequence of functions from X to Y that converges to a limit f . Given
ε > 0, determine δ such that for all i ∈ N and all x, y ∈ X , if ρ(x, y) < δ, then
ρ(fi(x), fi(y)) < 1

3ε. Let x, y ∈ X such that ρ(x, y) < δ. Determine m0,m1 such
that ρ(fn(x), f(x)) < 1

3ε for all n ≥ m0, and ρ(fn(y), f(y)) < 1
3ε for all n ≥ m1.

Define
p := max{m0,m1}.

Then

ρ(f(x), f(y)) ≤ ρ(fp(x), f(x)) + ρ(fp(y), f(y)) + ρ(fp(x), fp(y))

<
1
3
ε+

1
3
ε+

1
3
ε = ε.

Lemma 2. Let X be a totally bounded metric space, Y a metric space, and
(fn)n≥0 a convergent sequence of functions from X to Y . If (fn)n≥0 is uniformly
equicontinuous, then (fn)n≥0 converges uniformly.

Proof. Let X be a totally bounded metric space, Y a metric space, and (fn)n≥0

a sequence of functions from X to Y that converges to a limit f . Suppose that
(fn)n≥0 is uniformly equicontinuous. Then f is uniformly continuous (by Lemma
1). Given ε > 0, determine δ0 and δ1 such that for all x, y ∈ X and each
i ∈ N, if ρ(x, y) < δ0, then ρ(fi(x), fi(y)) < 1

3ε , and if ρ(x, y) < δ1, then
ρ(f(x), f(y)) < 1

3ε. Determine k such that 2−k < min{δ0, δ1}. Let A be a 2−k-
approximation of X . For every j ∈ A pick nj such that

ρ(f(j), fm(j)) <
1
3
ε

for every m > nj . Define

N := max{nj : j ∈ A}.
Let r ≥ N and x ∈ X . Determine p ∈ A such that ρ(p, x) < 2−k. Then

ρ(f(x), fr(x)) ≤ ρ(f(p), f(x)) + ρ(fr(p), fr(x)) + ρ(fr(p), f(p))

<
1
3
ε+

1
3
ε+

1
3
ε = ε

Now we give the proof of Theorem 5.

Proof (of Theorem 5). We will first show that (i) implies (ii). Assume (i); let X
be a compact metric space; let Y be a metric space; let (fn)n≥0 be a sequence of
continuous functions from X to Y such that {fi(x) : i ∈ N} is totally bounded
for every x ∈ X . Then

{ρ(fi(x), fi(y)) : i ∈ N}
is totally bounded as well. Hence

sup{ρ(fi(x), fi(y)) : i ∈ N}



386 I. Loeb

exists for every x, y ∈ X . Define a sequence (gn)n≥0 : X ×X → R by:

gn(x, y) := max
i≤n

ρ(fi(x), fi(y))

Then gn is continuous for every n. Moreover for every x, y ∈ X , the sequence
(gn(x, y))n≥0 converges to

g(x, y) := sup{ρ(fi(x), fi(y)) : i ∈ N}.
Therefore, by CPLcp, g is continuous. So g is uniformly continuous by UCT. Let
ε > 0. Determine δ such that for all (x, y), (x′, y′) ∈ X×X , if ρ((x, y), (x′, y′)) <
δ, then |g(x, y) − g(x′, y′)| < ε. Let x, y ∈ X be such that ρ(x, y) < δ, and let
i ∈ N. Then

ρ(fi(x), fi(y)) ≤ sup{ρ(fj(x), fj(y)) : j ∈ N}
= g(x, y) = |g(x, y)− g(x, x)| < ε

Because it is immediately clear that (iii) follows from (i), we continue with the
proof of (iv) from (ii). So assume (ii). Let X be a compact metric space, let Y
be a metric space, and let (fn)n�0 be a convergent sequence (with a limit f) of
continuous functions from X to Y . Note that, because the sequence converges,
{fi(x) : i ∈ N} is totally bounded for every x ∈ X . Hence, by statement (ii), the
sequence (fn)n�0 is uniformly equicontinuous. So we conclude by Lemma 2 that
(fn)n�0 converges uniformly.

We now prove the reverse direction. It follows directly from Theorem 4 that
the statements (ii), (iii), and (iv) imply UCT. Remark that it is also immediately
clear that each of the statements (iii) and (iv) implies CPLcp. To prove that
(ii) implies CPLcp, let X be a compact metric space, let Y be a metric space,
and let (fn)n�0 be a sequence of continuous functions from X to Y converging
to a limit f . Then {fi(x) : i ∈ N} is totally bounded for every x ∈ X . Thus, by
(ii), the sequence is uniformly equicontinuous. Therefore f is continuous.

This completes the proof.

Note that the theorem

Every convergent quasi-equicontinuous sequence of continuous functions
from a compact metric space to a metric space has a uniformly continu-
ous limit.

is equivalent to UCT, but that neither of the following two statements is so
equivalent:

For every compact metric space X: for each quasi-equicontinuous se-
quence (fn)n≥0 of continuous functions from X to a metric space, if
{fi(x) : i ∈ N} is totally bounded for every x ∈ X, then (fn)n≥0 is
uniformly equicontinuous.

Every quasi-equicontinuous convergent sequence of continuous functions
from a compact metric space to a metric space is uniformly convergent.



Factoring Out Intuitionistic Theorems 387

4 Equivalents of UCT ∧ CONTcp

The next theorem follows naturally from the results of the previous section.

Theorem 6. The following statements are equivalent over BISH:

(i) UCT ∧CONTcp.
(ii) For every compact metric space X: for each sequence (fn)n≥0 of functions

from X to a metric space, if {fi(x) : i ∈ N} is totally bounded for every
x ∈ X, then (fn)n≥0 is uniformly equicontinuous.

(iii) Every convergent sequence of functions from a compact metric space to a
metric space has a uniformly continuous limit.

Proof. The fact that (i) implies the statements (ii), and (iii) is an immediate con-
sequence of Theorem 5. That these statements imply UCT follows also from the
results in the previous section. We will now show that they also imply CONTcp.
Let X be a compact metric space, Y a metric space, and let f be a function
from X to Y . Define a sequence (fn)n≥0 by fn = f for every n ∈ N. Observe
that this sequence converges. Then the conclusions that the sequence is uni-
formly equicontinuous or that f is uniformly continuous, both imply that f is
continuous.

We have only a partial generalisation of Theorem 5 item (iv) in the sense of
Theorem 6, which is an immediate consequence of the former theorem.

Theorem 7. UCT ∧ CONTcp implies over BISH that every convergent se-
quence of functions from a compact metric space to a metric space is uniformly
convergent.

Let us now come back to the original proof of the statement that every point-
wise convergent sequence of real-valued functions on a compact metric space
converges uniformly [15]. Without stating explicitly that it does so, this proof
uses CONTcp and the Full Fan Theorem.

Our results do not show whether we can weaken the continuity assumption
without strengthening another hypothesis. However, if we assume that the func-
tions of the sequence are continuous, then a weaker continuity principle suffices
(Theorem 5, (iv)).

On the other hand, it is possible to economise on the strength of the compact-
ness principle. Instead of using the Full Fan Theorem, we may assume just UCT
(Theorem 7), which is believed to be weaker [10], even under the assumption of
CONTcp. Note that we could not have concluded this directly from Theorem 4,
as we do not have a proof that CONTcp implies that all convergent sequences
of functions on a compact space are equicontinuous.

Acknowledgments. The author thanks the Marsden Fund of the Royal Soci-
ety of New Zealand for supporting her by a Postdoctoral Research Fellowship.
She also thanks Douglas Bridges, Hannes Diener and Josef Berger for useful
discussions, and the anonymous reviewers for useful comments.



388 I. Loeb

References

1. Arzelà, C.: Intorno alla continuità della somma d’infinità di funzioni continue.
Rend. dell’Accad. di Bologna, 79–84 (1883-1884)

2. Bartle, R.G.: On Compactness in Functional Analysis. Transactions of the Ameri-
can Mathematical Society 79, 35–57 (1955)

3. Berger, J.: The fan theorem and uniform continuity. In: Cooper, S.B., Löwe, B.,
Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 18–22. Springer, Heidelberg
(2005)

4. Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 35–39.
Springer, Heidelberg (2006)

5. Berger, J., Bridges, D.: A fan-theoretic equivalent of the antithesis of specker’s
theorem. Indag. Math. 18(2), 195–202 (2007)

6. Berger, J., Bridges, D.S.: A Bizarre Property Equivalent to the Pi1
0-fan theorem.

Logic Journal of the IGPL 14(6), 867–871 (2006)
7. Bishop, E., Bridges, D.: Constructive Analysis. Springer, Heidelberg (1985)
8. Bridges, D., Diener, H.: The pseudocompactness of [0, 1] is equivalent to the uni-

form continuity theorem. J. Symb. Log. 72(4), 1379–1384 (2007)
9. Charazǐsvili, A.B.: Strange Functions in Real Analysis. CRC Press, Boca Raton

(2006)
10. Diener, H., Loeb, I.: Sequences of real-valued functions on [0, 1] in constructive

reverse mathematics (submitted),
http://www.math.canterbury.ac.nz/∼i.loeb/SRF.pdf

11. Hazewinkel, M. (ed.): Encyclopaedia of Mathematics. Springer, Heidelberg (2002)
12. Ishihara, H.: Continuity properties in constructive mathematics. J. Symb.

Log. 57(2), 557–565 (1992)
13. Ishihara, H.: Reverse Mathematics in Bishop’s Constructive Mathematics.

Philosophia Scientiae, Cahier Spécial 6, 43–59 (2004)
14. Ishihara, H., Schuster, P.: Compactness under constructive scrutiny. Math. Log.

Q. 50(6), 540–550 (2004)
15. de Swart, H.: Elements of Intuitionistic Analysis: Rolle’s theorem and complete, to-

tally bounded, metric spaces. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik Bd. 22, 289–298 (1976)

http://www.math.canterbury.ac.nz/~i.loeb/SRF.pdf


Interpreting Localized Computational Effects

Using Operators of Higher Type

John Longley

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

The King’s Buildings, Mayfield Road
Edinburgh EH9 3JZ, UK

Abstract. We outline a general approach to providing intensional mod-
els for languages with computational effects, whereby the problem of in-
terpreting a given effect reduces to that of finding an operator of higher
type satisfying certain equations. Our treatment consolidates and gener-
alizes an idea that is already implicit in the literature on game semantics.
As an example, we work out our approach in detail for the case of fresh
name generation, and discuss some particular models to which it applies.

1 Introduction

This paper explores a way in which computable operations of higher type can
be useful in giving denotational semantics for programming languages. In broad
terms, a denotational semantics for a language L consists of a mathematical
model of the behaviour of programs in L, given by assigning to each program
P a “meaning” [[P ]] within some mathematical structure M which can be de-
fined and studied independently of the syntax of L. Not only does this result
in a rigorous mathematical definition of the programming language, but if M
itself enjoys good mathematical properties, these can be used to reason about
programs of L. Furthermore, a particularly well-behaved model M might even
inspire the design of a new and better programming language. For information
on the mathematical aspects of denotational semantics, we recommend [7].

Much of the foundational work in denotational semantics focused initially on
purely functional languages such as Plotkin’s PCF [26]. The essence of such
languages is that the behaviour of a program can be adequately modelled by a
mathematical function, so that the language is amenable to a denotational de-
scription in terms of some well-understood mathematical class of functions, such
as Scott’s partial continuous functionals of higher type. However, whilst such
purely functional settings are simple and mathematically appealing, virtually
all real-world programming languages abound in “impure” features that break
the simple-minded functional paradigm, such as exceptions, state, continuations,
fresh name generation, input/output and nondeterminism. It is therefore natu-
ral to seek appropriate mathematical theories for modelling such computational
effects (as they are generically known).

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 389–402, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



390 J. Longley

To date, there have broadly been two approaches to the denotational seman-
tics of computational effects. The first, and more widely established, was pio-
neered by Moggi [20] in his investigation of the use of monads to model effects of
various kinds. Here, a term M : σ, possibly involving some computational effect,
is modelled by an element not of the usual object [[σ ]], but of some richer domain
T [[σ ]], where T is a monadic functor chosen to match the effect in question. For
instance, we may take T (X) = X + E if the evaluation of M may result in an
exception drawn from the set E, or T (X) = (S × X)S if the evaluation may
have a side-effect on some state of type S, and so on. In this way, an essentially
“functional” treatment of programs is maintained, at the cost of complicating
the types of the functions involved: typically, a program of type σ → τ will
be modelled by a function of type [[σ ]] → T [[ τ ]] rather than [[σ ]] → [[ τ ]]. The
monadic approach has had a wide influence and some notable successes — in
particular, it underpins the model of effects employed in the Haskell program-
ming language [24]. More recently, a closely related approach has been developed
by Plotkin and Power [27], emphasizing the primacy of Lawvere-style algebraic
theories rather than monads — this promises, among other things, a more sat-
isfactory account of how different computational effects may be combined in a
principled way.

By contrast, the second main approach (advocated explicitly in [1]) seeks to
model programs with effects not by functions of more complicated types, but
by more fine-grained, intensional semantic objects than ordinary mathemati-
cal functions — typically algorithms, strategies or even programs of some kind.
Such intensional notions of “computable operation” occasionally featured in the
earlier literature on higher types (e.g. the non-extensional type structures HRO
and ICF derived from Kleene’s first and second models respectively [30]); in the
computer science literature, an important early example was the sequential algo-
rithm model of Berry and Curien [8]. A wealth of further interesting models were
subsequently introduced by the literature on game semantics [3,4,5,12], where
numerous full abstraction results were obtained for languages with control fea-
tures, state, and non-determinism in various combinations (see [11] for a survey,
and [19] for a useful taxonomy of models). Whilst these intensional models may
appear unfamiliar at first, experience shows that many of them lead to beautiful
mathematical structures, carry a persuasive intuition, and (in the author’s view)
provide good candidates for notions of higher type computability in the spirit
of [16].

Although numerous examples of intensional models for languages with effects
have now been collected, they have so far not conformed to much of a general
pattern. Our purpose in the present article is to outline a somewhat uniform
approach to the interpretation of computational effects in intensional models by
means of operators of higher type. Particular instances of our approach may be
discerned in the existing literature on game semantics, but as far as we know, the
general idea has not hitherto been spelt out as a uniformly applicable method.
Our presentation will, moreover, be at a level of generality which renders the
ideas applicable to other intensional models besides game models.



Interpreting Localized Computational Effects 391

The basic idea is as follows. Each kind of computational effect is typically
associated with some characteristic syntactic operators: e.g. raise and handle
in the case of exceptions; read and write in the case of store cells; new and
eq in the case of the generation of fresh names (with equality testing), and
so on. For the sake of discussion let us work with the example of fresh name
generation, though the same basic strategy will clearly make sense for many
other effects. In the context of a higher order (say call-by-value) language, we
may naturally ascribe types to the relevant operators: e.g. in the spirit of the
ν-calculus of Pitts and Stark [25], we have operations new : unit → name and
eq : name ∗ name→ bool. However, rather than attempting to model what these
operators actually do, let us choose to regard them simply as variables that may
appear in a term, with the same formal status as ordinary program variables.
Thus, no special technology is needed at this stage to model terms involving such
operators. However, in an intensional model, the denotation of such a term M
may typically record information concerning when, and in what order, the char-
acteristic operators are invoked, and how the results affect the subsequent com-
putation. This means that (in good cases) the denotation of M (or equivalently
of its closure M = λnew, eq.M) will in principle contain enough information to
determine how M would behave if genuine implementations of the appropriate
operators were supplied.1 Furthermore, in many cases, one can find within the
model itself a higher order operator Φ which transforms the denotation of M to
an element modelling the desired actual behaviour of M . One may informally
think of Φ as modelling the behaviour of the program λF. F New Eq, where New,
Eq are actual implementations of the relevant operators; note that such a Φ may
exist even though New, Eq themselves have no standalone interpretation in the
model.

This naturally raises the question: what properties must an operator Φ sat-
isfy in order to give rise to a correct semantics for fresh name generation? Our
“reference semantics” for freshness will presumably be derived from our opera-
tional understanding of New and Eq, but we would also like a denotational (e.g.
an equational) condition on Φ within the model which is sufficient and (ideally)
necessary for the soundness of our interpretation. An operator Φ satisfying this
condition may then be dubbed a freshness operator.

Having arrived at this general definition, it is then natural to ask which par-
ticular intensional models possess a freshness operator. We may think of this
property as capturing something interesting about the innate computational
power of a model (somewhat akin, say, to the property of having a fixed point
operator or a modulus of continuity operator of some sort — see e.g. [30]), as well
as its potential usefulness in denotational semantics. Moreover, by formulating
this notion uniformly for a class of models, we facilitate the task of comparing
and classifying models, thus contributing to the author’s project of mapping out
the landscape of computability notions [16,17].

1 In the case of store cells with read and write operations, this is very much how
the interpretation e.g. in [3] works; this is perhaps the clearest manifestation in the
existing literature of our basic idea.



392 J. Longley

Typically, our approach will work at its best for uses of computational effects
that are localized to some block of code M (cf. [15]). A program that makes
global use of some effect will be modelled as the denotation of an open term
with free variables for the characteristic operations; the operation of localizing
this effect then corresponds to abstracting over these variables and applying
the appropriate operator Φ. Whilst this in principle allows us to interpret both
complete “closed” programs and “open” fragments thereof, a common situation
will be that our interpretation is fully abstract for closed programs, but very far
from this for open ones.2 A natural methodology is therefore to focus initially
on the well-behaved situation for closed programs, and then to consider how
the benefits of our interpretation might be extended to open programs. We will
return to this issue in Section 4.

In the present article, we make a modest start on demonstrating the viability
of our programme, focusing in particular on name generation. This seems an
interesting example to consider for two reasons. Firstly, it cannot be straightfor-
wardly modelled by monads on familiar categories of domains. This led Moggi
originally to suggest using a monad on a functor category [21], an approach which
has subsequently proved rather difficult to combine with other language features
[28]. (In a different guise, functor categories are also an important ingredient in
the Plotkin-Power approach to name generation — see [27,29].) Secondly, virtu-
ally all other efforts to model name generation have, in some way, made essential
use of another idea: that of a set of names acted on by a permutation group
in order to make them “indistinguishable” [2,13,28,31]. These approaches have
achieved significant success, e.g. in terms of full abstraction results; however,
we believe it is also interesting to explore how much can be achieved without
resorting to the machinery of either functor categories or permutation actions.
In particular, our approach shows that many models of computation that have
proved to be of interest for other reasons (e.g. game models) already have what
it takes to model name generation without any specialized additional technology.

The rest of the paper is structured as follows. In Section 2 we sketch a general
framework (based on Moggi’s notion of a λc-model) within which the general
idea works out smoothly. In Section 3, as a concrete example, we consider the
case of fresh name generation in some detail, including the definition of freshness
operators and some technical results validating this definition. In Section 4 we
survey some particular examples of models in which freshness operators are
available, and in Section 5 we mention some avenues for further investigation.

The ideas in this paper arose rather naturally in the course of an attempt to
design a programming language based around the structure available in a certain
game model. For an account of this work in progress, see [18].

I am grateful to the CiE organizers for the invitation to present this material,
to the reviewers for their helpful comments, and to Ian Stark and Nicholas
Wolverson for valuable discussions. The research was supported by EPSRC
Grant GR/T08791: “A programming language based on game semantics”.

2 In the case of store cells, this is related to the problem of “bad variables” — see [3].



Interpreting Localized Computational Effects 393

2 The General Framework

Although we will not be using monads themselves to model effects, we are in-
debted to the monadic tradition for a general notion of (intensional) model that
is suited to our purposes. Because of the special role played by values (i.e. fully
evaluated expressions) in programming languages with effects, it is convenient
to frame our ideas in a call-by-value setting, and here a very suitable notion of
model is provided by Moggi’s work on computational λ-calculus [20]. The def-
inition is most compactly presented in categorical terms. Formally, a λc-model
is a category C with finite products, equipped with a strong monad (T, η, μ, t),
such that for any A,B ∈ C the exponential TBA exists (we henceforth denote
TBA by A ⇒ B).3 For convenience, we assume our λc-models come equipped
with objects 1, 2 representing unit and boolean types. We abbreviate f : 1→ A
to f ∈ A.

The intuition is that whereas an object A may serve for modelling values of
some type, the corresponding object TA will model more general expressions
of this type whose evaluation may involve some effect. (For a detailed expla-
nation of why strong monads are an appropriate choice of structure here, we
refer the reader to [22].) In Moggi’s work, one considers a range of different
monads to capture different computational effects. By contrast, here we will be
concerned almost exclusively with lifting monads representing potentially non-
terminating computations — the interest for us lies in varying the base category
C to capture different “levels of intensionality”. However, it is worth remarking
that computability models that are too finely intensional (such as those based
on Kleene’s models K1 and K2) fail even to be λc-models, and it is not clear
whether our approach can be made to work at all in these settings.

Rather than writing lengthy categorical expressions, we use shall use a familiar
lambda-calculus notation for denoting morphisms of C as in [14]; the precise
intention in any given instance will be clear from the types involved. We shall
supplement this with some meta-notation borrowed from [20]: we write [e] for the
inclusion of e : A into TA via ηA, and let x = e in e′ for the “Kleisli composition”
of e and e′.4 The essential point about the latter is that it captures the call-by-
value discipline of forcing the evaluation of e whether or not x appears in e′. We
write let a = er in e′ to abbreviate let a1 = e in · · · let ar = e in e′.

We also introduce some syntactic machinery intended to embody the general
notion of a “programming language interpretable in C”. We represent the syntax
of such a language as a category à la Lawvere, with composition corresponding
to syntactic substitution. Formally, an object language L consists of:
3 The “mono requirement” mentioned in [20] is not needed for our purposes.
4 More precisely, if e is a meta-expression of type TA involving metavariables yi : Ci,

and e′ a meta-expression of type TB involving metavariables yi : Ci and x : A, then
let x = e in e′ denotes the morphism

ΠCi
〈id,e〉−→ ΠCi × TA

tΠCi,A−→ T (ΠCi × A)
Te′−→ T (TB)

µB−→ TB

For a more formal treatment, see [22].



394 J. Longley

– a collection of types σ, τ , equipped with binary operations ∗,→ and including
for convenience the types unit and bool;

– a category with finite products whose objects are finite tuples of types
(σ1, . . . , σn) (the product of two objects being their concatenation as tu-
ples).

Morphisms (σ1, . . . , σn) → (τ) should be thought of as equivalence classes of
terms-in-context x1 : σ1, . . . , xn : σn � M : τ modulo renaming of variables.
We shall generally use terms-in-context to denote morphisms of L and blur
the distinction between the two notions. We shall also require that there are
constant terms 〈 〉 : unit and tt, ff : bool, and for each σ, τ there exist pairing
and application terms x : σ, y : τ � 〈x, y〉 : σ ∗ τ and f : σ → τ, x : σ � f • x : τ .
(We warn the reader against confusion between the object language syntax and
the meta-notation conventions introduced above.)

A programming language will be an object language L endowed with an op-
erational semantics which includes a notion of “symbolic evaluation” for open
terms as well as the usual notion of evaluation for closed terms. Formally, we
shall require:

– for each Γ, τ , a reflexive-transitive evaluation relation � (more properly
written Γ � −� − : τ) on terms Γ �M : τ ;

– for each Γ, σ, a set of terms of L in context Γ,− : σ designated as evaluation
contexts E[−] (where ‘−’ is a distinguished free variable).

In typical cases, these will satisfy further properties, e.g.:

– if M � N and E[−] is an evaluation context then E[M ] � E[N ];
– for any Γ, τ, Γ ′, the term Γ,−, Γ ′ : τ � − : τ is an evaluation context;
– if E[−], E′[−] are appropriately typed evaluation contexts then so is their

evident composition E′[E[−]];
– for any M and x, the terms −•M , x•−, 〈−,M〉 and 〈x,−〉 (in any suitable

context Γ,− : τ) are evaluation contexts.

A language satisfying these properties will be called standard. Surprisingly, how-
ever, none of these properties will be required for our main results.

An interpretation of types of L in a λc-model C is a mapping [[− ]] from types
of L to objects of C satisfying the expected properties: [[ unit ]] = 1, [[ bool ]] = 2,
[[ nat ]] = N , [[σ ∗ τ ]] = [[σ ]] × [[ τ ]], [[σ → τ ]] = [[σ ]] ⇒ [[ τ ]]. By convention, if
Γ = x1 : σ1, . . . , xr : σr we write [[TΓ ]] for the object T [[σ1 ]] × · · · × T [[σr ]].
Note the appearance of T here, which contrasts with the modelling of contexts
e.g. in [20]. This reflects the fact that the role of variables here is purely to allow
us to talk about the compositional structure of terms rather than to model any
kind of object-level variable binding.

Relative to such a mapping, an interpretation [[− ]] of L maps each term
Γ �M : τ of L to a morphism [[M ]]Γ : [[TΓ ]]→ T [[ τ ]], in such a way that

– variables, constants, application and pairing receive the expected (left-strict)
interpretation, and the evident weakening and contraction properties hold;



Interpreting Localized Computational Effects 395

– [[− ]] is compositional : that is, if Δi � Ni : σi for each i (with the Δi disjoint)
and Γ = x1 : σ1, . . . , xr : σr �M : τ , then

[[M [N/x] ]]Δ = [[M ]]Γ ◦ ([[N1 ]]Δ1 × . . .× [[Nr ]]Δr )

– if Γ,− : σ � E[−] : τ is an evaluation context then [[E[−] ]]Γ,−:σ is strict in
‘−’, that is:

[[E[−] ]](x, y) = let z = y in[[E ]](x, [z])

Clearly, a global interpretation gives rise to a functor L → C which preserves
finite products. Note, however, that products in L do not correspond to object-
level product types, the difference being that between TA× TB and T (A×B).

An interpretation [[− ]] is called sound if Γ �M � N implies [[M ]]Γ = [[N ]]Γ .
We also say [[− ]] is sound for a class T of L-terms if this property holds whenever
M ∈ T .

3 Fresh Name Generation

As our main example, we now work out our approach in some detail for the case
of fresh name generation in the spirit of the ν-calculus. We first present our op-
erational understanding of name generation by describing how any programming
language L may be extended to a language L+ with (localized) name generators.
We then investigate the conditions under which an interpretation for L may be
extended to one of L+.

First, let us assume for convenience that our original object language L comes
already equipped with an infinite supply of name types, ranged over by ν. (These
types need play no active role in L beyond what is implied by the fact of being
a finite-product category.) We may then freely extend L (as a finite-product
category) to a language L+ by means of the following term formation rule:

Γ, new : unit→ ν, eq : ν ∗ ν → bool, a1 : ν, . . . , ar : ν � M : τ
Γ � genν ,new , eq, (a1, . . . , ar) in M : τ

ν 
∈ Γ, τ

where ν ranges over name types and new , eq,a may be any variables.5 If G ⊆
T is any set of types, we also obtain a restricted language L+

G by requiring
that τ ∈ G in the above rule. This construct allows us to introduce a localized
name generator with characteristic operations represented by new and eq, whose
generated names are prevented by the type system from being confused with
names arising from other generators. (The side-condition also ensures that the
generated names cannot leak out of their scope.) This kind of potentially nested
block structure sets the pattern for our general approach to localized effects; in
the present context it also models the situation e.g. in Standard ML, where a
5 We regard ν,new , eq , a as being bound by this construction, and should also require

in the above rule that they do not occur bound within M itself. Technically, we view
α-equivalent expressions as defining the same term in L+, so that for the purpose of
substitution and evaluation we may freely apply α-conversion as necessary.



396 J. Longley

local datatype declaration implicitly introduces a localized name generator for
the corresponding ref type. The ai play the role of names that have already
been created using the generator in question, and which may feature in M .

We let E∗[−] range over L+-substitution instances of evaluation contexts in
L, and let G[−] range over gen-contexts : that is, compositions of zero or more
contexts of the form gen new , eq, (a) in −. As evaluation contexts of L+ or L+

G ,
we take all contexts of the form G[E∗[−]] (note that these are not closed under
composition), and let F [−] range over these. As an operational semantics, we let
�+ be the evaluation relation generated by the following:

– if M � N in L and P is a list of L+-terms, then G[M [P /x]] �+ G[N [P /x]];
– genν new , eq , (a) in F [new •〈 〉] �+ genν new , eq, (a, b) in F [a′] (a′ fresh);
– genν new , eq, (a) in F [eq • 〈ai, ai〉] �+ genν new , eq, (a) in F [tt];
– genν new , eq , (a) in F [eq • 〈ai, aj〉] �+ genν new , eq, (a) in F [ff] (i 
= j);
– G[E∗[genν new , eq , (a) in M ] ] �+ G[genν new , eq , (a) in E∗[M ] ];
– G[genν new , eq, (a) in M ] �+ G[M ] if new , eq,a do not appear in M .

We will take the definition of �+ as our reference semantics for fresh name
generation, and ask when an interpretation in a λc-model accords with this. The
last of the above rules is a “garbage collection rule” — the definition of �+

admits some non-determinism regarding exactly when this rule is to be applied,
but this does not matter for our purposes, since Propositions 1 and 2 below will
apply a fortiori to any reduction strategy included in �+. Note also that if L
is standard, the following are always evaluation contexts:

new • − eq • 〈−,M〉 eq • 〈ai,−〉
and this enables us to make progress with the evaluation of programs such as

genν new , eq, () in eq • 〈new • 〈 〉, (fn x =>new • 〈 〉) • 〈 〉〉
Next, suppose we are given an interpretation [[− ]] of L in C, and assume

for simplicity that [[ ν ]] is the same object Aname for all name types ν. Let
Anew = 1⇒ Aname and Aeq = Aname ×Aname ⇒ 2. Suppose moreover that for
each τ ∈ G we are given some operator Φτ ∈ (Anew ⇒ Aeq ⇒ [[ τ ]])⇒ [[ τ ]], and
let Φ denote the indexed family {Φτ | τ ∈ G}. Relative to Φ, we may define an
interpretation [[− ]]Φ for terms of L+

G as follows:

– [[M ]]ΦΓ = [[M ]]Γ if Γ �M : τ in L;
– [[ genν new , eq, (a1, . . . , ar) in M ]]ΦΓ is taken to be

λx : [[TΓ ]]. Φτ (λnew, eq. let a = (new 〈 〉)r in
[[M ]]ΦΓ ′ (x, [new], [eq], [a1], · · · , [ar]))

where Γ ′ = Γ, new : unit→ ν, eq : ν ∗ ν → bool, a1 : ν, . . . , ar : ν;
– [[− ]]Φ extends to arbitrary terms of L+

G via compositionality.

Under what conditions is this interpretation a reasonable one? We propose
the following semantic definition; note that only equations between higher type
operators are involved. For readability, we take a few small liberties in our meta-
notation, e.g. writing f new eq 〈b,a〉 in place of let f ′ = f in f ′ new eq 〈b,a〉.



Interpreting Localized Computational Effects 397

Definition 1. A freshness operator for a type τ is an operator Φτ ∈ (Anew ⇒
Aeq ⇒ [[ τ ]])⇒ [[ τ ]] satisfying the following equations.

1. If Ag = T [[ τ ]] then

λg : Ag. Φτ (λnew, eq. let a = (new 〈 〉)r in g) = λg : Ag. g

2. For all r and all i ≤ r, if Af = T (Anew ⇒ Aeq ⇒ (2×Arname)⇒ [[ τ ]]) then

λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in let b = eq (ai, ai) in f new eq 〈b,a〉)
= λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in f new eq 〈tt,a〉)

3. For all r and all i, j ≤ r with i 
= j, if Af is as above then

λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in let b = eq (ai, aj) in f new eq 〈b,a〉)
= λf : Af . Φτ (λnew, eq. let a = (new 〈 〉)r in f new eq 〈ff,a〉)

Although a certain amount can be achieved even with a single freshness operator,
more can be done with a family of such operators that fit well together. A family
Φ = {Φτ | τ ∈ G} of freshness operators is called coherent if for any σ, τ ∈ G,
writing Ac = T [[σ → τ ]] and Ap = T (Anew ⇒ Aeq ⇒ [[σ ]]) we have

λc : Ac. λp : Ap. Φτ (λnew, eq. let x = p new eq in c x)
= λc : Ac. λp : Ap. let x = Φσp in c x

(In particular, the Φτ form a natural transformation (Anew ⇒ Aeq ⇒ −) → −
considered as functors on the relevant portion of the Kleisli category CT .)

We now state a series of results which collectively validate the above defini-
tions, and also confirm the appropriateness of our framework as a whole. (We
omit the rather straightforward proofs.) We henceforth assume a fixed sound
interpretation [[− ]] of L in C. By a primary term we mean an L+-term of the
form G[M ] where M ∈ L.

Proposition 1. (i) If Φτ is a freshness operator for τ , then [[− ]]Φ as defined
above constitutes an interpretation of L+

{τ} which is sound for primary terms of
type τ .

(ii) Moreover, if Φ is a coherent family of freshness operators for G, then
[[− ]]Φ is a sound interpretation of L+

G .

As an immediate consequence, we have the following:

Proposition 2. (i) Suppose Φ is a freshness operator for τ , M is a closed pri-
mary term of type τ , and N a closed L-term of type τ . Then ∅ � M �+ N : τ ,
implies [[M ]]Φ = [[N ]].

(ii) Suppose Φ is a coherent family of freshness operators for G, M is an
arbitrary closed L+

G -term of type τ ∈ G, and N a closed L-term of type σ. Then
∅ � E[M ] �+ N implies [[E[M ] ]]Φ = [[N ]].



398 J. Longley

The moral of Proposition 2 is roughly as follows. Typically, we will be interested
in languages L with a designated class of syntactic values V , and a class of
ground types γ with the property that a value V of ground type cannot contain
any variables new , eq, ai with types as above. Thinking of N in Proposition 2
as ranging over values, the proposition implies (in typical cases) that to obtain
a sound interpretation for programs containing only gen expressions of ground
type, the existence of the corresponding freshness operators is sufficient; however,
to give an interpretation programs involving non-ground type localizations which
correctly accounts for ground type observations on them, coherence is required.
This phenomenon is not special to the case of name generation, but appears to
be typical of our approach.

The converse half of computational adequacy requires stronger hypotheses,
such as a “syntactic continuity” property, though we will not go into the de-
tails here. For our present purposes, a more interesting kind of converse is the
following, which can be seen as validating our definition of freshness operator:

Proposition 3. (i) Suppose Φτ is an operator such that for every programming
language L′ with a sound interpretation [[− ]]′ in C (agreeing on types with [[− ]]),
the interpretation [[− ]]′Φτ of L′+{τ} is sound for primary terms of type τ . Then
Φ is a freshness operator for [[ τ ]].

(ii) Suppose Φ is a family of operators over G such that for every program-
ming language L′ with a sound interpretation [[− ]]′ in C, [[− ]]′Φ is a sound
interpretation of L′+G . Then Φ is a coherent family of freshness operators.

Note also that in the above setting, the freshness operators are themselves syn-
tactically definable in L+, since Φτ = [[ genν new , eq, () in (− • new • eq) ]]Φ. In
fact, it seems reasonable to suppose that for any natural interpretation of L+,
the operator defined in this way will be a freshness operator. Thus, if we are
seeking to interpret a language with name generation in an intensional model,
little or no useful generality appears to be lost by assuming the existence of
freshness operators.

4 Models

We now briefly review what we know concerning particular λc-models that pos-
sess freshness operators. Firstly, any of the known game models that suffice for
modelling local store of integer type (see e.g. [3,5,6]) will also yield a model for
fresh name generation according to our scheme, for the simple reason that (tak-
ing names to be just integers) a freshness operator may be readily implemented
using a local integer store cell. (Note that the game models in question may be
transformed into suitable λc-models by means of a standard construction [4].)

Some idea of the landscape may be gained by considering a few particular
game models that are relatively simple to construct. We content ourselves here
with a bare sketch of the relevant points, referring to the literature for further
details. Let G denote the basic game model introduced by Lamarche (see [10]):
here, a gameG consists of setsOG, PG of opponent and player moves respectively,



Interpreting Localized Computational Effects 399

together with a non-empty prefix-closed set LG of legal positions of the form
o1p1 . . . onpn (n ≥ 0) or o1p1 . . . on (n ≥ 1), where oi ∈ OG, pi ∈ PG. Such
games (with suitable morphisms) form a symmetric monoidal closed category,
on which one may consider several different linear exponentials ‘!’ embodying
different notions of “reusability”. From any of these exponentials we may obtain
a category G! with the same objects as G, in which morphisms G→ H are simply
morphisms !G → H of G. This gives a cartesian-closed category with a lifting
monad, and hence a suitable λc-model.

Some exponentials of particular interest are the following (cf. [19]):

– The “Lamarche exponential” !1. Here moves in !1G are certain finite sub-
trees of LG, and a play in !1G consists of an “exploration” of LG in which
one new position s ∈ LG is added to the subtree at each stage. From the
corresponding category G!1 one recovers essentially the world of sequential
algorithms [10]. However, this does not yield a model for either ground type
store or freshness, essentially because repetitions of earlier moves are not
accounted for in !1G.

– The (more powerful) “Hyland exponential” !2 of [12]. Here !2G essentially
consists of ω copies of G side by side, with the stipulation that one cannot
play a move in the (i + 1)th copy unless one has already played in the ith
copy. The category G!2 gives a good model for ground type store and more
besides [32], and in particular has a coherent family of freshness operators.

– A still more powerful exponential !3 may be defined, where plays in !3G
explore trees of justified sequences of moves in G. This essentially coincides
with the exponential given in [5], except that we do not impose a visibility
condition on our plays. Again, the corresponding model supports ground-
type store and freshness operators.

We are also aware of one model which is not a game model, and which supports
freshness operators but not local store. This provides an encouraging sign that
our general approach is applicable beyond the class of models that motivated
it. The model in question is based on a “resource-sensitive” model for linear
logic, in which multisets are used to keep track of the number of times some
argument is invoked in a computation, but without imposing a temporal order
on these invocations as the game models do. Specifically, we have in mind the
category MRel, whose objects are sets and whose morphisms f : S → T are
relations f ⊆Mf(S)×T , whereMf (S) is the set of finite multisets over S. (An
explicit description of this category and its cartesian closed structure is given
in [9].) We may also endow MRel with a (rather crude) lifting monad which
simply adds to each set a new token ∗ signalling “definedness”, and again apply
the construction of [4] to obtain a λc-model. Within this model, it is possible to
“probe” an operation p : Anew ⇒ Aeq ⇒ X in order to discover what it does
when all invocations of Anew yield different answers. Using this idea, we obtain
a coherent family of freshness operators within the model.

We now return to the question of full abstraction mentioned in the Introduc-
tion. According to the setup of Section 3, if the interpretation [[− ]] of L in C
satisfies full abstraction and definability, then so will the resulting interpretation



400 J. Longley

[[− ]]Φ of L+. However, this relies on the fact that, in L+, the characteristic oper-
ators new and eq are just ordinary variables, whereas in more realistic languages
they will be hard-wired in as language primitives, as in the original ν-calculus
[25]. In the latter case, we can still get a semantic interpretation

M : σ �→ [[M ]] ∈ Anew ⇒ Aeq ⇒ [[σ ]]

by treating new and eq as free variables, though this will (in game models, for
instance) not even validate such simple observational equivalences as

let (x,y)=(new(),new()) in M � let (y,x)=(new(),new()) in M

To do better than this, an alternative (and still compositional) interpretation

M : σ �→ [[M ]]† ∈ (Anew ⇒ Aeq ⇒ T [[σ ]]⇒ 1)⇒ 1

may cheaply be defined from [[− ]] as follows:

[[M ]]† = λP. Φ (λnew, eq. (P new eq)([[M ]] new eq))

In typical models, [[− ]]† will validate simple equivalences such as the one above,
at least at low types. Whether a fully abstract semantics for (extensions of) the
ν-calculus can be given along these lines is an interesting outstanding question.

5 Further Work and Conclusions

The next step in our programme is to carry out a similar analysis for other com-
putational effects. We have informally verified that a similar story can be told
for exceptions and for (ground or higher type) local store. In the case of excep-
tions, two options are available. The first is to consider fourth-order exception
operators of types such as

(Araise ⇒ Ahandle ⇒ [[ τ ]])⇒ [[ τ ]]

where Araise = 1 ⇒ 1 and Ahandle = (1 ⇒ [[σ ]]) ⇒ (1 ⇒ [[σ ]]) ⇒ [[σ ]]. This
affords a very general treatment of exceptions allowing us to model complex
dynamic scoping phenomena; however, the relevant exception operators are only
available in relatively powerful game models such as G!3 . Another option is to
restrict attention to a somewhat more disciplined class of uses of exceptions, in
which an independent raise operator is eschewed and instead the first argument
to handle explicitly incorporates the relevant invocations of raise: consider e.g.
A′
handle = ((1 ⇒ 1) ⇒ [[σ ]]) ⇒ (1 ⇒ [[σ ]]) ⇒ [[σ ]]. This conveniently accounts

for those uses of exceptions that can be reasonably modelled e.g. in G!1 , and also
gives us the rare pleasure of finding a use for a fifth-order operator!

An important difference arises when one considers local store. Whilst a sensi-
ble notion “store cell operator” may be formulated, it turns out that non-trivial
coherent families of such operators never exist. The issue here is that programs



Interpreting Localized Computational Effects 401

of non-ground type involving local store can define functions with persistent in-
ternal state, which may behave differently each time they are called, and one
cannot hope to model such a thing in a λc-model. However, it turns out that one
can do better on this front by working in a linear rather than an intuitionistic
framework, as is often done in game semantics to account for stateful behaviour
(see e.g. [32]).

We also expect a similar treatment of continuations to be possible using suit-
able higher order operators. However, our approach seems to have very little to
offer in the case of non-determinism or input/output, since there is no evident
specification for the relevant operators in these cases.

Once some further instances of our approach have been worked out, a detailed
comparison of the merits and demerits of the monadic (or algebraic theory) and
intensional approaches will be possible. There is, however, one suggestion we
would like to make at this stage. In the monadic approach, each effect featur-
ing in a complex language typically requires a separate increment to the model
construction. Moreover, if local state is to be treated, maybe functor categories
must also be added to the mix; for name generation, perhaps nominal sets are re-
quired too. By contrast, in the intensional approach, one may be able to account
for all these effects using operators that are naturally to hand in a single model
— indeed, it seems that there are fairly simple models (such as G!3 , or more
accurately its linear counterpart) that support virtually all the effect operators
one might hope for. If this is so, we regard it as an important point in favour of
intensional semantics.

Finally, we note that there are some tantalizing resemblances between our
approach and the mechanism employed in Haskell for localization of effects using
the runST operator [15,23]. It would be interesting to explore this connection.

References

1. Abramsky, S.: Semantics of interaction: an introduction to game semantics. In:
Pitts, A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, CUP, pp.
1–31 (1997)

2. Abramsky, S., Ghica, D., Murawski, A., Ong, C.-H., Stark, I.: Nominal games and
full abstraction for the nu-Calculus. In: Proc. 19th LICS, pp. 150–159. IEEE Press,
Los Alamitos (2004)

3. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for gen-
eral references. In: Proc. 13th LICS, pp. 334–344. IEEE Press, Los Alamitos (1998)

4. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997.
LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

5. Abramsky, S., McCusker, G.: Game semantics. In: Proc. 1997 Marktoberdorf Sum-
mer School, pp. 1–56. Springer, Heidelberg (1999)

6. Abramsky, S., McCusker, G.: Full Abstraction for Idealized Algol with passive
expressions. Theor. Comp. Sci. 227, 3–42 (1999)

7. Amadio, R.M., Curien, P.-L.: Domains and Lambda-Calculi, CUP (1998)
8. Berry, G., Curien, P.-L.: Sequential algorithms on concrete data structures. Theor.

Comp. Sci. 20, 265–321 (1982)



402 J. Longley

9. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not enough points is enough. In: Du-
parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 298–312. Springer,
Heidelberg (2007)

10. Curien, P.-L.: On the symmetry of sequentiality. In: Main, M.G., Melton, A.C.,
Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp.
29–71. Springer, Heidelberg (1994)

11. Curien, P.-L.: Notes on game semantics. From the author’s web page (2006)
12. Hyland, J.M.E.: Game semantics. In: Pitts, A.M., Dybjer, P. (eds.) Semantics and

Logics of Computation, CUP, pp. 131–194 (1997)
13. Laird, J.: A game semantics of local names and good variables. In: Walukiewicz, I.

(ed.) FOSSACS 2004. LNCS, vol. 2987, Springer, Heidelberg (2004)
14. Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic, CUP (1986)
15. Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp Symb. Comp. 8, 193–341

(1995)
16. Longley, J.R.: Notions of computability at higher types I. In: Longley, J.R. (ed.)

Proc. Logic Colloquium 2000. Lecture Notes in Logic, ASL, vol. 200, pp. 32–142
(2005)

17. Longley, J.R.: On the ubiquity of certain total type structures. Math. Struct. in
Comp. Science 17, 841–953 (2007)

18. Longley, J.R., Wolverson, N.: Eriskay: a programming language based on game
semantics. GaLoP III, Budapest (to be presented) (2008)

19. Melliès, P.-A.: Comparing hierarchies of types in models of linear logic. Inf.
Comp. 189(2), 202–234 (2004)

20. Moggi, E.: Computational lambda-calculus and monads. In: LFCS report ECS-
LFCS-88-66, University of Edinburgh (1988); A shorter version appeared. In: Proc.
4th LICS, pp.14-23. IEEE Press (1989)

21. Moggi, E.: An abstract view of programming languages. LFCS report ECS-LFCS-
90-113, University of Edinburgh (1989)

22. Moggi, E.: Notions of computation and monads. Inf. and Comp. 93, 55–92 (1991)
23. Moggi, E., Sabry, A.: Monadic encapsulation of effects: a revised approach. J.

Funct. Prog. 11(6), 591–627 (2001)
24. Peyton Jones, S., Wadler, P.: Imperative functional programming. In: Proc. 20th

POPL, ACM Press, New York (1993)
25. Pitts, A., Stark, I.: Observable Properties of Higher Order Functions that Dynam-

ically Create Local Names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski,
S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

26. Plotkin, G.D.: LCF considered as a programming language. Theor. Comp. Sci. 5,
223–255 (1977)

27. Plotkin, G.D., Power, A.J.: Algebraic operations and generic effects. Appl. Categ.
Struct. 11(1), 69–94 (2003)

28. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theor. Comp.
Sci. 342, 28–55 (2005)

29. Stark, I.: Free-algebra models for the π-calculus. Theor. Comp. Sci. 390(2-3), 248–
270 (2008)

30. Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. LNM, vol. 344. Springer, Heidelberg (1973)

31. Tzevelekos, N.: Full abstraction for nominal general references. In: Proc. 22nd
LICS, pp. 399–410. IEEE Press, Los Alamitos (2007)

32. Wolverson, N.: Game semantics for object-oriented languages. PhD thesis, Univer-
sity of Edinburgh (submitted, 2007)



Uniform Algebraic Reducibilities between

Parameterized Numeric Graph Invariants

J.A. Makowsky�

Department of Computer Science
Technion–Israel Institute of Technology

Haifa, Israel
janos@cs.technion.ac.il

Abstract. We report about our ongoing study of inter-reducibilities of
parameterized numeric graph invariants and graph polynomials. The pur-
pose of this work is to systematize recent emerging work on graph polyno-
mials and various partition functions with respect to their combinatorial
expressiveness and computational complexity.

1 Graph Polynomials and Partition Functions

Motivated by problems in statistical mechanics, computational chemistry, com-
putational biology and quantum physics, the recent years have produced many
papers dealing with graph polynomials and various combinatorial counting and
partition functions with their specific idiosyncrasies and intricacies, [ABS04a],
[ABS04b], [BCL+06], [BR99], [BG05], [CG95], [Cou], [DG00] [FLS07], [JVW90],
[LM04], [Sok05], [Sze07]. The interrelations between the various new graph poly-
nomials and functions introduced in these papers are not well understood. They
tend to be computationally extremely complex and rather well beyond the com-
plexity levels described as potentially feasible (�P rather than NP ).

Although there is an abundance of literature about specific graph polynomials,
cf. [Mak07], no systematic study of their complexities and inter-reducibilities has
been presented so far.

We have created a WEB-page

http://www.cs.technion.ac.il/∼janos/RESEARCH/gp-homepage.html

which documents our efforts in unifying research in graph polynomials and
parametrized numeric graph invariants. It also contains links to our collabo-
rators and to researchers interested in related topics.

2 Complexity and Reducibilities

In this talk we concentrate on algebraic and complexity theoretic aspects. The
main goal is to uncover common features for wide classes of parameterized nu-
� Funded by ISF-Grant ”Model Theoretic Interpretations of Counting Functions”

2007-2010 and the Grant for Promotion of Research by the Technion–Israel Institute
of Technology.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 403–406, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



404 J.A. Makowsky

meric graph invariants in the spirit of the recently developed theory for graph
homomorphisms and partition functions.

Various notions of reducibilities can be applied in these situations. However,
the reducibilities by polynomial time Turing machines do not capture the inher-
ent combinatorial content of these functions, especially when these functions are
describing infinite families in a uniform way.

In the complexity analysis of graph polynomials the point-to-point reductions
of evaluations were defined as non-uniform, although in the proofs a certain
uniformity appeared naturally. In previous work we introduced several notions
of uniform reducibilities between parameterized numeric graph invariants and
used these to study interpretability and complexity of graph polynomials. In
particular, our aim was

(i) To study in great detail these uniform reductions and explore them on se-
lected examples from the existing literature;

(ii) To measure the combinatorial content of a graph polynomial. Traditionally,
a graph polynomial subsumes another if the first can be obtained from the
second by a substitution instance and multiplication by a pre-factor. This
notions seems to be too weak. However, polynomial time Turing reducibility
gives a notion which is to strong for this purpose. Combining combinatorial
and algebraic techniques we plan to establish the “right” notions to capture
combinatorial content.

3 The Difficult Point Conjecture

We were capable of recasting classical results on the Tutte polynomial in a gen-
eral framework, and show that, from a complexity point of view, other graph
polynomials share the same behavior. This has led us to formulate a rather gen-
eral conjecture, which postulates similar behavior for a large class of parameter-
ized numeric graph invariants, the Difficult Point Conjecture. Roughly speaking,
the Difficult Point Conjecture states that, for the class of graph polynomials de-
finable in Monadic Second Order Logic, either all its evaluations are uniformly
computable in polynomial time, or, if there is an evaluation which is hard to
compute, then, up to a small exception set, all its evaluation are equally hard
to compute. Furthermore, there is a uniform algebraic reduction, which relates
all the hard evaluations to each other. The exception set is small in the sense
that the set of evaluation points for which the polynomial is easy to evaluate
has strictly lower dimension than the space of evaluation points. More details
can be found in [Mak07].

The class of graph polynomials definable in Monadic Second Order Logic
(MSOL) comprises all of the graph polynomials we could find in the literature
with two exceptions: The weighted graph polynomial introduced by S. Noble
and D. Welsh [NW99], and the graph polynomial counting the number of har-
monious colorings. Harmonious graph colorings were introduced in [HK83]. All
the partition functions (vertex coloring models) studied in [FLS07] are evalua-
tions of graph polynomials definable in Monadic Second Order Logic, however,



Uniform Algebraic Reducibilities 405

the edge coloring models studied in [Sze07] need not be definable in this way.
The conjecture is formulated for the class of MSOL-definable polynomials for
convenience only. If it holds for MSOL, it is likely to hold also for larger classes
of graph polynomials.

The difficulty in proving this conjecture consists in finding a unique reason
for many graph polynomials to behave in this way. Partial progress in proving
the Difficult Point Conjecture was recently achieved in the following papers:
In [BD07] the complexity of the cover polynomial of [CG95] is completely an-
alyzed in the spirit of [JVW90]. The same is accomplished in [BH07] for the
interlace polynomial, and in [BDM08] for the multivariate Tutte polynomials.
All these results rely on, sometimes intricate, variations of the original ideas
used in [JVW90]. But it is not clear how to extend this to the general case of
MSOL-definable polynomials.

Acknowledgment. I would like to thank my co-authors I. Averbouch, M.
Bläser, B. Courcelle, H. Dell, B. Godlin, T. Kotek and C. Hoffmann for their
contributions to this talk.

References

[ABS04a] Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph.
Journal of Combinatorial Theory Series B 92, 199–233 (2004)

[ABS04b] Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial.
Combinatorica 24.4, 567–584 (2004)

[BCL+06] Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting
graph homomorphisms. In: Klazar, M., Kratochvil, J., Loebl, M., Matousek,
J., Thomas, R., Valtr, P. (eds.) Topics in Discret mathematics, pp. 315–371.
Springer, Heidelberg (2006)

[BD07] Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 801–812. Springer, Heidelberg (2007)

[BDM08] Bläser, M., Dell, H., Makowsky, J.A.: Complexity of the Bollobás-Riordan
polynomia, exceptional points and uniform reductions. In: CSR 2008 (ac-
cepted for presentation) (2008)

[BG05] Bulatov, A., Grohe, M.: The complexity of partition functions. Theoretical
Computer Science 348, 148–186 (2005)

[BH07] Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial.
arXive 0707.4565 (2007)

[BR99] Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combi-
natorics, Probability and Computing 8, 45–94 (1999)

[CG95] Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. Jour-
nal of Combinatorial Theory Ser. B 65(2), 273–290 (1995)

[Cou] Courcelle, B.: A multivariate interlace polynomial (preprint, December
2006)

[DG00] Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms.
Random Structures and Algorithms 17(3-4), 260–289 (2000)

[FLS07] Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connec-
tivity, and homomorphisms of graphs. Journal of AMS 20, 37–51 (2007)



406 J.A. Makowsky

[HK83] Hopcroft, J.E., Krishnamoorthy, M.S.: On the harmonious coloring of
graphs. SIAM J. Algebraic Discrete Methods 4, 306–311 (1983)

[JVW90] Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity
of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–
53 (1990)

[LM04] Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families
of coloured Tutte polynomials. Advances in Applied Mathematics 32(1-2),
327–349 (2004)

[Mak07] Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph
polynomials. In: Theory of Computing Systems (on-line first) (2007)

[NW99] Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic
invariants of knots. Ann. Inst. Fourier, Grenoble 49, 1057–1087 (1999)

[Sok05] Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs
and matroids. In: Survey in Combinatorics, 2005. London Mathematical
Society Lecture Notes, vol. 327, pp. 173–226 (2005)

[Sze07] Szegedy, B.: Edge coloring models and reflection positivity. arXiv:
math.CO/0505035 (2007)



Updatable Timed Automata with Additive and

Diagonal Constraints

Lakshmi Manasa, Shankara Narayanan Krishna, and Kumar Nagaraj

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay,

Powai, Mumbai, India 400 076
{manasa,krishnas,kumar}@cse.iitb.ac.in

Abstract. Timed automata [1] are a well established theoretical frame-
work used for modeling real time systems. In this paper, we introduce
a class of timed automata with updates of the form x :∼ d − y. We
show that these updates preserve the decidability of emptiness of clas-
sical timed automata with diagonal constraints for ∼∈ {=, <, ≤}, while
emptiness is undecidable for ∼∈ {>, ≥, �=}. When used along with addi-
tive constraints, these updates give decidable emptiness with 2 or lesser
number of clocks, and become undecidable for 3 clocks. This provides a
partial solution to a long standing open problem [5].

1 Introduction

Timed automata, introduced in [1] are a well established model for the verifi-
cation of real time systems. Since their introduction, several variants of timed
automata have been studied. Some of them are : [4], wherein new operations
on clock updates were considered, [5] where new kinds of guards were intro-
duced, [7] where a set of clocks could be freezed, and [6], where silent transitions
were studied. A very interesting result in the theory of timed automata is that
the emptiness problem is decidable. This has paved the way for using timed
automata in verification and many tools viz., UPPAAL [8], KRONOS [9] and
HyTech [2] were built using this.

In this paper, we consider a variant of timed automata having new update
operations. The updates we consider are of the form x :∼ d − y, ∼∈ {<,≤,=
, >,≥, �=}. It has been shown [4] that updating a clock based on another clock’s
value (x :∼ y, x :∼ y + c) is very powerful and often leads to undecidability of
emptiness. We show here that updates of the kind x :∼ d − y ∼∈ {=,≤, <}
preserve the decidability, and thus behave very differently from the known set
of updates. However, when these kinds of updates are used along with additive
constraints, emptiness remains decidable only when the number of clocks used
are two or less. In fact, our proof uses only deterministic updates x := d − y.
This also gives a partial solution to the problem of deciding emptiness for the
class of timed automata with additive constraints and 3 clocks [5].

It is well known that the expressive power of classical timed automata [1] does
not change when location invariants (x ∼ c) are used. It can be shown that us-
ing constraints x − y ∼ c as location invariants and guards, emptiness remains

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 407–416, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



408 L. Manasa, S.N. Krishna, and K. Nagaraj

decidable for the class of timed automata using x :< c as updates ([4] has proved
this without using location invariants; however, adapting the proof to the case of
using x − y ∼ c as location invariants is not hard). However, if we allow additive
constraints x+ y = c as location invariants and guards, then emptiness becomes
undecidable when used along with updates x :< c, in the presence of 3 or more
clocks.

2 Prerequisites

For any set S, S∗ (Sω) denotes the set of all finite (infinite) strings over S.
S∞ = S∗ ∪ Sω. We consider as time domain T the set Q+ or R+ of non-
negative rationals or reals, and Σ a finite set of actions. A time sequence over
T is a finite (infinite) non-decreasing sequence τ = (ti)i≥1 ; for simplicity t0 is
taken to be zero always. A timed word over Σ is defined as ρ = (σ, τ), where
σ = (σi)i≥1 is a finite (infinite) sequence of symbols in Σ and τ = (ti)i≥1 is a
finite (infinite) sequence in T∞. A timed language L is a set of timed words.

We consider a finite set of variables X called clocks. A clock valuation over X
is a map ν : X → T mapping each clock x ∈ X to a time value. ν(x) represents
the value assigned to the clock x by ν and frac(ν(x)) represents the fractional
part of the value ν(x). For t ∈ T, the valuation ν + t is defined as (ν + t)(x) =
ν(x) + t, ∀x ∈ X . The set of all clock valuations over X is denoted by TX .

For the set of clocks X , the set of constraints (guards) over X , denoted by
C−(X) is given as follows: ϕ ::= x ∼ c|x − y ∼ c|ϕ ∧ ϕ|ϕ ∨ ϕ where x, y ∈
X, c ∈ Q+ and ∼∈ {<,≤, >,≥,=, �=}. Constraints x−y ∼ c are called diagonal
constraints. Clock constraints are interpreted over clock valuations. The relation
ν |= ϕ (valuation ν satisfies constraint ϕ) is defined as follows: ν |= x ∼ c if
ν(x) ∼ c, ν |= x− y ∼ c if ν(x) − ν(y) ∼ c and so on.

Clock constraints allow us to test the values of clocks. To change the value
of a clock x we use a simple update of the form upx :: x := 0. U0(X) denotes
the set of updates up ∈ U0(X) defined as up =

∧
x∈X upx where upx are simple

updates. These updates are functions from TX to P(TX).
Let ν be a valuation and let upz be a simple update over clock z. A valuation

ν′ is in upz(ν) if ν′(y) = ν(y), y �= z and ν′(z) = 0. For two valuations ν, ν′ ∈ TX ,
ν′ ∈ up(ν) if for every x ∈ X , ν′ coincides with ν′′ ∈ upx(ν) over the value of x.

2.1 Timed Automata

A timed automaton [1] is a tuple A = (L,L0, Σ,X,E, F ) where L is a finite set
of locations; L0 ⊆ L is a set of initial locations; Σ is a finite set of symbols; X is
a finite set of clocks; E ⊆ L× L×Σ × C−(X)× U0(X) is the set of transitions
and F ⊆ L is a set of final locations. C−(X) and U0(X) are the set of clock
constraints and clock updates as described above. An edge e = (l, l′, a, ϕ, φ)
represents a transition from l to l′ on symbol a, with the valuation ν ∈ TX

satisfying the guard ϕ, and then φ gives the updates of certain clocks.
A path is a finite (infinite) sequence of consecutive transitions. The path

is said to be accepting if it starts in an initial location (l0 ∈ L0) and



Updatable Timed Automata with Additive and Diagonal Constraints 409

ends in a final location (or repeats a final location infinitely often). A run
through a path from a valuation ν′0 (with ν′0(x) = 0 for all x) is a sequence

(l0, ν′0) t1−→ (l0, ν1)
(σ1,ϕ1,φ1)−→ (l1, ν′1) t2−→ (l1, ν2)

(σ2,ϕ2,φ2)−→ (l2, ν′2) · · · (ln, ν′n). Note
that νi = ν′i−1+(ti−ti−1), νi |= ϕi, and that ν′i ∈ up(νi), i ≥ 1. A timed word ρ is
accepted by A iff there exists an accepting run (through an accepting path) over
A, the word corresponding to which is ρ. The timed language L(A) accepted by
A is defined as the set of all timed words accepted by A.

2.2 Region Automata

Given a set X of clocks, let R be a finite partitioning of TX . Each partition
contains a set (possibly infinite) of clock valuations. Given α ∈ R, the successors
of α represented by Succ(α) are defined as

α′ ∈ Succ(α) if ∃ν ∈ α, ∃t ∈ T such that ν + t ∈ α′

The finite partition R is said to be a set of regions iff

α′ ∈ Succ(α)⇐⇒ ∀ν ∈ α, ∃t ∈ T such that ν + t ∈ α′.

A set of regions is consistent with time elapse if two valuations which are equiv-
alent (within the same partition) stay equivalent with time elapse. A region
α ∈ R is said to satisfy a clock constraint ϕ ∈ C−(X) denoted as α |= ϕ, if
∀ν ∈ α, ν |= ϕ. A clock update φ ∈ U0(X) maps a region α to a set of regions
φ(α) = {α′ | α′ ∩ φ(ν) �= ∅ for some ν ∈ α}.

A set of regions R is said to be compatible with a finite set of clock constraints
C−(X) iff ∀ ϕ ∈ C−(X) and ∀α ∈ R either α |= ϕ or α |= ¬ϕ. A set of
regions R is said to be compatible with a finite set of clock updates U0(X) iff
α′ ∈ φ(α)⇒ ∀ν ∈ α, ∃ν′ ∈ α′ such that ν′ ∈ φ(ν).

Given a timed automaton A, and a set of regions R compatible with C−(X)
and U0(X), the region automatonR(A) = (Q,Q0, Σ,E

′, F ′) is defined as follows:
Q = L × R the set of locations; Q0 = L0 × R ⊆ Q the set of initial locations;
F ′ = F × R ⊆ Q the set of final locations; E′ ⊆ (Q × Σ × Q) is the set of
edges. (l, α) a→ (l′, α′) if ∃α′′ ∈ R and a transition (l, l′, a, ϕ, φ) ∈ E such that
(a) α′′ ∈ Succ(α), (b) α′′ |= ϕ and (c) α′ ∈ φ(α′′).

The region automaton is an abstraction of the timed automaton accepting
Untime(L(A)) [1]. As a consequence, the following theorem was proved [1].

Theorem 1. Let A be a timed automaton. Then the problem of checking empti-
ness of L(A) is decidable.

We say that a class of timed automata is decidable if there exists a decider for
the emptiness problem.

3 Diagonal Constraints

In this section, we consider a class of timed automata called updatable timed
automata with diagonal constraints. This class of automata has C−(X) as the



410 L. Manasa, S.N. Krishna, and K. Nagaraj

set of clock constraints. The set of updates of this class of automata denoted by
U≤(X) are defined as up =

∧
x∈X upx where upx are simple updates as follows:

upx ::= x := 0 | x :∼ d − y, where x, y ∈ X, d ∈ Q+ and ∼∈ {=, <,≤}.
Here, d ≤ cmax where cmax = max{c | x ∼ c ∈ C−(X) or x − y ∼ c ∈ C−(X)}.
Accordingly, we have ν′ ∈ upz(ν) if ν′(y) = ν(y), y �= z and ν′(z) = 0 if upz ::=
z := 0 and ν′(z) ∼ d− ν(y) ∧ ν′(z) ≥ 0 if upz ::= z :∼ d− y.

For every clock x ∈ X , define a constant cmaxx = cmax + dmaxx where dmaxx =
max{c | x− y ∼ c ∈ C−(X) ∧ y ∈ X}, and a set of intervals Ix as

Ix = {[c]|0 ≤ c ≤ cmaxx } ∪ {(c, c+ 1)|0 ≤ c < cmaxx } ∪ {(cmaxx ,∞)}.
For every pair of clocks x, y ∈ X , define Dxy = max{c | x− y ∼ c ∈ C−(X)},

and the set of intervals Jxy as

Jxy = {(−∞,−dyx)} ∪ {[d]} ∪{(d′, d′ + 1)}∪{(dxy,+∞)} where −dyx ≤ d ≤
dxy and −dyx ≤ d′ < dxy.

Let α be a tuple ((Ix)x∈X ,(Jxy)x,y∈X ,≺) where

1. Ix ∈ Ix, Jxy ∈ Jxy, and
2. ≺ is a total preorder on X0 = {x ∈ X | Ix is of the form (c, c+ 1)}.
α defines the following subset of TX : valuations ν ∈ TX such that ν(x) ∈ Ix
for all x ∈ X , ν(x) − ν(y) ∈ Jxy for all x, y ∈ X , and frac(ν(x)) ≤ frac(ν(y))
if x ≺ y for all x, y ∈ X0. The set of all such tuples α partitions TX and is
represented by R−.

Remark 1. When using updates x :∼ d−y, the value ν′(x) must be non-negative,
as mentioned above. This can be ensured by adding a guard y ≤ d? while making
the transition.

The following are easy to observe.

Lemma 1. Set R− forms a set of regions.

Proof. Let α = ((Ix)x∈X , (Jxy)x,y∈X ,≺) ∈ R−. If for all x, Ix = (cmaxx ,∞),
then Succ(α) = {α} as time elapse would not change Jxy. If there is atleast
one Ix such that Ix �= (cmaxx ,∞), then there exists a region α′ �= α such that
α′ ∈ Succ(α). We define the closest successor of α to be α′ such that ∀ν ∈ α, ∀t ∈
T, if ν + t /∈ α, then ∃t′ ≤ t such that ν + t′ ∈ α′.

Let Z = {x ∈ X | Ix = [c]}. In this case, I ′x = (c, c + 1) for x ∈ Z and
c < cmaxx ; I ′x = (cmaxx ,∞) for x ∈ Z and c = cmaxx while I ′x = Ix for x /∈ Z.
x ≺′ y if x ≺ y or if Ix = [c], c < cmaxx and Iy = (d, d+ 1). J ′

xy = Jxy for all x, y.
In case Z = ∅, then pick the clock(s) x ∈ X0 having the maximal fractional

part. For these, I ′x = [c + 1] if Ix = (c, c + 1), c < cmaxx , and for the rest of
clocks y ∈ X , I ′y = Iy . Here, ≺′ is the restriction of ≺ to clocks x such that
I ′x = (d, d+ 1). Again, J ′

xy = Jxy for all x, y.
It is easy to see that for all ν ∈ α, there exists a t ∈ T such that ν+t ∈ α′. ��

Lemma 2. The set of regions R− is compatible with the set of clock constraints
C−(X).



Updatable Timed Automata with Additive and Diagonal Constraints 411

Proof. It is easy to see that with the choice of regions R−, any α ∈ R− satisfies
either ϕ or ¬ϕ. ��
Lemma 3. The set of regions R− is compatible with any simple update z := 0
or z :∼ d− y, ∼∈ {=, <,≤}.
Proof. Let α = ((Ix)x∈X , (Jxy)x,y∈X ,≺) be a region in R− where ≺ is a total
preorder on X0 = {x | Ix is of the form (c, c + 1)}. Let upz be a simple update
over clock z ∈ X . Let α′ = ((I ′x)x∈X , (J ′

xy)x,y∈X ,≺′). Then, α′ ∈ upz(α) if
I ′x = Ix∀x ∈ X\{z}, J ′

xy = Jxy∀x, y ∈ X\{z}, and

1. φ = z := 0
– I ′z = [0], X ′

0 = X0\{z},≺′=≺ ∩(X ′
0 ×X ′

0),

– J ′
xz =

⎧
⎨

⎩

[c] if Ix = [c] and c ≤ dxz ,
(c, c+ 1) if Ix = (c, c+ 1) and c < dxz ,
(dxz ,∞) otherwise

⎫
⎬

⎭

– J ′
zx =

⎧
⎨

⎩

− [c] if Ix = [c] and c ≤ dxz,
(−c− 1,−c) if Ix = (c, c+ 1) and c < dxz,
(−∞,−dxz) otherwise

⎫
⎬

⎭

2. φ = z := d− y
Since d− y ≥ 0 ∧ d ≤ cmax, Iy �= (cmaxy ,∞), I ′z �= (cmaxz ,∞).
– If Iy = [c] ∧ 0 ≤ c ≤ d ≤ cmax then I ′z = [d− c]
– If Iy = (c, c+ 1) ∧ 0 ≤ c < d ≤ cmax then I ′z = (d− c− 1, d− c)

If I ′z = [d− c] and let e = d− c then
– X ′

0 = X0\{z}, ≺′=≺ ∩(X ′
0 ×X ′

0)
– J ′

xz =⎧
⎪⎪⎨

⎪⎪⎩

(−∞,−dzx) if Ix = [c′] or (c′, c′ + 1) and c′ − e < −dzx,
[c′ − e] if Ix = [c′] and − dzx ≤ c′ − e ≤ dxz,
(c′ − e, c′ − e+ 1) if Ix = (c′, c′ + 1) and − dzx ≤ c′ − e < dxz,
(dxz,∞) otherwise

⎫
⎪⎪⎬

⎪⎪⎭

– J ′
zx can be calculated similarly.

If I ′z = (d− c− 1, d− c) then
– X ′

0 = X0 ∪ {z}, ≺′ is same as ≺ except that if frac(v(y)) = 0.5 then
y ≺′ z ∧ z ≺′ y, if frac(v(y)) < 0.5 then y ≺′ z. Otherwise, z ≺′ y.

– J ′
xz and J ′

zx calculated similar to the case I ′z = [d− c].
3. φ = z :< d− y

Note that as d− y > 0∧ d ≤ cmax, Iy �= (cmaxy ,∞) and also I ′z �= (cmaxz ,∞).
– If Iy = [e] ∧ 0 ≤ e ≤ d ≤ cmax then I ′z = [e′] ∨ I ′z = (e′, e′ + 1) such that
e′ < d − e. If I ′z = (e′, e′ + 1), then X ′

0 = X0 ∪ {z}, and ≺′ is any total
preorder that coincides with ≺ on X ′

0\{z}. Otherwise, X ′
0 = X0\{z} and

≺′=≺ ∩(X ′
0 ×X ′

0).
– If Iy = (e, e+ 1) ∧ 0 ≤ e < d ≤ cmax then I ′z = [e′] such that e′ < d− e.
X ′

0 = X0\{z} and ≺′=≺ ∩(X ′
0 × X ′

0), or I ′z = (e′′, e′′ + 1) such that
e′′ ≤ d − e − 1. If I ′z ∩ (d − Iy) = ∅, then ≺′ is any total preorder that
coincides with ≺ on X ′

0\{z}. If I ′z ∩ (d− Iy) �= ∅, ≺′ coincides with ≺ on
X ′

0\{z} and z ≺′ y, y ⊀
′ z.

J ′
xz and J ′

zx can be calculated in a similar manner to the above case.
4. φ = z :≤ d− y. This is similar to the above case.



412 L. Manasa, S.N. Krishna, and K. Nagaraj

It is easy to see that for any ν ∈ α, and any α′ ∈ upz(α), there exists ν′ ∈
α′ ∩ upz(ν). ��
Lemma 4. The set of regions R− is compatible with updates U≤(X).

Proof. Let α = ((Ix)x∈X , (Jxy)x,y∈X ,≺) and αz = ((Izx)x∈X , (Jzxy)x,y∈X ,≺z) be
two regions of R− and upz be a simple update such that αz ∈ upz(α). Let ν be a
valuation in α. By Lemma 3, R− is compatible with upz. Thus, for any valuation
ν ∈ α, there exists some valuation νz ∈ upz(ν) ∩ αz . We need to show that for
up ∈ U≤(X), and region α, we can find α′ = ((I ′x)x∈X , (J ′

xy)x,y∈X ,≺′) ∈ up(α)
such that for any ν ∈ α, there exists ν′ ∈ α′ ∩ up(ν).

Given ν ∈ α, define a valuation ν′ as : (i) ν′(y) = νy(y) for any clock y; (ii) for
a pair (y, z) of clocks, calculate ν′(y)− ν′(z) as in Lemma 3, and (iii) ≺′ can be
calculated from ≺z, z ∈ X as follows: Let X ′ = {x′ | x ∈ X} be a copy of clocks
in X . Define ≺′

x from ≺x by replacing x with x′. ≺′
x is a preorder on X ∪X ′.

Then ≺′ is obtained by taking the union of all ≺′
x, x ∈ X ; restricting it to X ′;

and then replacing X ′ with X . Then ν′ ∈ α′ ∩ up(ν).
Thus, from αz ∈ upz(α), z ∈ X , we can obtain α′ ∈ up(α) such that for any

ν ∈ α, there exists ν′ ∈ up(ν) ∩ α′. ��
Theorem 2. The class of updatable timed automata is decidable.

Proof. Lemmas 1, 2, 3, 4 indicate thatR− forms a set of regions and is compatible
with C−(X) and U≤(X) and a region automaton can be constructed as explained
in Section 2.1 and hence according to Theorem 1 this class is decidable. ��
Remark 2. Note that if we consider updates U 	≤(X) of the form up =

∧
x∈X upx

with upx ::= x := 0 | x :∼ d − y, where x, y ∈ X, d ∈ Q+ and ∼∈ {�=, >,≥},
d ≤ cmax, then emptiness is no longer decidable (The Undecidability result of
section 4 in [4] can be modified [10]). Recall that allowing updates of the kind
x :< y or x :> y or x :∼ y+ c, c ∈ Q+, with constraints from C−(X), emptiness
is not decidable [4]. It is interesting to note here that the updates x :< d−y and
x :> d− y behave differently.

4 Additive Constraints

In this section, we consider updatable timed automata with additive constraints.
The constraints C+(X) of the form ϕ ::= x ∼ c|x+y ∼ c|ϕ∧ϕ|ϕ∨ϕ where x, y ∈
X, c ∈ Q+ and ∼∈ {<,≤, >,≥,=, �=}. Constraints x+ y ∼ c are called additive
constraints. Timed automata with constraints C+(X) and updates U0(X) have
been studied in [5]. It has been shown that with 2 or lesser number of clocks,
emptiness is decidable, while 4 clocks gives undecidability. The case of 3 clocks
has been open since.

In this section, we give a partial answer to this open problem by looking at the
class of timed automata with constraints C+(X) and updates U=(X) consisting
of updates up =

∧
x∈X upx where upx ::= x := 0|x := d− y, x, y ∈ X, d ∈ Q+.

Here, d ≤ cmax where cmax = max{c | x ∼ c ∈ C+(X) or x+ y ∼ c ∈ C+(X)}.



Updatable Timed Automata with Additive and Diagonal Constraints 413

We show that emptiness is undecidable if 3 or more clocks are used, while it is
decidable with 2 or lesser number of clocks.

For every clock x ∈ X , define cmaxx = cmax. Ix is defined as done before. For
every pair of clocks x, y ∈ X , define ixy = iyx = max{c | x + y ∼ c ∈ C+(X)}
and the set of intervals Kxy as

Kxy = {[d] | 0 ≤ d ≤ ixy} ∪ {(d, d+ 1) | 0 ≤ d < ixy} ∪ {(ixy,+∞)}
Let α be a tuple ((Ix)x∈X , (Kxy)x,y∈X ,≺) where Ix ∈ Ix,Kxy ∈ Kxy and ≺

is a total preorder on X0 = {x ∈ X | Ix is of the form (c, c + 1)}. The region
associated with α is defined as the set of all valuations ν such that ν(x) ∈ Ix for
all x ∈ X , ν(x)+ν(y) ∈ Kxy and frac(ν(x)) ≤ frac(ν(y)) if x ≺ y, for all x, y ∈
X0. Let R+ represent the set of all tuples α. R+ forms a finite partition of TX .

Theorem 3. The class of timed automata with 2 clocks, updates U=(X) and
clock constraints C+(X) are decidable.

Proof. The proof of this theorem follows by the extension of the classical region
construction as given above. It is easy to see that the partition R+ is a set of
regions (consistent with time in the sense that from two equivalent valuations,
the same set is reached as time progresses), consistent with the set of constraints
(2 equivalent valuations satisfy the same constraints), and updates (updates from
2 equivalent valuations yield the same region). ��
Theorem 4. The class of timed automata with 3 clocks, updates U=(X) and
clock constraints C+(X) is undecidable.

Proof. The proof lies in the simulation of a deterministic two counter machine.
Such a machine consists of a finite sequence of labeled instructions which handle
two counters i and j and end at a special instruction labeled Halt. The instruc-
tions are as follows:

1. lk : x = x+ 1; goto lk+1;
2. lk : if x = 0 goto lk+1 else x = x− 1; goto lk+2.

Without loss of generality, assume that the instructions are labeled l0, . . . , ln
where ln = Halt and that in the initial configuration, both counters have value
zero. Further, assume that the first instruction increments the counter i. The
behaviour of the machine is described by a possibly infinite sequence of config-
urations < l0, 0, 0 >,< l1, i1, j1 >, · · · < lk, ik, jk > . . . where ik and jk are the
respective counter values and lk is the label of the kth instruction. The halting
problem of such a machine has been shown to be undecidable [11].

A timed automaton AM with 3 clocks can be built which simulates a two
counter machine M and reaches a final state iff M halts. Thus the halting
problem of two counter machine is reduced to the problem of emptiness of
L(AM). The alphabet of AM is {∗}, it has 3 clocks {x1, x2, x3} and the set of
locations of AM is Q = {l′i, l′′i | 0 ≤ i ≤ n} ∪ {lki | 1 ≤ k ≤ 7, 0 ≤ i < n}. The
set of final states is F = {l′n, l′′n}. There are 5 basic modules : (i)an initializa-
tion module, (ii) module to increment counter i, (iii) module to check for zero and



414 L. Manasa, S.N. Krishna, and K. Nagaraj

decrement counter i, (iv)module to increment counter j and (v)module to check
for zero and decrement counter j. Initially, all clocks have value 0. At the end of
the initialization module1, x1 = x2 = 0 while x3 = 1. The control shifts to the
location l′0, which represents the label of the first instruction. The values of the
counters i and j are encoded in values of the clocks. The normal form for the
clock values is as follows: x1 =

(
1− 1

2i

)
+

(
1− 1

2j

)
, x2 =

(
1− 1

2j

)
, x3 = 1

2j or 0.
Each module simulating instruction li, i ≥ 0 has a unique initial location labeled
by either l′i or l′′i , and has two last locations labeled by l′i+1, l

′′
i+1, where li+1

is the next instruction to be simulated. At the beginning of each module, the
clocks are assumed to be in normal form, and in the last location of each module,
clocks will be in normal form. At location l′′i+1 in each module, the value of x3

will be necessarily zero, whereas at l′i+1 it will be 1
2j where j represents the value

of counter j at that point of time.

Incrementing counter i: The module in Fig. 1 simulates the instruction lk : i =
i + 1; goto lk+1. It can be seen that if the clock values are x1 =

(
1− 1

2i

)
+(

1− 1
2j

)
, x2 =

(
1− 1

2j

)
and x3 = 1

2j while entering this module, then at the end,
we will have the value of x1 to be

(
1− 1

2i+1

)
+

(
1− 1

2j

)
, x2 remains unchanged,

and x3 will retain its earlier value at l′k+1 and is reset to zero at l′′k+1.

Incrementing counter j: Fig. 2 depicts the module for incrementing counter j.
At the initial state of this module, x3 must be zero. It is clear that after the
transition, x2 =

(
1− 1

2j+1

)
, x1 =

(
1− 1

2i

)
+

(
1− 1

2j+1

)
and x3 = 1

2j+1 or x3 = 0
depending on the location.

Decrementing counter i: The module in figure 3 decrements counter i. The mod-
ule begins in location l′′k . The control reaches any of l′k+2 or l′′k+2 only if value of
counter i is 0. If counter i is non-zero, then the location l2k is reached. It can be
seen that at l′k+1, the value of x2 will be unchanged, x3 will be 1 − x2 and x1

would be
(
1− 1

2i−1

)
+

(
1− 1

2j

)
. Similar is the case of l′′k+1 (x3 = 0 here).

l′k l1k l2k l3k

l′k+1 l′′k+1

x1 + x3 = 2?

x3 := 0

x1 + x2 = 3?

x1 := 0

x1 = 0?

x1 := 2 − x2

x2 := 0

x3 = 1?

x3 := 1 − x2

x 3
=

1?
x 3

:=
0

Fig. 1. Increment counter i

l′′k

l′′k+1

l′k+1

x
2 +

x
3 =

1?x
3 :=

0

x2
+

x3
=

1?

Fig. 2. Increment j

1 The initialization module can be easily constructed by having a timed automaton
with two locations with the constraint x3 = 1? on the transition between them.
Clocks x1 and x2 are reset on transition.



Updatable Timed Automata with Additive and Diagonal Constraints 415

l′′k

l1k

l′k+2

l′′k+2

l2k l3k l4k

l5kl6kl7k

l′k+1

l′′k+1

α? β

x2 = 1 ∧ x1 > 1?

x2 := 3 − x1

x3 = 1?

x3 := 4 − x1

x2 + x3 = 5?

x3 := 0

x
2

=
3
?

x
2

:=
0

x1 = 4?

x1 := 0

x2 = 1?

x2 := 0
x3

= 2?

x3
:=

1−
x2

x3
= 1?

x3
:= 1 −

x2

x
3 =

2?

x
3 :=

0

x
3 =

1?

x
3 :=

0

Fig. 3. Dec. counter i: α = (x1 = 1 ∧ x2 = 1) and β = (x1 := 0, x2 := 0)

l′k l1k l2k

l3kl′k+1l′′k+1

l′k+2 l′′k+2

x2 = 1 ∧ x3 ≤ 1?

x2 := 0

x1 = 2?

x1 := 0

x2 = 1? x2 := 0

x3 = 2?

x3 := 1 − x2

x2 = 0? x2 = 0?

x3 := 0

x3 = 2?

x3 := 0

Fig. 4. Module to decrement counter j

Decrementing counter j: The module to decrement counter j is shown in Fig. 4.
The value of x3 is 1

2j at the start of the module.

The simulation of the 2-counter machine is done as follows: The automaton AM
starts in location q0 with all clocks initialized to zero. When x3 = 1, the control
goes to l′0, resetting x1, x2 to zero. Each instruction is implemented by the cor-
responding module. AM is built according to the sequence of instructions of the
2-counter machine. The different modules are linked by choosing the appropriate
end state of a module to be the initial state of the next module. Modules can be
linked this way until the Halt instruction is encountered. The set of final states
is {l′n, l′′n}. The language accepted by AM is empty iff M does not halt, which
concludes the proof. ��
Remark 3. It should be noted that Theorems 3,4 are in agreement with [3]
wherein it has been shown that reachability is decidable for dynamical systems



416 L. Manasa, S.N. Krishna, and K. Nagaraj

with piecewise-constant derivatives in the case of 2 dimensions, while it is not
for higher dimensions. Even though our systems allow much simpler guards and
have a constant rate of evolution, they differ from [3] due to updates.

5 Location Invariants

It is well known that adding location invariants of the form x ∼ c does not
increase the expressive power of classical timed automata. It is easy to see that
the same holds good even when we allow as location invariants the elements of
C−(X) or C+(X) (invariants can be removed and the same condition appended
to all outgoing transitions [10]). [4] has considered a class of timed automata
with U1(X) with constraints from C−(X) and proved that this class is decidable.
This result will hold even when we allow elements of C−(X) as constraints and
location invariants (region automtaton can include loc. invariants [10]). However,
note that for U1(X) along with location invariants and constraints from C+(X),
the decidability will hold good only when the number of clocks is 2 or less.
The undecidability result given in Theorem 4 can easily be changed to prove
this (replacing update x := d − y with x :< d + 1 followed by the loc.invariant
x+ y = d [10]).

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2) (1994)

2. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic Symbolic Verification of Embed-
ded Systems. IEEE Transactions on Software Engineering 22, 181–201 (1996)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical sytems having
piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

4. Bouyer, P., Duford, C., Fleury, E., Petit, A.: Updatable Timed Automata. Theo-
retical Computer Science 321(2-3), 291–345 (2004)

5. Bérard, B., Duford, C.: Timed automata and additive clock constraints. Informa-
tion Processing Letters 75(1-2), 1–7 (2000)

6. Bérard, B., Gastin, P., Petit, A.: On the power of non observable actions in timed
automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
257–268. Springer, Heidelberg (1996)

7. Demichelis, F., Zielonka, W.: Controlled Timed Automata. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 455–469. Springer, Hei-
delberg (1998)

8. Behrmann, G., David, A., Larsen, K.G., Mller, O., Pettersson, P., Yi, W.: Uppaal
- Present and Future. In: Proceedings of the 40th IEEE Conference on Decision
and Control, Orlando, Florida, USA, December 4-7, 2001 (2001)

9. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The Tool KRONOS, Hybrid Sys-
tems, pp. 208–219 (1995)

10. Lakshmi Manasa, G., Krishna, S.N., Nagaraj, K.: Updatable Timed automata,
Technical Report, http://www.cse.iitb.ac.in/krishnas/uta.pdf

11. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, USA
(1967)

http://www.cse.iitb.ac.in/krishnas/uta.pdf


First-Order Model Checking Problems

Parameterized by the Model�

Barnaby Martin

Department of Computer Science, University of Durham,
Science Labs, South Road, Durham DH1 3LE, U.K.

Abstract. We study the complexity of the model checking problem, for
fixed models A, over certain fragments L of first-order logic, obtained by
restricting which of the quantifiers and boolean connectives we permit.
These are sometimes known as the expression complexities of L. We ob-
tain various full and partial complexity classification theorems for these
logics L as each ranges over models A, in the spirit of the dichotomy
conjecture for the Constraint Satisfaction Problem – which itself may be
seen as the model checking problem for existential conjunctive positive
first-order logic.

1 Introduction

The model checking problem over a logic L takes as input a model A and a
sentence ϕ of L, and asks whether A |= ϕ. The problem can also be parame-
terised, either by the sentence ϕ, in which case the input is simply A, or by the
model A, in which case the input is simply ϕ. Vardi has studied the complexity
of this problem, principly for logics which subsume first-order logic (FO), in
[16], and their bounded variable fragments [17]. He describes the complexity of
the unrestricted problem as the combined complexity, and the complexity of the
parameterisation by the sentence (respectively, model) as the data complexity
(respectively, expression complexity). For the majority of his logics, when there
is no variable bound, the expression and combined complexities are comparable,
and are one exponential higher than the data complexity.

In this paper, we will be interested in fragments L of FO obtained by restrict-
ing which of the quantifiers and boolean connectives we permit. For these L, we
then study the complexities of the parameterisation of the model checking prob-
lem byA, that is the expression complexities for certainA. When L is the existen-
tial conjunctive positive fragment of FO, {∃,∧}-FO, the model checking problem
is equivalent to the much-studied constraint satisfaction problem (CSP). The pa-
rameterisation of this problem by A is equivalent to what is sometimes described
as the non-uniform constraint satisfaction problem, CSP(A) [10]. It has been
conjectured [7] that the class of CSPs exhibits dichotomy – that is, CSP(A) is
always either in P or is NP-complete, depending on the model A. This is tan-
tamount to the condition that the expression complexity for {∧, ∃}-FO on A is
� This research was supported by EPSRC grant EP/C54384X/1.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 417–427, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



418 B. Martin

always either in P or is NP-complete. While in general this conjecture remains
open, it has been proved for certain classes of models A. Of particular interest
to us is Hell and Nešetřil’s dichotomy for undirected graphs H : in [8] it is proved
that CSP(H) is in P, if H has a self-loop or is bipartite, and is NP-complete, if
H is any other undirected graph. When L is the (quantified) conjunctive positive
fragment of FO, {∃, ∀,∧}-FO, the model checking problem is equivalent to the
well-studied quantified constraint satisfaction problem (QCSP). No overarching
polychotomy has been conjectured for the non-uniform QCSP(A), although the
only known attainable complexities are P, NP-complete and Pspace-complete
(see trichotomies in [1,13] and the results of [3,4]).

It is known, for each model A, that there is a digraph HA such that CSP(A)
and CSP(HA) are polynomial time equivalent [7]. Thus, in the case of the CSP,
digraphs comprise a microcosm of all models. (For isomorphism problems, undi-
rected graphs provide such a microcosm; however, for the CSP – a homomor-
phism problem – it is not clear this is the case.) A similar microcosm holds for
the QCSP. Owing to space considerations, convenience and this observation, we
work primarily with digraphs, as opposed to relational models in general. Where
easily applicable, we indicate how our method may be extended to account for
general relational models. We also work in the more general framework of logics
without equality, since the situation in which we have equality may be simulated
by the addition of a special binary relation to the model, whose digraph contains
exactly every self-loop.

We will be interested in fragments of FO derived from restricting which of
the logical symbols Γ0 := {¬, ∃, ∀,∧,∨} we permit, subject to there being at
least one quantifier and one binary connective. For Γ ⊆ Γ0, let Γ -FO be that
fragment of FO obtained by allowing only the logical symbols of Γ . Owing to de
Morgan duality, it follows that there is only one fragment we need consider with
negation: Γ0-FO itself. The fragments we consider may be classified as follows.

Class I Class II Class III Class IV Class V Class VI
(CSP) (QCSP)

{¬, ∃, ∀,∧,∨} {∃,∨} {∃,∧} {∃,∧,∨} {∃, ∀,∧} {∀, ∃,∧,∨}
{∀,∧} {∀,∨} {∀,∧,∨} {∃, ∀,∨}

For each of our Γ ⊆ Γ0, and for some model A, we define the model checking
problem Γ -MC(A) to have as input a sentence ϕ of Γ -FO, and as yes-instances
those sentences such that A |= ϕ.

The model checking problems have been more-or-less studied for the Classes
I, III and V. As Class III corresponds to the CSP, so Class V corresponds to the
QCSP. A full complexity classification for these classes resists despite consid-
erable efforts. On the other hand, we will see that the complexity classification
is nearly trivial for the Classes I, II and IV. This leaves Class V as a candidate
for non-trivial results. Indeed the consideration of {∀, ∃,∧,∨}-MC(A), in light
of the study of CSP(A) and QCSP(A), is the main justification for this paper.
The Classes II–IV are studied in the manuscript [12], and the results on those
classes here presented may be found with more detailed proofs in that paper.



First-Order Model Checking Problems Parameterized by the Model 419

The paper is organised as follows. After the preliminaries, we consider in Sec-
tion 3 the Class I fragment {¬, ∃, ∀,∧,∨}-FO, reproving the folklore dichotomy
its model checking problem begets. A brief Section 4 considers the low complex-
ity ‘trivial’ fragments of Class II. Sections 5 and 7, also very brief, exist only
to place Class III (CSP) and Class V (QCSP) in the context of our work. Sec-
tion 6 deals with the logics of Class IV, giving a full, albeit not very interesting,
complexity classification for the model checking problems on these fragments.
Finally, Section 8 addresses the Class VI fragment {∀, ∃,∧,∨}-FO. For this frag-
ment, we derive some general hardness results before fully classifying its model
checking problem on the boolean digraphs.

2 Preliminaries

In this paper, we consider only finite, non-empty relational models. A model (or
structure) A consists of a finite, non-empty set |A| – the universe or domain
of A – together with some sets RAi ⊆ |A|ri interpreting each ri-ary relation Ri
of the underlying signature. We generally use x, y, z to refer to elements of A,
and u, v to refer to variables that range over those elements. Where x ∈ |A|, we
term the model A as x-valid if every non-empty relation RAi ⊆ |A|ri contains
the tuple (xri) := (x, . . . , x). A model A is trivial if every relation RAi is either
empty (RAi := ∅) or contains all tuples (RAi := |A|ri); otherwise A is non-trivial.
For a model A, we define its complement A to be the model having the same
universe as A, but whose relations are the (set-theoretic) complements of the
relations of A. That is, for each RAi , the relation RAi is defined by x ∈ RAi iff
x /∈ RAi . A digraph H is any model having a single, binary (edge) relation E; we
refer to elements of |H | as vertices. An undirected graph is a digraph whose edge
relation is symmetric. A digraph H is an equivalence relation if E is reflexive,
symmetric and transitive; an equivalence relation is non-trivial if it contains
more than one equivalence class. A self-loop in a digraph H is an edge (x, x),
where x ∈ |H | (from the presence of such an edge, it follows that H is x-valid).
H is antireflexive if it contains no self-loops and is reflexive if it contains all
self-loops. The n-clique Kn is the complete antireflexive digraph on n vertices
(i.e. (x, y) ∈ EKn iff x 	= y). The complement digraph Kn is exactly the disjoint
union of n self-loops (equivalently, the digraph of equality on n vertices). The
digraph Kr

n is the complete reflexive digraph on n vertices (i.e. (x, y) ∈ EKr
n for

all x, y). Kr
n is a trivial equivalence relation on n vertices. Let t := (t1, . . . , tm)

be a tuple of positive integers; define U(t) to be the digraph given by the disjoint
union Kr

t1 
 · · · 
Kr
tm . The digraphs U(t) are exactly the equivalence relations.

If (1n) is an n-tuple of ones, then note that U(1n) is the digraph of equality Kn.
A vertex x in a digraph H is isolated if, for all y ∈ |H |, neither (x, y) nor (y, x) is
in EH . Dually, a vertex x is dominating if, for all y ∈ |H |, both (x, y) and (y, x)
is in EH (note that H has an isolated vertex iff H has a dominating vertex).

For a digraph H , let sym-clos(H) and tran-clos(H) be the symmetric and
transitive closures of H , respectively. Let doub(H) be the subdigraph induced by



420 B. Martin

the double edges of H ; that is, (x, y) ∈ Edoub(H) iff (x, y) ∈ EH and (y, x) ∈ EH
(whereas (x, y) ∈ Esym-clos(H) iff (x, y) ∈ EH or (y, x) ∈ EH).

Since we may convert any sentence ϕ of Γ -FO to an equivalent one in prenex
normal form in polynomial time, we will henceforth assume all sentences in such
form. We will also refer to the atoms of ϕ, when we more properly mean the
atoms in the quantifier-free part of ϕ.

3 Class I : {¬, ∃, ∀, ∧, ∨}-FO

The following result is probably folklore. (In [16], it is claimed that the Pspace-
hard cases are proved in [2], but we are unable to find their proof.)

Proposition 1. In full generality, the class of problems {¬, ∃, ∀,∧,∨}-MC(A)
exhibits dichotomy: if A is trivial, then the problem is in P, otherwise it is Pspace-
complete.

In general, Pspace membership follows by a simple evaluation procedure inward
through the quantifiers (see [16]). If A is trivial, then the existential and universal
quantifiers are semantically equivalent – indeed, each atom of the input ϕ may
be evaluated to boolean true or false, independently of the quantifiers. What
remains is a boolean sentence evaluation problem, known to be in P (see [11]).1

We now set out ot demonstrate why {¬, ∃, ∀,∧,∨}-MC(A) is Pspace-complete
when A is non-trivial, proving this in the case of digraphs. Since we will wish
to use some intermediate results in the later section on {∃, ∀,∧,∨}-FO, we will
put off the use of negation until absolutely necessary. This will enable us to
illustrate an important duality, although it will make the proof a little longer
than necessary. We begin with the following observation.

Lemma 1. For n ≥ 2, {∃, ∀,∧,∨}-MC(Kn) is Pspace-complete.

Proof. For n ≥ 3, {∃, ∀,∧,∨}-MC(Kn) contains the Pspace-complete problem
{∃, ∀,∧}-MC(Kn), a.k.a. QCSP(Kn), (see [1]) as a special instance.

For n = 2, we use a reduction from the problem {∃, ∀,∧}-MC(BNAE), where
BNAE is the boolean structure with a single ternary relation NAE := {0, 1}3 \
{(0, 0, 0), (1, 1, 1)}. This problem is equivalent to the quantified not-all-equal 3-
satisfiability problem, well-known to be Pspace-complete (see [15]). Let ϕ be
an input for {∃, ∀,∧}-MC(BNAE). Let ϕ′ be built from ϕ by substituting all
instances of NAE(v, v′, v′′) by E(v, v′) ∨ E(v′, v′′) ∨ E(v, v′′). It is easy to see
that BNAE |= ϕ iff K2 |= ϕ′, and the result follows.

1 In fact, this problem is solvable in non-deterministic log space NLogspace (but is not
thought to be complete for the class under logspace reductions). It is not hard to
see that all our tractability results for the Classes I, II, IV and VI actually place the
respective problems in NLogspace and not just in P. However, it is known for Classes
III and V (respectively relating to CSP and QCSP) that the tractable problems
display greater richness: there being examples that are complete under logspace
reduction for each of the classes P and NLogspace.



First-Order Model Checking Problems Parameterized by the Model 421

Consider a (prenex) sentence ψ0 of {∃, ∀,∧,∨}-FO, recalling that all atoms of
ψ0 are positive. By de Morgan’s laws, it is clear that ψ0 is logically equivalent
to the sentence ¬ψ1 where ψ1 is derived from ψ0 by I.) swapping all instances
of ∃ and ∀, II.) swapping all instances of ∨ and ∧ and III.) negating all atoms
(in the quantifier-free part). Let ψ2 be derived from ψ0 in a similar manner, but
without the execution of part III (negating the atoms). Let A be some structure,
then

(∗) A |= ψ0 ⇔ A |= ¬ψ1 ⇔ A |=/ ψ1 ⇔ A |=/ ψ2.

Since ψ2 remains in the logic {∃, ∀,∧,∨}-FO, we are now in a position to derive
the following.

Lemma 2. Let H be a digraph s.t. {∃, ∀,∧,∨}-MC(H) is in P (resp., is Pspace-
complete), then {∃, ∀,∧,∨}-MC(H) is in P (resp., is Pspace-complete).

Proof. The result holds since both P and Pspace are closed under complemen-
tation (see [15]). We reduce the complement of the problem {∃, ∀,∧,∨}-MC(H)
to {∃, ∀,∧,∨}-MC(H) by the mapping ψ0 �→ ψ2. The result follows from (∗).
We refer to (∗) above as the principle of duality, and will make frequent use
of it in this work, for various of our fragments of FO. Another interpreta-
tion of (∗) is that the problems {∃, ∀,∧,∨}-MC(H) and {∃, ∀,∧,∨}-MC(H)
are polynomial time Turing equivalent (generally reductions used in this paper
are polynomial time many-to-one; for more on the difference between many-to-
one and Turing reductions, see [15]). As has already been observed, if (1n) is a
n-tuple of ones, then Kn is the digraph U(1n). One can easily imagine that the
logic {¬, ∃, ∀,∧,∨}-FO – not having equality – could not distinguish between
Kn = U(1n) and any other U(t) in which t is a n-tuple of positive integers. This
is indeed the case: when t is a n-tuple of positive integers, then U(1n) and U(t)
agree on all sentences of {¬, ∃, ∀,∧,∨}-FO (a proof of this appears in [14]). Since
{∃, ∀,∧,∨}-FO is a fragment of {¬, ∃, ∀,∧,∨}-FO, we may derive the following
corollary from the previous two lemmas.

Corollary 1. For n ≥ 2 and t a n-tuple of positive integers, both {∃, ∀,∧,∨}-
MC(Kn) and {∃, ∀,∧,∨}-MC(U(t)) are Pspace-complete.

Now let H be a digraph. For propositions P andQ, let P ↔ Q be an abbreviation
for (P ∧Q)∨ (¬P ∧¬Q). Consider the following relation ∼ on the vertices of H .

x ∼ y := ∀z (E(x, z)↔ E(y, z)) ∧ (E(z, x)↔ E(z, y))

It is straightforward to verify that ∼ is an equivalence relation on the vertices
of H , s.t. ∼ is non-trivial if H is non-trivial.

Proof (of Proposition 1). Let H be a non-trivial digraph. We know that ∼
induces a non-trivial equivalence relation on H whose underlying digraph is
U(t∼) s.t. {∃, ∀,∧,∨}-MC(U(t∼)) is Pspace-complete. The result follows by re-
ducing the latter to {¬, ∃, ∀,∧,∨}-MC(H) by systematically replacing instances
of E(u, v) in an input ϕ in the former with instances of u ∼ v in the latter
(taking care that the introduced universally quantified variable – that replaces
z in the definition of ∼ – is new for each (u, v)).



422 B. Martin

The situation for models A that are not necessarily digraphs is very similar.
The equivalence relation ∼ is defined over the conjunction of all positions of all
relations, and A’s non-triviality remains sufficient to guarantee more than one
equivalence class.

4 Class II: Low Complexity Fragments

We consider the problem {∃,∨}-MC(H), for some digraph H of size n. An input
for this problem will be of the form:

ϕ := ∃v E(v1, v′1) ∨ . . . ∨ E(vm, v′m)

where v1, v′1, . . . , vm, v′m are the not necessarily distinct variables that comprise
v. Now, H |= ϕ iff H has some edge of the form (vi, v′i) for some i. This is
equivalent to H having any edge (unless, for all i, vi = v′i, in which case H
must have some self-loop). In any case, the condition is easily checked, and
one may easily infer that {∃,∨}-MC(H) is solvable in polynomial time for all
digraphs H . One may argue similarly for the problems {∀,∧}-MC(H); or appeal
to the principle of duality. We sum up as follows (note that the result for general
relational models may be argued in essentially the same manner).

Proposition 2. For all digraphs H, the problems {∃,∨}-MC(H) and {∀,∧}-
MC(H) are in P.

5 Class III: CSP and Its Dual

From the principle of duality, we may deduce that the complement of a problem
{∃,∧}-MC(H) is polynomial time equivalent to {∀,∨}-MC(H). It follows that
the former class has a dichotomy (between P and NP-complete) iff the latter
class has a dichotomy (between P and co-NP-complete). It may be imagined
that either classification is difficult to resolve.

6 Class IV

A digraph homomorphism from G to H is a function h : |G| → |H | that pre-
serves the edge relation, i.e. if (x, y) ∈ EG then (h(x), h(y)) ∈ EH . If there exist
homomorphisms both from G to H and from H to G, then we say that G and
H are homomorphically equivalent. It is well-known (see, e.g., [9]) that there
exists a minimal digraph (say, w.r.t. size) in the equivalence class induced by
homomorphic equivalence, and this is necessarily an induced subdigraph of all
members of that equivalence class (such a digraph is termed a core). An undi-
rected graph is bipartite iff its core is either K1 or K2. We make the following
observation.

Lemma 3. The following are equivalent.



First-Order Model Checking Problems Parameterized by the Model 423

(i) The structures G and H are homomorphically equivalent.
(ii) The problems {∃,∧}-MC(G) and {∃,∧}-MC(H) coincide.

(iii) The problems {∃,∧,∨}-MC(G) and {∃,∧,∨}-MC(G) coincide.

Proof. The equivalence of (i) and (ii) is well-known [7]. Since (iii) ⇒ (ii), it
remains only to prove (i) ⇒ (iii). We prove directly that the existence of a
homomorphism h : G → H implies {∃,∧,∨}-MC(G) ⊆ {∃,∧,∨}-MC(H), by
appealing to the monotonicity of (the quantifier-free part of) any sentence of
{∃,∧,∨}-FO. Indeed any witnesses x1, . . . , xm ∈ |G| to the (existentially quanti-
fied) variables of an input ϕmay be matched by witnesses h(x1), . . . , h(xm) ∈ |H |
for the same ϕ. The same applies for a homomorphism from H to G, and the
result follows.

Lemma 4. Let H be an antireflexive digraph whose edge relation is non-empty.
Then {∃,∧,∨}-MC(H) is NP-complete.

Proof. Membership of NP is elementary (guess a satisfying assignment and
verify); we prove hardness. We may assume w.l.o.g. that H is undirected (sym-
metric), since otherwise we may define the symmetric closure of the edge rela-
tion via E(u, v)∨E(v, u). More formally, {∃,∧,∨}-MC(sym-clos(H)) reduces to
{∃,∧,∨}-MC(H) under the reduction which substitutes instances Esym-clos(H)

(u, v) in the former by EH(u, v) ∨ EH(v, u) in the latter.
Let H ′ be the core of H . Note that the NP-hardness of {∃,∧}-MC(H ′) (a.k.a.

CSP(H ′)) immediately implies the NP-hardness of both {∃,∧}-MC(H) and
{∃,∧,∨}-MC(H). Since H is antireflexive and undirected, its core H ′ is either
K1 or K2 or some non-bipartite H ′.

The core H ′ can not be K1, since then the edge relation of H would have been
empty. If the core H ′ is non-bipartite, then, by Hell and Nešetřil’s theorem [8],
the problem {∃,∧}-MC(H ′) is NP-complete, hence NP-hardness of both {∃,∧}-
MC(H ′) and {∃,∧,∨}-MC(H) follows.

It remains for us to consider the case where the core H ′ is K2. By the previous
lemma, it suffices for us to prove that {∃,∧,∨}-MC(K2) is NP-hard. We proceed
in a similar manner as in the proof of Lemma 1. We define the ternary not-all-
equalNAE relation onK2 in {∃,∧,∨}-FO, whereupon we may appeal to the NP-
hardness of not-all-equal 3-satisfiability (whose inputs may readily be expressed
in {∃,∧,∨}-FO). We give NAE(v, v′, v′′) := E(v, v′) ∨ E(v′, v′′) ∨ E(v, v′′).

If H contains no edges, then {∃,∧,∨}-MC(H) contains only no-instances. If
H contains a self-loop (x, x), then {∃,∧,∨}-MC(H) contains only yes-instances
(evaluate all variables to x). We are now in a position to the derive the follow-
ing, whose statement for the dual problem {∀,∧,∨}-MC(H) follows from the
principle of duality.

Proposition 3. In full generality, the class of problems {∃,∧,∨}-MC(H) ex-
hibits dichotomy: if H contains no edges or a self-loop, then the problem is in
P (and is trivial), otherwise it is NP-complete. Similarly, the class of problems
{∀,∧,∨}-MC(H) exhibits dichotomy: if H contains no edges or a self-loop, then
the problem is in P, otherwise it is co-NP-complete.



424 B. Martin

The following, for general relational models, may be obtained as a corollary [12].

Corollary 2. If A is x-valid, for some x, then {∃,∧,∨}-MC(A) is in P; other-
wise it is NP-complete.

7 Class V: QCSP and Its Dual

From the principle of duality, we may deduce that the complement of a prob-
lem {∃, ∀,∧}-MC(H) is polynomial time equivalent to {∃, ∀,∨}-MC(H). The
former problem is an instance of the QCSP. It follows from the discussion in
the introduction that {∃, ∀,∨}-MC(H) may attain each of the complexities P,
co-NP-complete and Pspace-complete. The classification for each of these frag-
ments may be imagined difficult.

8 Class VI: {∃, ∀, ∧, ∨}-FO

We commence with some basic hardness results.

Lemma 5. If H is a digraph with an isolated vertex, then {∃, ∀,∧,∨}-MC(H)
is polynomial time Turing equivalent to the problem {∃,∧,∨}-MC(H) and is in
NP. If H is a digraph with a dominating vertex (equivalently, H has an isolated
vertex), then {∃, ∀,∧,∨}-MC(H) is polynomial time Turing equivalent to the
problem {∀,∧,∨}-MC(H) and is in co-NP.

Proof. We prove the first statement, whereupon the second follows from the
principle of duality. Let x ∈ |H | be an isolated vertex, and let ϕ be a (prenex)
sentence of {∃, ∀,∧,∨}-FO that we aim to evaluate on H . Consider the (positive)
atoms of ϕ that involve variables that are universally quantified. These atoms
are always made false when the universally quantified variables are set to x. It
is easily seen that ϕ is equivalent on H to the sentence ϕ′ in which the atoms
that involve universally quantified variables are set to false, and the universally
quantified variables removed. Clearly, ϕ′ is either a sentence of {∃,∧,∨}-FO or
the boolean false, and the result follows. (Only because ϕ′ may be the boolean
false is this a Turing, and not many-to-one, reduction.)

Lemma 6. Let H be a digraph such that any of {∃, ∀,∧,∨}-MC(sym-clos(H)),
{∃, ∀,∧,∨}-MC(tran-clos(H)) or {∃, ∀,∧,∨}-MC(doub(H)) is Pspace-complete.
Then {∃, ∀,∧,∨}-MC(H) is Pspace-complete.

Proof. We reduce any of the first three to the last. The case of sym-clos(H) may
be done as in the first part of the proof of Lemma 4, and the case of doub(H)
is very similar (but with E(x, y) ∧ E(y, x) instead of E(x, y) ∨ E(y, x)). For
tran-clos(H), the method is similar but involves the substitution ofEtran-clos(H)

(x, y) by a formula that asserts the existence of a path in H , from x to y, of any
of the lengths 1 to n− 1 (where ||H || = n).



First-Order Model Checking Problems Parameterized by the Model 425

A digraph H is strongly connected if, for every x, y ∈ |H |, there is a directed
path from x to y (each x may or may not possess a self-loop). If H is not strongly
connected then it may be partitioned into strongly connected components in the
obvious manner.

Proposition 4. If H is not strongly connected and every strongly connected
component of H either contains more than one vertex or is a self-loop, then
{∃, ∀,∧,∨}-MC(H) is Pspace-complete.

Proof. It is easily seen that doub(tran-clos(H)) is a non-trivial equivalence re-
lation. The result follows from the previous lemma and Corollary 1.

8.1 Boolean Digraphs

We now give the complexities of {∃, ∀,∧,∨}-MC(H) for the boolean digraphs
H , whose isomorphism classes are drawn in Figure 1. The classification is not
too difficult, though the following may be a little surprising.

H2
α H2

β H2
γ H2

δ H2
ε

P PPspacePspace P

Fig. 1. The boolean digraphs: H2
α, H2

β, H2
γ , H2

δ , H2
ε , together with their complements.

Above is the complexity of the problem {∃, ∀,∧, ∨}-MC(H) as H ranges thereover. For
Pspace read Pspace-complete.

Lemma 7. Let H2
δ be the boolean digraph with edge set {(x, x), (x, y)}. The

problems {∃, ∀,∧,∨}-MC(H2
δ ) and {∃, ∀,∧,∨}-MC(H

2

δ) are both in P.

Proof. We prove the first statement, whereupon the second follows from the
principle of duality. Let ϕ be an input sentence for {∃, ∀,∧,∨}-MC(H2

δ ). We
claim that ϕ is a yes-instance iff the quantifier-free ϕ′ is a yes-instance, where ϕ′

is obtained from ϕ by instantiating all universal variables as y and all existential
variables as x. The evaluation of ϕ′ on H2

δ is nothing other than a boolean
sentence value problem, known to be in P. That ϕ and ϕ′ are equivalent on
H2
δ follows from ϕ’s being positive, since every forward-neighbour of y is also a

forward-neighbour of x and every backward-neighbour of y is also a backward-
neighbour of x (of course, y has no forward-neighbours). Let us dwell on this
briefly. Essentially, we may assume that all universal variables of ϕ, in turn, are
set to y, since any existential witness to y is also a witness to x. Thereafter, we
may assume that all remaining (existential) variables are set to x, because x acts
as a witness to everything that y does.



426 B. Martin

Proposition 5. On the class of boolean digraphs {∃, ∀,∧,∨}-MC(H) exhibits
dichotomy. When H is H2

α, H
2

α, H2
δ , H

2

δ , H2
ε , H

2

ε the problem is in P, otherwise
it is Pspace-complete.

Proof. For H2
α and H

2

α the problem is trivial (as it is also for the loopless vertex
K1 and the self-loop K1 = Kr

1). For H2
δ , H

2

δ the result follows from the previous
lemma. For H2

ε the result follows from Lemma 5 and Proposition 3, whereupon
the result for H

2

ε follows from the principle of duality.
The cases H2

γ and H
2

γ have been proved in Lemma 1 and Corollary 1, where-

upon, since H2
γ = sym-clos(H2

β) the cases H2
β , H

2

β follow from Lemma 6 and the
principle of duality.

9 Conclusions

In this paper we have studied the model checking problem, parameterised by the
model, for various fragments of FO derived by restricting which of the quantifiers
and boolean connectives we permit. It is possibly the case that only our results
for Class IV ({∃,∧,∨}-FO and its dual) and Class VI ({∃, ∀,∧,∨}-FO) are
genuinely new (although, as stated, we are unaware of a published proof of the
result for Class I, that appears as our Proposition 1).

It has been pointed out ([5]) that the method of Galois connections, so use-
ful in the study of the CSP and QCSP, may be used to obtain a proof of a
restricted version of Corollary 2, relating to the logic {∃,∧,∨,=}-FO. This is
equivalent to considering the problems {∃,∧,∨}-MC(A) in which A must con-
tain a binary relation that is the digraph of equality. This proof is simple, once
the algebraic machinery has been introduced, and has the advantage of dis-
pensing with the need for the highly non-trivial theorem of Hell and Nešetřil.
Note that the dichotomy occurs under the same conditions for {∃,∧,∨}-MC(A)
and {∃,∧,∨,=}-MC(A), because equality induces a digraph containing exactly
self-loops. While there is an applicable Galois connection for the equality-free
{∃,∧,∨}-FO, it is not clear how to use it to derive Corollary 2 in full.

A simple dichotomy may be observed for the class {∃, ∀,∧,∨,=}-MC(A),
equivalently {∃, ∀,∧,∨}-MC(A) in which A must contain a binary relation that
is the digraph of equality. It follows from Proposition 4 that {∃, ∀,∧,∨,=}-
MC(A) is Pspace-complete if ||A|| ≥ 2; whereupon it may be argued as with the
Class I logic {¬, ∃, ∀,∧,∨}-FO that the problem is in P if ||A|| = 1. Again, there
is an applicable Galois connection for {∃, ∀,∧,∨}-FO, but we have been unable
to use it for a classification result.

It seems likely that the dichotomy of Proposition 5 may be extended beyond
boolean digraphs to all boolean models – similar dichotomy results are known
here for the CSP and QCSP (see [6]).

For digraphs H of size ≤ 3, each of the complexities P, NP-complete, co-NP-
complete and Pspace-complete may be attained by the problem {∃, ∀,∧,∨}-
MC(H). The first and last are exemplified in Proposition 5; for NP-complete



First-Order Model Checking Problems Parameterized by the Model 427

consider H3 := K1 
K2 and for co-NP-complete consider H3 – that these are
of the claimed complexities follows from Lemma 5 and Proposition 3, and the
principle of duality. In ongoing work, we believe that we have completely clas-
sified the complexity of {∃, ∀,∧,∨}-MC(H), for ||H || ≤ 3, into each of these
four complexity classes. The separating criteria appear to be non-trivial – for
example, there appear to be H without isolated vertices such that {∃, ∀,∧,∨}-
MC(H) is NP-complete. We conclude with the following conjecture, stated for
general relational models.

Conjecture 1. In full generality, the class of problems {∃, ∀,∧,∨}-MC(A) ex-
hibits tetrachotomy. Each such problem is either in P, is NP-complete, is co-NP-
complete or is Pspace-complete.

References

1. Borner, F., Krokhin, A., Bulatov, A., Jeavons, P.: Quantified constraints and sur-
jective polymorphisms. Tech. Rep. PRG-RR-02-11, Oxford (2002)

2. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in rela-
tional databases. In: STOC (1979)

3. Chen, H.: Quantified constraint satisfaction and 2-semilattice polymorphisms. In:
Principles and Practice of Constraint Programming (2004)

4. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink
algebras, and the three-element case. CoRR abs/cs/0607106. SIAM J. Comp. (to
appear, 2006)

5. Chen, H.: Private communication (2007)
6. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of Boolean Con-

straint Satisfaction Problems. SIAM Monographs (2001)
7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comp. 28 (1999)

8. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48
(1990)

9. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. OUP (2004)
10. Kolaitis, P., Vardi, M.: Conjunctive-query containment and constraint satisfaction.

In: PODS (1998)
11. Lynch, N.: Log space recognition and translation of parenthesis languages. Journal

of the ACM 24, 583–590 (1977)
12. Martin, B.: Dichotomies and duality in first-order model checking problems. CoRR

abs/cs/0609022 (2006)
13. Martin, B., Madelaine, F.R.: Towards a trichotomy for quantified h-coloring. In:

Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988,
pp. 342–352. Springer, Heidelberg (2006)

14. Martin, B.D.: Logic, Computation and Constraint Satisfaction. PhD thesis, Uni-
versity of Leicester (2005)

15. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
16. Vardi, M.: Complexity of relational query languages. In: STOC (1982)
17. Vardi, M.: On the complexity of bounded-variable queries. In: PODS (1995)



Domain Theory and the Causal Structure of

Space-Time

Keye Martin1 and Prakash Panangaden2

1 Naval Research Laboratory, Center for High Assurance Computer Systems,
Washington D.C. 20375, USA
kmartin@itd.nrl.navy.mil

2 School of Computer Science, McGill University, Montreal, Quebec, Canada
prakash@cs.mcgill.ca

Abstract. We prove that a globally hyperbolic spacetime with its causal-
ity relation is a bicontinuous poset whose interval topology is the manifold
topology. From this one can show that from only a countable dense set of
events and the causality relation, it is possible to reconstruct a globally hy-
perbolic spacetime in a purely order theoretic manner. The ultimate rea-
son for this is that globally hyperbolic spacetimes belong to a category that
is equivalent to a special category of domains called interval domains. We
obtain a mathematical setting in which one can study causality indepen-
dently of geometry and differentiable structure, and which also suggests
that spacetime emerges from something discrete.

Domains [AJ94, GKK+03] are special types of posets that have played an im-
portant role in theoretical computer science since the late 1960s when they were
discovered by Dana Scott [Sco70] for the purpose of providing a semantics for
the lambda calculus. They are partially ordered sets that carry intrinsic (order
theoretic) notions of completeness and approximation. The basic intuition is that
the order relation captures the idea of approximation qualitatively. There is an
abstract notion of finite piece of information – or of finite approximation – which
plays a key role in the analysis of computation.

These posets have a number of topologies defined on them: the Scott topol-
ogy, the Alexandrov topology, the interval topology and the Lawson topology,
all of which play a role. The Scott topology is particularly important in that
continuity with respect to this topology captures some of the information pro-
cessing aspects of computability. In particular, a Scott continuous function has
the following property: a finite piece of information about the output requires
only a finite piece of information about the input. While this does not completely
reduce Turing computability to topology, it captures a very crucial information-
processing aspect of computable functions.

General relativity is Einstein’s theory of gravity in which gravity is understood
not in terms of mysterious “universal” forces but rather as part of the geometry of
spacetime. Einstein’s general relativity is profoundly beautiful, and beautifully
profound, from both the physical and mathematical viewpoints. It teaches us
clear lessons about the universe in which we live that are easily explainable. For

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 428–430, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Domain Theory and the Causal Structure of Space-Time 429

example, it offers a wonderful explanation of gravity: if an apple falls from a tree,
the path it takes is not determined by the Newtonian ideal of an “invisible force”
but instead by the curvature of the space in which the apple resides – gravity
is the curvature of spacetime. In addition, the presence of matter in spacetime
causes it to “bend” and Einstein even gives us an equation that relates the
curvature of spacetime to the matter present within it.

The study of spacetime structure from an abstract viewpoint – not from the
viewpoint of solving differential equations – was initiated by Penrose [Pen65] in a
dramatic paper in which he showed a fundamental inconsistency of gravity. It was
known since Chandrasekhar [Cha31] that, since everything attracts everything
else, a gravitating mass of sufficient size will eventually collapse. What Penrose
showed was that any such collapse eventually leads to a singularity where the
mathematical description of spacetime as a continuum breaks down. This leads
to the need to reformulate gravity, it is hoped that the elusive quantum theory
of gravity will resolve this problem.

Since the first singularity theorems [Pen65, HE73], causality has played a
key role in understanding spacetime structure. The analysis of causal structure
relies heavily on techniques of differential topology [Pen72]. For the past decade
Sorkin and others [Sor91] have pursued a program for quantization of gravity
based on causal structure. In this approach the causal relation is regarded as the
fundamental ingredient and the topology and geometry are secondary.

In a paper that appeared in 2006 [MP06], we prove that the causality relation
is much more than a relation – it turns a globally hyperbolic spacetime into
what is known as a bicontinuous poset. The order on a bicontinuous poset allows
one to define an intrinsic topology called the interval topology1. On a globally
hyperbolic spacetime, the interval topology is the manifold topology. Theorems
that reconstruct the spacetime topology have been known [Pen72] and Mala-
ment [Mal77] has shown that the class of time-like curves determines the causal
structure. We establish these results as well though in a purely order theoretic
fashion: there is no need to know what “smooth curve” means.

Our more abstract stance also teaches us something new : the fact that a
globally hyperbolic spacetime is bicontinuous implies that it can be reconstructed
in a purely order-theoretic manner, beginning from only a countable dense set of
events and the causality relation. The ultimate reason for this is that the category
of globally hyperbolic posets, which contains the globally hyperbolic spacetimes,
is equivalent to a very special category of posets called interval domains.

From a certain viewpoint, then, the fact that the category of globally hyper-
bolic posets is equivalent to the category of interval domains is surprising, since
globally hyperbolic spacetimes are usually not order theoretically complete. This
equivalence also explains why spacetime can be reconstructed order theoretically
from a countable dense set: each ω-continuous domain is the ideal completion
of a countable abstract basis, i.e., the interval domains associated to globally
hyperbolic spacetimes are the systematic ‘limits’ of discrete sets.

1 Other people use this term for a different topology: what we call the interval topology
has been called the biScott topology.



430 K. Martin and P. Panangaden

Measurements were introduced by Martin [Mar00] as a way of incorporating
quantitative information into domain theory. More recently, we have shown how
the geometry of spacetime can also be viewed as being given by a measure-
ment. There are some surprising connections between Lorentz invariance and
measurements that will be described in a longer article in preparation.

References

[AJ94] Abramsky, S., Jung, A.: Domain theory. In: Maibaum, T.S.E., Abramsky,
S., Gabbay, D.M. (eds.) Handbook of Logic in Computer Science, vol. III.
Oxford University Press, Oxford (1994)

[Cha31] Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophys-
ical Journal 74, 81–82 (1931)

[GKK+03] Gierz, G., Hoffman, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott,
D.S.: Continuous lattices and domains. Encyclopedia of Mathematics and
its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

[HE73] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time.
Cambridge Monographs on Mathematical Physics. Cambridge University
Press, Cambridge (1973)

[Mal77] Malement, D.: The class of continuous timelike curves determines the
topology of spacetime. J. Math. Phys. 18(7), 1399–1404 (1977)

[Mar00] Martin, K.: The measurement process in domain theory. In: Welzl, E.,
Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
116–126. Springer, Heidelberg (2000)

[MP06] Martin, K., Panangaden, P.: A domain of spacetime intervals in gen-
eral relativity. Communications in Mathematical Physics 267(3), 563–586
(2006)

[Pen65] Penrose, R.: Gravitational collapse and space-time singularities. Phys.
Rev. Lett. 14, 57–59 (1965)

[Pen72] Penrose, R.: Techniques of differential topology in relativity. Society for
Industrial and Applied Mathematics (1972)

[Sco70] Scott, D.: Outline of a mathematical theory of computation. Technical
Monograph PRG-2, Oxford University Computing Laboratory (1970)

[Sor91] Sorkin, R.: Spacetime and causal sets. In: D’Olivo, J., et al. (eds.) Relativ-
ity and Gravitation: Classical and Quantum. World Scientific, Singapore
(1991)



Recursion on Nested Datatypes in Dependent

Type Theory

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT)
C. N.R. S. et Université Paul Sabatier (Toulouse III)
118 route de Narbonne, F-31062 Toulouse Cedex 9

Abstract. Nested datatypes are families of datatypes that are indexed
over all types and where the datatype constructors relate different mem-
bers of the family. This may be used to represent variable binding or to
maintain certain invariants through typing.

In dependent type theory, a major concern is the termination of all
expressible programs, so that types that depend on object terms can still
be type-checked mechanically. Therefore, we study iteration and recur-
sion schemes that have this termination guarantee throughout. This is
not based on syntactic criteria (recursive calls with “smaller” arguments)
but just on types (“type-based termination”). An important concern are
reasoning principles that are compatible with the ambient type theory,
in our case induction principles.

In previous work, the author has proposed an abstract description
of nested datatypes together with a mapping operation (like map for
lists) and an iterator on the term side and an induction principle on the
logical side that could all be implemented within the Coq system (with
impredicative Set that is just needed for the justification, not for the
definition and the examples). For verification purposes, it is important to
have naturality theorems for the obtained iterative functions. Although
intensional type theory does not provide naturality in general, criteria for
naturality could be established that are met in case studies on “bushes”
and representations of lambda terms (also with explicit flattening).

The new contribution is an extension of this abstract description to
full primitive recursion and its illustration by way of examples that have
been carried out in Coq. Unlike the iterative system, we do not yet have
a justification within Coq.

1 Introduction

Nested datatypes [1] are families of datatypes that are indexed over all types and
where the datatype constructors relate different members of the family (i. e., at
least one datatype constructor constructs a family member from data of a type
that refers to a different member of the family). Let κ0 stand for the universe of
(mono-)types that will be interpreted as sets of computationally relevant objects.
Then, let κ1 be the kind of type transformations, hence κ1 := κ0 → κ0. A
typical example would be List of kind κ1, where List A is the type of finite

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 431–446, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



432 R. Matthes

lists with elements from type A. But List is not a nested datatype since the
recursive equation for List , i. e., List A = 1+A×List A, does not relate lists with
different indices. A simple example of a nested datatype where an invariant is
guaranteed through its definition are the powerlists [2], with recursive equation
PList A = A + PList(A × A), where the type PList A represents trees of 2n

elements of A with some n ≥ 0 (that is not fixed) since, throughout this article,
we will only consider the least solutions to these equations. The basic example
where variable binding is represented through a nested datatype is a higher-order
de Bruijn representation of untyped lambda calculus, following ideas of [3,4,5].
The lambda terms with free variables taken from A are given by Lam A, with
recursive equation

Lam A = A+ Lam A× Lam A+ Lam(option A) .

The first summand gives the variables, the second represents application of
lambda terms and the interesting third summand stands for lambda abstrac-
tion: An element of Lam(option A) (where option A is the type that has exactly
one more element than A) is seen as an element of Lam A through lambda ab-
straction of that designated extra variable that need not occur freely in the body
of the abstraction.

In dependent type theory, a major concern is the termination of all express-
ible programs. This may be seen as a heritage of polymorphic lambda calculus
(system Fω) that, by the way, is able to express nested datatypes and many algo-
rithms on them [6]. But termination is also of practical concern with dependent
types, namely that type-checking should be decidable: If types depend on object
terms, object terms have to be evaluated in order to verify types, as expressed in
the convertibility rule. Note, however, that this only concerns evaluation within
the definitional equality (i. e., convertibility), henceforth denoted by �. Except
from the above intuitive recursive equations, = will denote propositional equality
throughout: this is the equality type that requires proof and that satisfies the
Leibniz principle, i. e., that validity of propositions is not affected by replacing
terms by equal (w. r. t. =) terms.

Here, we study iteration and recursion schemes that have this termination
guarantee throughout. Termination is not based on syntactic criteria such as
strict positivity and that all recursive calls are done with “smaller” arguments,
but just on types (called “type-based termination” in [7]). The article with Abel
and Uustalu [6] presents a variety of iteration principles on nested datatypes in
this spirit, all within the framework of system Fω. However, no reasoning prin-
ciples, in particular no induction principles, were studied there. Newer work by
the author [8] integrates rank-2 Mendler iteration into the Calculus of Inductive
Constructions [9,10,11] that underlies the Coq theorem prover [12] and also jus-
tifies an induction principle for them. This is embodied in the system LNMIt ,
the “logic for natural Mendler-style iteration”, defined in Section 3.1.

The articles [6,8] only concern plain iteration. While an extension of primitive
Mendler-style recursion [13] to nested datatypes has been described earlier [14],
we will present here an extension LNMRec of system LNMIt by an enriched



Recursion on Nested Datatypes in Dependent Type Theory 433

Mendler-style recursor where the step term additionally has access to a map
term for the unknown type transformation X that occurs there. By way of
examples, its merits will be studied. An overview of extensions to LNMRec of
results established for LNMIt in [8] is given. However, the main theorem of [8]
is not carried over to the present setting, i. e., we do not yet have a justification
within the Calculus of Inductive Constructions. Nevertheless, all the concepts
and results have been formalised in the Coq system, using module functors with
parameters of a module type that specifies our extension of LNMRec. The Coq
code is available [15] and is based on [16].

The next section describes two examples of truly nested datatypes. The first
with “bushes”, treated in Section 2.1, motivates primitive recursion instead of
plain iteration and the second about lambda calculus with explicit flattening,
treated in Section 2.2, motivates the access to a map term in the defining clauses
of an iterative function. Section 3.1 completes the precise definition of LNMIt
from [8], while Section 3.2 defines the new system LNMRec and shows theorems
about it. Section 4 describes when and how to define iterative functions with
access to a map term in LNMIt and establishes a precise relation with the
alternative within LNMRec.

2 Motivating Examples

A nested datatype will be called “truly nested” (non-linear [17]) if the intuitive
recursive equation for the inductive family has at least one summand with a
nested call to the family name, i. e., the family name appears somewhere inside
the type argument of a family name occurrence of that summand. Our two
examples will be the bushes [1] and the lambda terms with explicit flattening
[18], described as follows:

Bush A = 1 +A× Bush(Bush A) ,
LamE A = A+ LamE A× LamE A+ LamE (option A) + LamE (LamE A) .

The last summand in both examples qualifies them as truly nested datatypes; it
is even the same nested call pattern. Truly nested datatypes cannot be directly
represented in the current version of the Calculus of Inductive Constructions
(CIC), as it is implemented in Coq, while the examples of PList and Lam , men-
tioned in the first paragraph of the introduction, are now (since version 8.1) fully
supported with recursion and induction principles. In these cases, our proposal is
more generic but offers less comfort since it has neither advanced pattern match-
ing nor guardedness checking. PList and Lam are strictly positive, but Bush and
LamE are not even considered to be positive [19] (see [14] for a notion based on
polarity that covers these examples). Since there was no system that combined
the termination guarantee for recursion schemes on truly nested datatypes with
a logic to reason about the defined functions, it seems only natural that exam-
ples like Bush and LamE did not receive more attention. They are studied in
detail in [8]. Here, they are recapitulated and developed so as to motivate our
new extension LNMRec of LNMIt that will be defined in Section 3.2.



434 R. Matthes

2.1 Bushes

In order to fit the above intuitive definition of Bush into the setting of Mendler-
style recursion, the notion of rank-2 functor is needed. Let κ2 := κ1 → κ1. Any
constructor F of kind κ2 qualifies as rank-2 functor for the moment, and μF : κ1

denotes the generated nested datatype.1 For bushes, set

BushF := λXκ1λAκ0 . 1 +A×X(X A)

and Bush := μBushF . In general, there is just one datatype constructor for μF ,
namely in : F (μF ) ⊆ μF , with the abbreviation X ⊆ Y := ∀Aκ0 . XA → Y A
for any X,Y : κ1. For bushes, more clarity comes from two derived datatype
constructors

bnil : ∀Aκ0 .Bush A ,
bcons : ∀Aκ0 . A→ Bush(Bush A)→ Bush A ,

defined by bnil := λAκ0 . in A (inl tt) (with tt the inhabitant of 1 and left injection
inl) and bcons := λAκ0λaAλbBush(Bush A). in A (inr (a, b)) (with right injection
inr and pairing notation (·, ·)).

Our first example of an iterative function on bushes is the function BtL :
Bush ⊆ List (BtL is a shorthand for BushToList) that gives the list of all
elements in the bush and that obeys to the following specification:

BtLA (bnil A) � [] ,
BtLA (bcons Aa b) � a :: flat mapBush A,A (BtLA)(BtL (Bush A) b) .

Here, we denoted by [] the empty list and by a :: � the cons operation on lists,
and flat mapB,A f � is the concatenation of all the A-lists f b′ for the elements
b′ of the B-list �. See below why BtL is to be called an iterative function.

With the length function for lists, we get a function that calculates the size
of bushes: sizei := λAλtBush A. length(BtLA t). Note that we write the type pa-
rameter to BtL just as an index, which we will do frequently in the sequel for
type-indexed functions—if we do not omit it altogether, e. g., for sizei . The def-
inition of sizei is not iterative2, but an easy induction on BtLBush A b reveals

sizei(bconsA a b) = S
(
fold rightnat,Bush A (λxλs. sizei x+ s) 0 (BtLBush A b)

)
,

with S the successor function on the type nat of natural numbers and

fold right : ∀Aκ0∀Bκ0 . (B → A→ A)→ A→ List B → A

with fold rightA,B f a [] � a and

fold rightA,B f a (b :: �) � f b (fold rightA,B f a �) .

Since we used induction on bushes above, the recursive equation only holds for
propositional equality and not for the definitional equality �. But we might
desire just that, i. e., we might want a recursive version sizer of sizei such that

sizer (bconsA a b) � S
(
fold rightnat,Bush A (λxλs. sizer x+ s) 0 (BtLBush A b)

)
,

1 Strictly speaking, this includes List since nesting is not required.
2 The index in the name sizei stands for indirect, not for iterative.



Recursion on Nested Datatypes in Dependent Type Theory 435

but this is no longer within the realm of iteration in Mendler’s style, as we will
argue right now. Mendler iteration of rank 2 [6] can be described as follows:
There is a constant

MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G→ FX ⊆ G)→ μF ⊆ G

and the iteration rule

MIt GsA (in At) � s (μF ) (MIt Gs)At .

In a properly typed left-hand side, t is of type F (μF )A and s of type

∀Xκ1 . X ⊆ G→ FX ⊆ G .

The term s is called the step term of the iteration since it provides the inductive
step that extends the function from the type transformation X that is to be
viewed as approximation to μF (although this is not expressed here!), to a
function from FX to G.

Given a step term s, one gets sG (λAκ0λxGA. x) : FG ⊆ G – an F -algebra.
Conversely, given an F -algebra s0 : FG ⊆ G, one can construct a step term s if
there is a term M : ∀Xκ1∀Gκ1 . X ⊆ G→ FX ⊆ FG:

s := λXκ1λitX⊆GλAκ0λtFXA. s0A (M XG it At).

However, a typical feature of truly nested datatypes is that there is no such
(closed) term M [6, Lemma 5.3] (but see the notion of relativized basic mono-
tonicity in Section 4). Moreover, the traditional approach with F -algebras does
not display the operational behaviour as much as Mendler’s style does.

The function BtL is an instance of this iteration scheme with

BtL := MIt List
(
λXκ1λitX⊆ListλAκ0λtBushF X A.match twith inl �→ []
| inr(aA, bX(XA)) �→ a :: flat mapXA,A (it A)(it (XA) b)

)
.

Note that when the term t of type BushF X A is matched with inr(a, b), the
variable b is of type X(XA).3 This is the essence of Mendler’s style: the recursive
calls come in the form of uses of it that does not have type Bush ⊆ List but just
X ⊆ List , and the type arguments of the datatype constructors are replaced
by variants that only mention X instead of Bush. So, the definitions have to
be uniform in that type transformation variable X , but this is already sufficient
to guarantee termination (for the rank-1 case of inductive types, this has been
discovered in [20] by syntactic means and, independently, by the author with a
semantic construction [21]).

We conclude that BtL is an iterative function in the sense of Mendler but also
in a more general sense since Mendler iteration can be simulated by impredicative
encodings in system Fω. In a less technical sense, BtL is iterative as opposed

3 The pattern matching could easily be replaced by case analysis on sums and projec-
tions for products.



436 R. Matthes

to primitive recursive since the recursive argument b of bcons is only used as an
argument of BtL itself. The recursive equation for sizer , however, uses b as an
argument not of sizer , but the previously defined BtL, whose result is then fed
element-wise into sizer . It seems very unlikely that there is a direct definition
of sizer by help of MIt : If, through pattern matching, b is only available with
type X(X A), the function BtLBush A just cannot be applied to it. Neither could
BtLXA. The way out is provided already by Mendler for inductive types [13]
and has been generalized to nested datatypes in [14]: Express in the step term
in addition that X is an approximation of μF , in the sense of an “injection”
j : X ⊆ μF that is available in the body of the definition. So, we assume a
constant (the minus sign indicates that it is a preliminary version)

MRec− : ∀Gκ1 . (∀Xκ1 . X ⊆ μF → X ⊆ G→ FX ⊆ G)→ μF ⊆ G

and the recursion rule

MRec−GsA (in At) � s μF (λAκ0λxμFA. x) (MRec−Gs)At .

(In a more traditional formulation instead of Mendler’s style, one would require
a recursive F -algebra of type F (λAκ0 . μFA×GA) ⊆ G instead of a step term s,
see [22] for the case of inductive types. Again, Mendler’s style does not necessitate
any consideration of monotonicity of F .) MRec− allows to program sizer with
G := λA.nat as

MRec−G
(
λXκ1λjX⊆BushλrecX⊆GλAκ0λtBushF XA.match twith inl �→ 0

| inr(aA, bX(XA)) �→ S
(
fold rightnat,XA (λxλs. recA x+ s) 0 (BtLXA (jXA b))

))
.

The injection j is an artifact of Mendler’s method to enforce termination. In the
recursion rule, the term jXA b is instantiated by (λAκ0λxBush A. x) (Bush A) b �
b. Therefore, only b appears in the displayed right-hand side of the recursive
equation.4 Viewed from a different angle that already accepts to use Mendler’s
style, the variable j is there only for type-checking purposes: It allows to get a
well-typed step term although it will not be visible afterwards. The advantage
of this artifact is that no modification of the ambient type system is needed.

Certainly, we would now like to prove that ∀Aκ0∀tBush A. sizei t = sizer t, but
this will require our new system LNMRec, to be defined in Section 3.2.

Looking back at this little example, we may say that the original function sizei

is not itself an instance of Mendler iteration. But there is a recursive equation
that can even be made to hold definitionally (with respect to �), in form of the
instance sizer of the primitive recursor MRec−. But the essential question is how
to prove that both functions agree.

4 In an example that is only mentioned at the end of Section 3.2, the author encoun-
tered a natural situation where j is not directly applied to a recursive argument of
a datatype constructor, showing again the flexibility of type-based termination.



Recursion on Nested Datatypes in Dependent Type Theory 437

2.2 Untyped Lambda Calculus with Explicit Flattening

The untyped lambda terms with explicit flattening are obtained as LamE :=
μLamEF with

LamEF := λXκ1λAκ0 . A+XA×XA+X(option A) +X (X A) .

Since the Calculus of Inductive Constructions allows a direct representation of
Lam (described in the first paragraph of the introduction), we go without LNMIt
for Lam and just assume that we already have an implementation of renaming
lam : ∀Aκ0∀Bκ0 . (A→ B)→ Lam A→ Lam B and parallel substitution

subst : ∀Aκ0∀Bκ0 . (A→ Lam B)→ Lam A→ Lam B ,

where for a substitution rule f : A→ Lam B, the term substA,B f t : Lam B is the
result of substituting every variable a : A in the term representation t : Lam A
by the term f a : Lam B. From now on we will no longer decorate variables A,B
with their kind κ0.

The interesting new datatype constructor for LamE ,

flat : ∀A.LamE (LamE A)→ LamE A ,

is obtained by composing in with the right injection inr (we assume that + in
the definition of LamEF associates to the left). Its interpretation is an explicit
(not executed) form of an integration of the lambda terms that constitute its free
variable occurrences into the term itself. This is the monad multiplication form of
explicit substitution, as opposed to parallel explicit substitution that would have
the type of subst , with Lam replaced by LamE . That other approach would need
a quantifier in the rank-2 functor, but also an embedded function space which
is not covered by LNMIt/LNMRec in their current form due to extensionality
problems. Moreover, the arising LamE would not be a truly nested datatype.

We will review the definition of the iterative function eval : LamE ⊆ Lam
that evaluates all the explicit flattenings and thus yields the representation of a
usual lambda term. As for bushes, we might want to enforce recursive equations
with respect to � that are originally only provable. We do this first with an
important property of subst and then with naturality (having been proven for
Mendler iteration). This will again lead out of the realm of Mendler iteration and
motivate a second and conceptually new extension in an orthogonal direction.

Define eval by Mendler iteration as

eval := MIt
(
λXκ1λitX⊆LamλAλtFXA.match twith . . .

| inr eX(XA) �→ substXA,A itA (itXA e)
)
,

where the routine part has been omitted. This function, introduced in [8], evi-
dently satisfies

evalA(flatA e) � substLam A,A evalA (evalLamE A e) .

In view of the equation (see [8])

∀A∀B∀fA→Lam B∀tLam A. substLam B,B (λxLam B . x) (lam f t) = substA,B f t,



438 R. Matthes

the right-hand side is propositionally equal to

substLam A,A (λxLam A. x) (lam evalA (evalLamE A e)) .

We can easily enforce the latter term to be definitionally equal to the outcome
on flatA e for a variant eval1 of eval , fitting better with what will come later:

eval1 := MIt
(
λXκ1λitX⊆LamλAλtFXA.match twith . . .

| inr eX(XA) �→ subst (λx. x) (lam itA (itXA e)
)
.

It is an easy exercise to prove in LNMIt that eval1 and eval agree propositionally
on all arguments.

A natural question for polymorphic functions j of type X ⊆ Y is whether
they behave—propositionally—as a natural transformation from (X,mX) to
(Y,mY ), given map functions5 mX : monX and mY : monY , where, for any
type transformation X : κ1, we define

monX := ∀A∀B. (A→ B)→ XA→ XB .

Here, the pair (X,mX) is seen as a functor although no functor laws are required.
The proposition that defines j to be such a natural transformation is

j ∈ N (mX, mY ) := ∀A∀B∀fA→B∀tXA. jB (mX AB f t) = mY AB f (jA t) ,

and LNMIt allows to prove eval ∈ N (lamE , lam), with lamE the canonical
renaming operation for LamE , to be provided by LNMIt (see Section 3.1). Since
[23], naturality is seen as free in pure functional programming because naturality
with respect to parametric equality is an instance of the parametricity theorem
for types of the form X ⊆ Y , but in intensional type theory such as our LNMIt ,
naturality with respect to propositional equality has to be proven on a case by
case basis. Since naturality of j only depends propositionally on the values of
jA t, we also have eval1 ∈ N (lamE , lam).

It is time to address the second extension of MIt that we consider desir-
able from the point of view of computational behaviour of algorithms on nested
datatypes. It does not seem to have been considered previously but is somehow
implicit in the author’s [8, section 2.3]. It does not even make sense for inductive
types but is confined to inductive families.

An instance of naturality of eval1 is (for e : LamE (LamE A))

eval1Lam A(lamE eval1A e) = lam eval1A (eval1LamE A e) .

In the same spirit as for sizer , we might now desire to have the left-hand side
as subterm of the definitional outcome of evaluation of flatA e instead of the
right-hand side, but subst (λx. x) (itLam A(lamE itA e)) does not type-check in
place of the right branch of the definition of eval1. As noted in [8], we would
need to replace lamE by some term m : monX , hence a map term for X , but
5 The name map function comes from the function map on lists that is of type monList

and that we prefer to call list .



Recursion on Nested Datatypes in Dependent Type Theory 439

this did not seem available. In fact, it is not available in general (see Section 4
for a discussion under which circumstances it can be constructed). Our proposal
is now simply to add such an m to the bound variables that are accessible in the
body of the step term. We thus require a constant

MIt+ : ∀Gκ1 . (∀Xκ1 .monX → X ⊆ G→ FX ⊆ G)→ μF ⊆ G
and the extended iteration rule

MIt+GsA (in At) � s μF mapμF (MIt+Gs)At ,

with a canonical map term mapμF : monμF that is anyhow provided by LNMIt
and which is lamE in our example. Now, define eval1 ′ := MIt+ seval1 ′ with

seval1 ′ := λXκ1λmmonXλitX⊆LamλAλtFXA.match twith . . .

| inr eX(XA) �→ subst (λx. x) (itLam A(m itA e)) ,

which enjoys the desired operational behaviour

eval1 ′
A(flatA e) � subst (λx. x) (eval1 ′

Lam A(lamE eval1 ′
A e)) .

The termination of such a function can be proven by sized nested datatypes
[24], but there do not yet exist induction principles for reasoning on programs
with sized nested datatypes. A logic for Mendler-style recursion that covers our
examples will now be described.

Before that, let us note that this second example showed us a situation where
a recursive equation with the map term of the nested datatype on the right-hand
side may require to abstract over an arbitrary term of type monX in the step
term of an appropriately extended notion of Mendler iteration.

3 Logic for Natural Mendler-Style Recursion of Rank 2

First, we recall LNMIt from [8], then we describe its modifications in order to
obtain its extension LNMRec.

3.1 LNMIt

In LNMIt , for a nested datatype μF , we require that F : κ2 preserves extensional
functors. In the Calculus of Inductive Constructions, we may form for X : κ1

the dependently-typed record EX that contains a map term m : monX , a proof
e of extensionality of m, defined by

extm := ∀A∀B∀fA→B∀gA→B. (∀aA. fa = ga)→ ∀rXA.mAB f r=mAB g r ,

and proofs f1, f2 of the first and second functor laws for (X,m), defined by the
propositions

fct1m := ∀A∀xXA.mAA (λy.y)x = x ,
fct2m := ∀A∀B∀C ∀fA→B ∀gB→C ∀xXA.mAC (g ◦ f)x=mBC g (mAB f x).



440 R. Matthes

Parameters:
F : κ2

FpE : ∀Xκ1 . EX → E(FX)
Constants:

μF : κ1

mapμF : mon(μF )

In : ∀Xκ1 ∀ef EX∀jX⊆μF . j ∈ N (m ef , mapμF ) → FX ⊆ μF
MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → μF ⊆ G

μFInd : ∀P : ∀A.μFA → Prop.
�
∀Xκ1∀ef EX∀jX⊆μF ∀nj∈N (m ef , mapµF ).

�∀A∀xXA. PA(jA x)
� → ∀A∀tF XA. PA(In ef j n t)

�

→ ∀A∀rμF A. PA rRules:
mapμF f (In ef j n t) � In ef j n (m(FpE ef ) f t)
MIt s (In ef j n t) � s

�
λA. (MIt s)A ◦ jA

�
t

λAλxμF A. (MIt s)A x � MIt s

Fig. 1. Specification of LNMIt

Given a record ef of type EX , Coq’s notation for its field m is m ef , and likewise
for the other fields. We adopt this notation instead of the more common ef .m.
Preservation of extensional6 functors for F is required in the form of a term
of type ∀Xκ1 . E X → E(FX), and the full definition of LNMIt is given as the
extension of the predicative Calculus of Inductive Constructions (= pCIC) [12]
by the constants and rules in Figure 1, adopted from [8].7 In LNMIt , one can
show the following theorem [8, Theorem 3] about canonical elements: There are
terms ef μF : EμF and InCan : F (μF ) ⊆ μF (the canonical datatype constructor
that constructs canonical elements) such that the following convertibilities hold:

m ef μF � mapμF ,
mapμF f (InCan t) � InCan(m (FpE ef μF ) f t) ,

MIt s (InCan t) � s (MIt s) t .

Some explanations are in order: The datatype constructor In is way more
complicated than our previous in , but we get back in in the form of InCan that
only constructs the “canonical elements” of the nested datatype μF . The map
term mapμF for μF , which does renaming in the example of LamE , is an integral
part of the system definition since it occurs in the type of In. The Mendler
iterator MIt has not been touched at all; there is just a more general iteration
rule that also covers non-canonical elements, but for the canonical elements,
we get the same behaviour, i. e., the same equation with respect to �. The
6 While the functor laws are certainly an important ingredient of program verification,

the extensionality requirement is more an artifact of our intensional type theory that
does not have extensionality of functions in general.

7 If the rules were formulated with = instead of �, LNMIt would just be a signature
within the pCIC and only a logic without any termination guarantees for the rules.



Recursion on Nested Datatypes in Dependent Type Theory 441

crucial part is the induction principle μFInd , where Prop denotes the universe of
propositions (all our propositional equalities and their universal quantifications
belong to it). Without access to the argument n that assumes naturality of j as
a transformation from (X,m ef ) to (μF,mapμF ), one would not be able to prove
naturality of MIt s, i. e., of iteratively defined functions on the nested datatype
μF . The author is not aware of ways how to avoid non-canonical elements and
nevertheless have an induction principle that allows to establish naturality of
MIt s [8, Theorem 1].

BushF and LamEF are easily seen to fulfill the requirement of LNMIt to
preserve extensional functors (using [8, Lemma 1 and Lemma 2]).

3.2 LNMRec

Let LNMRec be the modification of LNMIt , where MIt and its two rules are
replaced by MRec and its proper two rules: the recursor, the rule of primitive
recursion and the extensionality rule

MRec : ∀Gκ1 . (∀Xκ1 .monX → X ⊆ μF → X ⊆ G→ FX ⊆ G)→ μF ⊆ G ,

MRec s (In ef j n t) � s (m ef ) j
(
λA. (MRec s)A ◦ jA

)
t ,

λAλxμF A. (MRec s)A x � MRec s .

The first general consequence of the definition of LNMRec is the analogue of
[8, Theorem 3] with the primitive recursion rule (generalizing both the rules of
MRec− and MIt+; recall in := InCan)

MRecGs (in At) � s μF mapμF (λAκ0λxμFA. x) (MRecGs)At ,

where we are more explicit about all the type parameters.
Evidently, the examples of Section 2 can be formulated in LNMRec by not

using the argument of type monX in the case of bushes and by not using the
injection of typeX ⊆ μF in the case of evaluation. By using neither monotonicity
nor injection, we get back MIt and hence may view LNMRec as an extension of
LNMIt .

We continue with two new results that are analogues of results in [8].

Theorem 1 (Naturality of MRec s). Assume G : κ1, mG : monG, s :
∀Xκ1 .monX → X ⊆ μF → X ⊆ G→ FX ⊆ G and that the following holds:

∀Xκ1∀ef EX∀jX⊆μF∀recX⊆G. j ∈ N (m ef , mapμF )→
rec ∈ N (m ef , mG)→ s (m ef ) j rec ∈ N (m(FpE ef ), mG) .

Then MRec s ∈ N (mapμF , mG), hence MRec s is a natural transformation for
the respective map terms.

Proof. By the induction principle μFInd , as for [8, Theorem 1].

We abbreviate bush := mapμBushF . By using that BtL ∈ N (bush, list) [8], one
can immediately use Theorem 1 to show that sizer (bush f t) = sizer t because
this is a naturality statement.



442 R. Matthes

Trivially, the condition on s is simpler for MIt+ s, namely

(∗) ∀Xκ1∀ef EX∀itX⊆G. it ∈ N (m ef , mG)→s (m ef ) it ∈ N (m(FpE ef ), mG) .

This condition is fulfilled for seval1 ′ in place of s, hence eval1 ′ ∈ N (lamE , lam)
follows.

Theorem 2 (Uniqueness of MRec s). Assume G : κ1, s of the type as in the
preceding theorem and h : μF ⊆ G (the candidate for being MRec s). Assume
further the following extensionality property of s:

∀Xκ1∀ef EX∀jX⊆μF∀f, g : X ⊆ G. (∀A∀xXA. fA x = gA x)→
∀A∀tFXA. s (m ef ) j f t = s (m ef ) j g t .

Assume finally that h satisfies the equation for MRec s:

∀Xκ1∀ef EX∀jX⊆μF∀nj∈N (m ef ,mapµF )∀A∀tFXA.
hA(In ef j n t) = s (m ef ) j (λA. hA ◦ jA) t .

Then, ∀A∀rμF A. hA r = MRec s r.

Proof. By the induction principle μFInd , as for [8, Theorem 2].

The final question of Section 2.1 is precisely of the form of the conclusion of
Theorem 2 (taking into account that MRec− is just an instance of MRec), and
its conditions can be shown to be fulfilled, hence ∀A∀tBush A. sizei t = sizer t
follows.8 By using that eval1 ∈ N (lamE , lam), one can also apply Theorem 2 in
order to show ∀A∀tLamE A. eval1A t = eval1 ′

A t. Alternatively, one can combine
[8, Theorem 2] and eval1 ′ ∈ N (lamE , lam) for that result. For details, see [15],
as before.

The author has carried out other case studies with LNMRec. For example, in
order to show injectivity of the datatype constructors of LamE for application
and lambda abstraction, one seems to need to go beyond LNMIt , but with
MRec s in the particular form where the body of s neither uses m nor rec, just
the injection j. This might be termed Mendler-style inversion. There is also a
natural example (more natural than the examples in Section 2) – namely a nicer
representation of substitution than in [25] – that uses all the ingredients: the map
term m, the injection j and the recursive call rec. However, this last example
needs the ideas of [25] as well and is only an instance of LNMRec when Set is
made impredicative.

4 Access to Map Terms within MIt?

Since there is not yet a justification of LNMRec, one might want to have the
extra liberty of MIt+ even within LNMIt . That is, can one have access to the
8 Note that, as a function that is only defined by help of MIt but not as an instance

of MIt , the function sizei does not have a characterization that could prove this
equation.



Recursion on Nested Datatypes in Dependent Type Theory 443

map term m : monX in the body of s, despite doing a definition with MIt?
There is no answer in the general situation of LNMIt , but under the following
conditions that are met in the example of evaluation in Section 2.2.

Assume that F does not only preserve extensional functors, but is also mono-
tone in the following sense (introduced as such in [8] and called relativized basic
monotonicity of rank 2): There is a closed term

Fmon2br : ∀Xκ1∀Y κ1 .monY → X ⊆ Y → FX ⊆ FY .

Assume an extensional functor ef G : EG and set mG := m ef G. Assume a step
term for MIt+G, hence s : ∀Xκ1 .monX → X ⊆ G→ FX ⊆ G.

Define MMIt s := MIt Gs′ : μF ⊆ G with

s′ := λXκ1λitX⊆GλAλtFXA. sGmG (λAλxGA. x) (Fmon2brX,GmG it At) .

In continuation of the example in Section 2.2, we can define

eval1 ′′ := MMIt seval1 ′ : LamE ⊆ Lam ,

since lam is extensional and satisfies the functor laws and LamEF is monotone
in the above sense. With this data, one could see that

eval1 ′′
A(flatA e) � subst (λx. x)

(
lam (λx. x)(lam eval1 ′′

A (eval1 ′′ e))
)
.

This is not too convincing, as far as � is concerned. By the first functor law
for lam , one immediately gets a propositionally equal right-hand side that cor-
responds to the recursive equation for eval1. Recall that eval1 ′ has been derived
from eval1 with the idea of taking profit from naturality, which then justified
that they always produce propositionally equal values. If we want to have a
general insight about the relation between MMIt s and MIt+ s, we need to en-
sure naturality. So, assume further condition (∗) on s, given after Theorem 1.
Moreover, we impose that Fmon2br preserves naturality in the following sense:
it fulfills
∀Xκ1∀ef EX∀itX⊆G. it ∈ N (m ef , mG)→

Fmon2br mG it ∈ N (m(FpE ef ), m(FpE efG)) .

Then, the naturality theorem for MIt [8, Theorem 1] proves naturality of MMIt s,
i. e., MMIt s ∈ N (mapμF , mG).

We are heading towards a proof of ∀A∀tμFA.MMIt s t = MIt+ s t by Theo-
rem 2. This imposes on us to require the respective extensionality assumption
(for an s that does not use the injection facility):

∀Xκ1∀ef EX∀f, g : X ⊆ G. (∀A∀xXA. fA x = gA x)→
∀A∀tFXA. s (m ef ) f t = s (m ef ) g t .

The final condition is that

∀Xκ1∀ef EX∀itX⊆G. it ∈ N (m ef , mG)→
∀A∀tFXA. s (m ef ) it t = smG (λAλxGA. x) (Fmon2br mG it t) ,

where the right-hand side is just the body of the definition of s′.



444 R. Matthes

Theorem 3. Under all the assumptions of the present section, we have that
∀A∀tμFA.MMIt s t = MIt+ s t.

Proof. By Theorem 2.

With this long list of conditions, it is reassuring to verify that Theorem 3 is
sufficient to prove that eval1 ′′ and eval1 ′ yield propositionally equal values, and
this is the case. It can be shown that, in presence of the other conditions, (∗)
already follows from its special case smG (λAλxGA.x) ∈ N (m(FpE ef G), mG).

While the extensions of MIt towards MRec were dictated by algorithmic con-
cerns, more precisely, by behaviour with respect to definitional equality �, this
last section contributes more to “type-directed programming”: If an argument
m of type monX is additionally available in the body of the step term, one may
try to use it, just being guided by the wish to produce a term of the right type.
We already know that MIt can only define terminating functions. So, MMIt s
will be some terminating function of the right type. If all the requirements of
Theorem 3 are met, we even know that MMIt s calculates values that we can
understand better through their description by MIt+ s. Of course, if there were
already a justification of LNMRec, we would prefer to use MIt+ s, but this is
not yet achieved.

As a final remark, the idea to try to define MMIt s arose when studying the
article [26] by Johann and Ghani since their type of interpreter transformers
InterpT only quantifies over all Functor y, where the type class mechanism of
Haskell is used to express the existence of a map term for the type transforma-
tion y. However, in that article, this map term is never used. Moreover, instead
of monotonicity in the sense of Fmon2br , an unrelativized version is used that
cannot treat truly nested datatypes such as Bush and LamE . Finally, the target
constructor G was restricted to be a right Kan extension (in order to have the
expressive power of generalized refined iteration [6]), and only an algebra—a
term of type FG ⊆ G—was constructed and not the step term for Mendler-style
iteration.

5 Conclusion

Already for the sake of perspicuous behaviour of iterative functions on nested
datatypes, one is led to consider extensions of Mendler-style iteration towards
Mendler-style primitive recursion with access to a map term for the nested
datatype. The logical system LNMIt of earlier work by the author is extended to
system LNMRec, without changing the induction principle that is the crucial el-
ement for verification. LNMIt could be defined within the Calculus of Inductive
Constructions (CIC) with impredicative universe κ0 := Set and propositional
proof irrelevance, i. e., with ∀P : Prop∀pP1 ∀pP2 . p1 = p2,9 and this definition does
respect definitional equality �. For LNMRec, there does not yet exist a justifica-
tion like that, not even any justification, despite several attempts by the author
9 Proof irrelevance is needed for proofs of naturality statements and in order to have

injectivity of the first projection out of a strong sum.



Recursion on Nested Datatypes in Dependent Type Theory 445

to extend the construction of [8]. It is the built-in naturality that can not yet
be treated. We may call LMRec the version of LNMRec where the references to
naturality are deleted. The ideas of the first half of [8, Section 2.3] are sufficient
to define LMRec in the CIC with impredicative Set . But naturality is important
for verification purposes, and thus LMRec is not satisfying as a logical system. To
conclude, a justification of the logic of natural Mendler-style recursion of rank 2
is strongly needed. It would be an instance of the more general problem of adding
an impredicative version of simultaneous inductive-recursive definitions [27] to
the CIC.

Acknowledgement. I am grateful to the referees whose valuable feedback helped
to improve the presentation and will influence future work even more.

References

1. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,
vol. 1422, pp. 52–67. Springer, Heidelberg (1998)

2. Bird, R., Gibbons, J., Jones, G.: Program optimisation, naturally. In: Davies, J.,
Roscoe, B., Woodcock, J. (eds.) Millenial Perspectives in Computer Science, Pro-
ceedings (2000)

3. Bellegarde, F., Hook, J.: Substitution: A formal methods case study using monads
and transformations. Science of Computer Programming 23, 287–311 (1994)

4. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of
Functional Programming 9(1), 77–91 (1999)

5. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS,
vol. 1683, pp. 453–468. Springer, Heidelberg (1999)

6. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1–2), 3–66 (2005)

7. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science 14,
97–141 (2004)

8. Matthes, R.: An induction principle for nested datatypes in intensional type theory.
Journal of Functional Programming (to appear, 2008)

9. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

10. Paulin-Mohring, C.: Inductive definitions in the system Coq – rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993)

11. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation thesis, Université Claude Bernard Lyon I (1996)

12. Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.1.
Project LogiCal, INRIA (2006), coq.inria.fr

13. Mendler, N.P.: Recursive types and type constraints in second-order lambda cal-
culus. In: Proceedings of the Second Annual IEEE Symposium on Logic in Com-
puter Science, Ithaca, N.Y, pp. 30–36. IEEE Computer Society Press, Los Alamitos
(1987)

coq.inria.fr


446 R. Matthes

14. Abel, A., Matthes, R.: Fixed points of type constructors and primitive recursion.
In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 190–204.
Springer, Heidelberg (2004)

15. Matthes, R.: Coq development for Recursion on nested datatypes in dependent
type theory (January 2008),
http://www.irit.fr/~Ralph.Matthes/Coq/MendlerRecursion/

16. Matthes, R.: Coq development for An induction principle for nested datatypes in
intensional type theory (January 2008),
http://www.irit.fr/~Ralph.Matthes/Coq/InductionNested/

17. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2), 200–222 (1999)

18. Abel, A., Matthes, R. (Co-)iteration for higher-order nested datatypes. In: Geu-
vers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 1–20. Springer,
Heidelberg (2003)

19. Pfenning, F., Paulin-Mohring, C.: Inductively defined types in the calculus of con-
structions. In: Main, M.G., Melton, A., Mislove, M.W., Schmidt, D.A. (eds.) MFPS
1989. LNCS, vol. 442, pp. 209–228. Springer, Heidelberg (1990)

20. Uustalu, T., Vene, V.: A cube of proof systems for the intuitionistic predicate
μ-, ν-logic. In: Haveraaen, M., Owe, O. (eds.) Selected Papers of the 8th Nordic
Workshop on Programming Theory (NWPT 1996), May 1997. Research Reports,
Department of Informatics, University of Oslo, vol. 248, pp. 237–246 (1997)

21. Matthes, R.: Naive reduktionsfreie Normalisierung (translated to English: naive
reduction-free normalization). Slides of talk on December 19, 1996, given at the
Bern Munich meeting on proof theory and computer science in Munich, available
at the author’s homepage (December 1996)

22. Geuvers, H.: Inductive and coinductive types with iteration and recursion. In:
Nordström, B., Pettersson, K., Plotkin, G. (eds.) Proceedings of the Workshop on
Types for Proofs and Programs, B̊astad, Sweden, pp. 193–217 (1992),
http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps

23. Wadler, P.: Theorems for free! In: Proceedings of the fourth international confer-
ence on functional programming languages and computer architecture, Imperial
College, London, England, September 1989, pp. 347–359. ACM Press, New York
(1989)

24. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Dok-
torarbeit (PhD thesis), LMU München (2006)

25. Matthes, R.: Nested datatypes with generalized Mendler iteration: map fusion and
the example of the representation of untyped lambda calculus with explicit flat-
tening. In: Paulin-Mohring, C. (ed.) Mathematics of Program Construction, Pro-
ceedings. LNCS, Springer, Heidelberg (2008) (Accepted for publication)

26. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Ronchi Della Rocca,
S. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007)

27. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. The Journal of Symbolic Logic 65(2), 525–549 (2000)

http://www.irit.fr/~Ralph.Matthes/Coq/MendlerRecursion/
http://www.irit.fr/~Ralph.Matthes/Coq/InductionNested/
http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps


Perfect Local Computability

and Computable Simulations

Russell Miller1 and Dustin Mulcahey2

1 Queens College of CUNY
65-30 Kissena Blvd., Flushing, NY 11367 USA

and
The CUNY Graduate Center
Russell.Miller@qc.cuny.edu

http://qcpages.qc.cuny.edu/∼rmiller
2 The CUNY Graduate Center

365 Fifth Avenue, New York NY 10016 USA
dustinmulcahey@gmail.com

https://wfs.gc.cuny.edu/DMulcahey/www/

Abstract. We study perfectly locally computable structures, which are
(possibly uncountable) structures S that have highly effective presenta-
tions of their local properties. We show that every such S can be simu-
lated, in a strong sense and even over arbitrary finite parameter sets, by
a computable structure. We also study the category theory of a perfect
cover of S , examining its connections to the category of all finitely gen-
erated substructures of S .

Keywords: Category theory, computability, local computability, perfect
local computability, simulation.

1 Introduction

Locally computable structures were introduced in [3], as a method for effective
presentation of uncountable structures. One considers a structure S locally rather
than globally, giving presentations of all finitely generated substructures of S,
up to isomorphism, along with a description of the ways in which these “pieces”
of S fit together to form the entire structure. We review these definitions below.
The entire package, including both the pieces and the ways they fit together,
comprise a cover of S, which is said to be uniformly computable if it can be
given in a sufficiently effective manner.

The notion of a perfect cover was also defined in [3], and it is stated there
(and proven in [4]) that a countable structure has a perfect cover iff it is com-
putably presentable. This suggests that for uncountable structures, perfect local
computability (i.e. having a perfect cover) is a reasonable analogue for com-
putable presentability. In this paper we further explore perfectly locally com-
putable structures, showing that all such structures have computable simulations,
or computably presentable elementary substructures realizing the same types.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 447–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://qcpages.qc.cuny.edu/~rmiller
https://wfs.gc.cuny.edu/DMulcahey/www/


448 R. Miller and D. Mulcahey

Such substructures may be used in natural ways to simulate operations in the
larger structure – which in general is not countable, hence not itself computably
presentable.

A cover bears a natural resemblance to a category, and indeed is closely re-
lated to the category FGSub(S) of all finitely generated substructures of S un-
der inclusion maps. Of course, FGSub(S) will be uncountable if S is, whereas
uniformly computable covers are always countable. Moreover, Definition 2.2 does
not require that the morphisms among objects (i.e. the embeddings of one finitely
generated substructure into another) be closed under composition. However, for
the specific case of a perfect cover, we may assume closure under composition,
and therefore we find ourselves working in a (computable) category. We examine
the category-theoretic properties of such covers in Section 4.

Our computability-theoretic terminology coincides with that of [5], the stan-
dard reference for the subject, and the definitions in local computability from
[3] are used here without alteration. For category theory, we recommend [2].

2 Local Computability Definitions

Let T be a ∀-axiomatizable theory in a signature of size n < ω. (The theory of
fields is a good example to keep in mind, skolemized to have function symbols
for negation and inversion.) We first consider simple covers of a model S of T .
These describe only the finitely generated substructures of S, with no attention
paid to any relations between those substructures.

Definition 2.1. A simple cover of S is a (finite or countable) collection A of
finitely generated models A0,A1, . . . of T , such that:

– every finitely generated substructure of S is isomorphic to some Ai ∈ A; and
– every Ai ∈ A embeds isomorphically into S.

This simple cover is uniformly computable if every Ai ∈ A is a computable
structure and the sequence 〈(Ai, ai)〉i∈ω can be given uniformly: there must
exist a single computable function which, on input i, outputs a tuple of elements
〈e1, . . . , en, 〈a0, . . . , aki〉〉 ∈ ωn × A<ωi such that {a0, . . . , aki} generates Ai and
ϕej computes the j-th function, constant, or relation in Ai.
Definition 2.2. A cover of S consists of a simple cover A = {A0,A1, . . .} of S,
along with sets IA

ij (for all Ai,Aj ∈ A) of injective homomorphisms f : Ai ↪→ Aj ,
such that:

– for all finitely generated substructures B ⊆ C of S, there exist i, j ∈ ω and
f ∈ IA

ij and isomorphisms β : Ai � B and γ : Aj � C with β = γ ◦ f ; and
– for every i and j and every f ∈ IA

ij , there exist substructures B ⊆ C of S and
isomorphisms β : Ai � B and γ : Aj � C with β = γ ◦ f .

This cover is uniformly computable if A is a uniformly computable simple cover
of S and there exists a c.e. set W such that for all i, j ∈ ω,



Perfect Local Computability and Computable Simulations 449

IA
ij = {ϕe�Ai : 〈i, j, e〉 ∈W}.

A structure B is locally computable if it has a uniformly computable cover.

We will be concerned with a particularly nice class of locally computable struc-
tures, so nice that we call them perfectly locally computable. Here we have much
stronger connections between the substructures of S and the structures Ai in
our effective description.

Definition 2.3. Let A be a uniformly computable cover for a structure S. A
set M is a correspondence system for A and S if it satisfies the following five
rules:

1. Each element of M is an embedding of some Ai ∈ A into S; and
2. For every Ai ∈ A, there exists a β ∈M with domain Ai; and
3. For every finitely generated substructure B of S, there exists a β ∈M with

image B; and
4. For every Ai ∈ A, every β ∈ M with domain Ai, every Aj ∈ A, and every
f ∈ IA

ij , there exists a γ ∈ M with domain Aj such that β = γ ◦ f (and
hence β(Ai) ⊆ γ(Aj)); and

5. For every Ai ∈ A, every β ∈M with domain Ai, and every finitely generated
B ⊆ S such that β(Ai) ⊆ B, there exists an Aj ∈ A, a γ ∈ M with domain
Aj and image B, and an f ∈ IA

ij such that β = γ ◦ f .

A correspondence system is perfect if it also satisfies:

6. For every finitely generated B ⊆ S, if β : Ai � B and γ : Aj � B both lie
in M , then γ−1 ◦ β ∈ IA

ij .

If a perfect correspondence system exists, then its elements are called perfect
matches between their domains and their images. The uniformly computable
cover A is then called a perfect cover for S, and S itself is said to be perfectly
locally computable.

For example, it is proven in [3] that every algebraically closed field is perfectly
locally computable. The field of real numbers, on the other hand, is not perfectly
locally computable, and the ordered field of real numbers is not even locally
computable.

Other uncountable examples are known. In the language of linear orders, Can-
tor space is perfectly locally computable. Likewise, if Cantor space is viewed as
the top level of the tree 2<ω+1 in the language of partial orders – with a addi-
tional unary predicate C identifying that top level, and also with an immediate-
predecessor function on the elements of all lengths strictly between 0 and ω, if
one wishes – then this entire tree, under the additional predicate and function
symbol, is perfectly locally computable. However, if one adds the linear order
on the top level of that tree, then the new structure loses its perfect local com-
putability, even though both of the structures merged together had it; in fact
the new structure is barely even locally computable.



450 R. Miller and D. Mulcahey

Another theorem from [3] and [4] shows that perfect local computability can be
viewed as a natural extension of the notion of computability – or more precisely,
computable presentability – for countable structures.

Theorem 2.4. Let S be any countable structure. Then S is computably pre-
sentable iff S is perfectly locally computable. 	

In the following, we consider perfectly locally computable structures, whether
countable or uncountable, and show that in a certain sense, we can dispense with
their covers and indeed with the structures themselves, and replace them with
structures that actually are countable and computably presented. The notion of
a computable simulation will be the precise version of this substitution.

3 Computable Simulations

Definition 3.1. Let S be any structure. A simulation of S is an elementary
substructure B � S such that B and S realize exactly the same finitary types.
We often refer to any A isomorphic to such a B as a simulation of S, even if
A is not itself a substructure of S. Hence a computable simulation of S is a
computable structure isomorphic to a simulation of S.

Lemma 1. Let S be locally computable, with a correspondence system N over
a uniformly computable cover A. Then S has a countable substructure B with its
own correspondence system M ⊆ N over A. If N was a perfect correspondence
system for S, then M is perfect for B as well.

Proof. B will be a countable union of countable substructures Bs of S. To start,
we fix for each i ∈ ω one map αi ∈ N with domain Ai, Let M0 = {αi : i ∈ ω},
and let B0 be the substructure of S generated by the union of all the images of
these αi. The conditions for a perfect cover are ∀∃ conditions, so now we will
be able to keep B countable as we close M under those conditions, using the
analogous conditions in the correspondence system N .

Assume we have defined a countable Bs and Ms. First, for every i, every
α ∈Ms with domain Ai, and every f ∈ IA

ij (for any j), there exists some γ ∈ N
with domain Aj such that f lifts via α and γ to the inclusion α(Ai) ⊆ γ(Aj).
Form M ′

s ⊇ Ms by adjoining one such γ to Ms for each such i, α and f . Also,
let B′

s be generated by the union of the images of the maps in M ′
s. Clearly both

B′
s and M ′

s remain countable.
Next, for every i, every α ∈Ms with domain Ai, and every finitely generated

C ⊆ Bs with α(Ai) ⊆ C, there exists some j, some f ∈ IA
ij , and some γ ∈ N with

domain Aj such that f lifts to the inclusion α(Ai) ⊆ C via α and γ. Adjoin to
M ′
s one such γ for each such i, α, and C, to form M ′′

s .
Finally, for every finitely generated substructure C ⊆ Bs, there exists a γ ∈ N

with image C (since C ⊆ S). Form Ms+1 by adjoining to M ′′
s one such γ for each

such C. Since Bs was countable, it has only countably many finitely generated
substructures, and so Ms+1 is still countable.



Perfect Local Computability and Computable Simulations 451

It is clear that the union B = ∪sBs is a countable substructure of S, with
cover A, and that M = ∪sMs is a correspondence system for this B over A.
Our B0 already satisfied item (2) of Definition 2.3, and our ensuing adjoinments
satisfied (4), (5), and (3), in that order, without ever violating (1). (Of course A
is still uniformly computable as well; that definition has nothing to do with the
structure covered by A.)

It remains to see that this M is perfect for B whenever N is perfect for S.
But this is easy: if α and γ lie in M and have the same image in B, then they
lie in N and have the same image in S. Since N is perfect, γ−1 ◦ α must then
lie in the appropriate IA

ij . 	

In this situation, B will be an elementary substructure of S. The next lemma
extends this observation. (If B is as in Lemma 1, and P is empty, then in the
proof of Lemma 2 we may show that at every step ψs is just inclusion.)

Lemma 2. Let B and S be two structures, each with a correspondence system
over the same uniformly computable cover. Assume that B is countable. Then B
is a simulation of S. Indeed, for any countable set P ⊆ S of parameters, we can
elementarily embed B into S so that its image contains P and realizes the same
finitary types as S over every finite P0 ⊆ P .

Proof. Let A be a common uniformly computable cover of S and B, with cor-
respondence systems M for B and N for S. Our embedding is built step by
step, so we start by enumerating the domain of B as {b0, b1, . . .}, and P as
{p0, p1, . . .}. Fix an α ∈ M whose image is the substructure B0 ⊆ B generated
by b0, and a γ ∈ N with the same domain as α, and define ψ0 to be γ ◦ α−1,
with B0 = dom(ψ0) ⊆ B and C0 = range(ψ0) ⊆ S.

At stage t+1 = 2s+1, we extend ψt so that its range contains ps. By induction
ψt = γ ◦ α−1 for some γ ∈ N and α ∈ M with common domain Ai in A. Let
Ct+1 be the substructure of S generated by Ct and ps. By induction Ct is finitely
generated, so there is a δ ∈ N with some domain Aj ∈ A, and an f ∈ IA

ij , such
that f lifts via γ and δ to the inclusion Ct ⊆ Ct+1. In turn there is a β ∈ M
with domain Aj such that f lifts via α and β to the inclusion Bt ⊆ β(Aj). Set
Bt+1 = range(β) and ψt+1 = δ ◦ β−1.

At stage t+ 1 = 2s+ 2, we extend the embedding ψt from its current domain
Bt to the structure Bt+1 generated by Bt and bs. By induction Bt is finitely
generated, and ψt = γ ◦ α−1 for some γ ∈ N and α ∈ M with common domain
Ai in A. So there is a β ∈ M with some domain Aj ∈ A, and an f ∈ IA

ij , such
that f lifts via α and β to the inclusion Bt ⊆ Bt+1. In turn there is a δ ∈ M
with domain Aj such that f lifts via γ and δ to the inclusion Ct ⊆ δ(Aj). Set
Ct+1 = range(δ) and ψt+1 = δ ◦ β−1.

Now we define ψ = ∪tψt. Clearly ψ has domain B and range ⊆ S containing
P , and ψ must be an embedding. To see that it is elementary, suppose that
∃xθ(ψ(b0), . . . , ψ(bs), x) is an existential formula true in S. Now ψ2s+2 = γ ◦α−1

for some α ∈ M and γ ∈ N with common domain Ai ∈ A. Since N is a
correspondence system, there is a δ ∈ N (with some domain Aj) and an a ∈ Aj
and an f ∈ IA

ij , such that θ(f(α−1(b0)), . . . , f(α−1(bs)), a) holds in Aj . But



452 R. Miller and D. Mulcahey

since M is also a correspondence system, there is a β ∈ M with the same
domain Aj such that f lifts to the inclusion Bs ⊆ β(Aj) via α and β. Therefore
θ(b0, . . . , bs, β(a)) holds in B. The dual argument shows that existential formulas
true in B also hold in S. But since existential formulas with parameters go back
and forth between B and S this way, ψ must be an elementary embedding.

Finally, given any n-type Γ over any finite parameter set P0 ⊆ P , such that
Γ is realized in S by a tuple (d1, . . . , dn), we start with the substructure P0 ⊆ S
generated by P0. Since P0 ⊆ range(ψ), we have a t for which P0 ⊆ range(ψt). Let
ψt = γ ◦α−1 with α ∈M and γ ∈ N . There must be a δ ∈ N with some domain
Aj ∈ A and an f ∈ IA

ij such that f lifts via γ and δ to the inclusion of P0 into the
substructure generated by P0 and d0, . . . , dn. But now there is also some β ∈M
with domain Aj such that f lifts via α and β to the inclusion Bt ⊆ β(Aj), and
we set bi = β(δ−1(di)) and ci = ψ(bi) for each i. Then (c1, . . . , cn) is an n-tuple
within the image of ψ which realizes the type Γ over P0, by standard arguments
using M and N . 	


When we have a parameter set P as in Lemma 2, we refer to the image of B
as a simulation of S over P . We might also refer to B itself the same way, but
only when the embedding ψ : B ↪→ S is clear, because we need to know which
elements ψ−1(p) ∈ B correspond to the elements of P in this simulation. Later
we will discuss the extent to which BP can be said to be uniform in P .

Corollary 3.2. Two countable structures with correspondence systems over the
same uniformly computable cover are isomorphic.

Proof. Since S is countable, we simply set P = S and apply Lemma 2, whose
proof may now be regarded as a back-and-forth construction of an isomorphism
from B onto S. 	


We are now ready for the main result of this section.

Theorem 3.3. Every perfectly locally computable structure S has a computable
simulation A, which can be embedded into S so as to simulate S over arbitrary
countable parameter sets. Specifically, there is a set of elementary embeddings
ψp : A ↪→ S, one for each function p : ω → S which enumerates a countable
parameter set Qp = range(p) ⊆ S, such that:

– Qp ⊆ ψp(A); and
– ψp(A) is a simulation of S over Qp; and
– if p and p′ are two such functions and p�n = p′�n, then for all k < n,

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).

As a partial converse, every structure which has a computable simulation A with
embeddings ψp satisfying these conditions has a uniformly computable cover with
a correspondence system.



Perfect Local Computability and Computable Simulations 453

To make this last claim an actual converse, we would need to show that the
correspondence system for S is perfect. Whether this is true remains open. We
also note that it would be equivalent to give the same statement only for finite
parameter enumerations p, since the last condition would allow a simulation
over a countable parameter set P to be built by taking successive nested finite
enumerations pm ⊆ pm+1 with P = ∪mrange(pm), and setting ψ = limm ψpm .

Proof. When we assume that S is perfectly locally computable, the existence of
a computable simulation of S follows from Lemma 1, which also ensures that
S and its computable simulation A both have perfect correspondence systems
over the same uniformly computable cover. Therefore Lemma 2 shows that A
can be elementarily embedded into S so as to simulate S over any parameter set
Qp enumerated by a function p : ω → S. Moreover, an examination of the proof
of Lemma 2 shows that the embedding chooses the a ∈ A with ψp(a) = p(k)
using only the common cover A, its correspondence systems for A and S, and
the elements p(0), p(1), . . . , p(k) in S. This proves the claim about parameter
enumerations p and p′ which agree up to n.

The proof of the partial converse is longer and more technical, and we relegate
it to Appendix A. 	


We can think of BP as being built uniformly in the parameter set P if the
elements of P are named as elements in different Ai in the cover A of S. That is,
suppose that we are given a computable enumeration 〈(ik, ak, fk)〉k∈ω for which
there exist maps βk ∈ N with ak ∈ Aik = dom(βk) such that

– each fk ∈ IA
ik,ik+1

; and
– βk+1 ◦ fk = βk; and
– {βk(ak) : k ∈ ω} = P .

Then we could build a computable copy of the simulation BP of S over P , uni-
formly in the perfect cover of S and the enumeration 〈(ik, ak, fk)〉k∈ω , and enu-
merate the image of P in BP . More generally, if the enumeration 〈(ik, ak, fk)〉k∈ω
has Turing degree d, then with a d-oracle we can build a copy of BP in which
the image of P will be computably enumerable in d. It is awkward to think of
the set P itself as having Turing degree d, because an infinite set P will have
distinct enumerations with distinct Turing degrees, but within the cover A of S,
we can view P as being computably enumerable in d, as well as in the degrees of
other enumerations. Of course, P itself, viewed as a subset of S, does not admit
effective enumeration in any obvious way.

4 Category Theory

In general, a cover of a structure S need not be a category. The cover has
objects (the structures Ai) and morphisms among them, but the definition does
not require that the composition of two morphisms be a morphism, nor that
the identity morphisms be included. Adding the identity morphisms would not



454 R. Miller and D. Mulcahey

be a problem, but it can happen that when one closes the sets of morphisms
under composition, the resulting category is no longer a cover of S, since the
new morphisms may not correspond to any inclusion maps within S. However,
for perfectly locally computable structures, this difficulty vanishes.

Lemma 3. Let S be a perfectly locally computable structure. Then there is a
perfect cover A of S, called the derived cover of S, with the properties that every
IA
ii contains the identity map on Ai and that for all i, j, k ∈ ω and all f ∈ IA

ij and
g ∈ IA

jk, we have g ◦ f ∈ IA
ik. Thus A may be viewed as a computable category,

with objects {Ai : i ∈ ω} and with maps in IA
ij as the morphisms from Ai to Aj.

To be careful, we should speak of the derived cover only when some perfect cover
has already been specified.

Proof. A is just the closure of the original perfect cover of S under the required
properties. It is clear from Definition 2.3 that this A is still a perfect cover of S,
and the uniform computability of the cover A follows from that of the original
cover, since the underlying simple cover has not changed and the new sets IA

ij

are derived from the old ones by existential conditions. 	

Category theorists have long known the category FGSub(S) of all finitely gen-
erated substructures of a structure S, where the morphisms are just the inclusion
maps within S. Of course, if S is uncountable, then so is FGSub(S), so this
presentation is not of immediate use for computability theorists. However, we
do have a connection.

Proposition 4.1. If S is perfectly locally computable, then there exists a faithful
functor R mapping FGSub(S) into the derived cover A of S. Moreover, there
exists a natural isomorphism β : (IA ◦ R) → IFGSub(S) where the I− denote the
appropriate inclusions into the category of all L-structures under embeddings.

Proof. Let A be a perfect cover of S, with correspondence system M . For each
B ∈ FGSub(S), fix R(B) to be any Ai ∈ A which is the domain of some
β ∈ M whose image is B. Ai and β need not be unique, and it is startling that
we can make such an arbitrary choice and have both a functor and a natural
isomorphism, but the perfection of the cover allows it to work. Let N ⊆ M
contain exactly the maps β chosen in this process. Thus each B ∈ FGSub(S) is
the image of a unique βB ∈ N , whose domain is R(B).

Now every morphism B ↪→ C in FGSub(S) is an inclusion B ⊆ C within S,
and with βB ∈ N as above, we have some f ∈ IA

ij for some j, and some γ ∈ M
with domain Aj and image C, such that γ ◦ f = βB. Now we also have some
βC ∈ M mapping R(C) onto C, say with R(C) = Ak. Since M is perfect, the
map β−1

C ◦ γ must lie in IA
jk. We then define R to take the inclusion morphism

B ⊆ C to the morphism R(B ⊆ C) = β−1
C ◦ γ ◦ f , which lies in IA

ik, since A is
a derived cover. Again, an arbitrary choice of f and γ may have been involved
here. However, for any x ∈ R(B) = Ai, we have

R(B ⊆ C)(x) = β−1
C ◦ γ ◦ f(x) = β−1

C ◦ βB(x),



Perfect Local Computability and Computable Simulations 455

so that in fact the definition of R(B ⊆ C) was independent of this choice. More-
over, this will show that R respects composition of morphisms, as functors must.
Suppose that B ⊆ C ⊆ D are objects of FGSub(S). Then

R(C ⊆ D) ◦R(B ⊆ C) = (β−1
D ◦ βC) ◦ (β−1

C ◦ βB) = β−1
D ◦ βB = R(B ⊆ D).

Thus R really is a functor.
The naturality of β is evident from its construction. 	


Corollary 4.2. colim(IA ◦R) � S
Proof. Since β is a natural isomorphism, we have colim(IFGSub(S)) � colim(IA◦
R). The former is easily seen to be S. 	

The functor R need not be onto. It is possible, for instance, for two distinct Ai
and Aj in A to map onto the same B via maps γ, δ ∈M , and also possible that
these are the only maps in M with domains Ai or Aj . In such a case, one of Ai
or Aj will not lie in the image of R. Of course, since M is perfect, δ−1 ◦ γ ∈ IA

ij

in this case, and this map is an isomorphism, as is γ−1 ◦ δ ∈ IA
ji.

This can be done in a bit more canonically using β as above:

Lemma 4. The functor R : FGSub(S)→ A defined above is essentially surjec-
tive.

Proof. Fix any Ai ∈ A. Then there is some α ∈ M with domain Ai and image
B = α(Ai), and some βB ∈ N ⊆ M with domain Aj = R(B) for some j. By
perfection of M , β−1

B ◦ α ∈ IA
ij , and this embedding maps Ai onto R(B). 	


References

1. Borceux, F.: Handbook of Categorical Algebra, 3 volumes. Cambridge University
Press, Cambridge (1994-1995)

2. Mac Lane, S.: Categories for the Working Mathematician. 2nd edn. Springer, New
York (1997)

3. Miller, R.G.: Locally computable structures. In: Cooper, B., Löwe, B., Sorbi, A.
(eds.) CiE 2007. LNCS, vol. 4497, pp. 575–584. Springer, Heidelberg (2007),
qcpages.qc.cuny.edu/∼rmiller/research

4. Miller, R.G.: Local computability and uncountable structures (to appear)
5. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)

Appendix A

Here we complete the proof of Theorem 3.3 by proving the partial converse there
stated. Suppose that A is a computable simulation of S and that there is a set
of elementary embeddings ψp : A ↪→ S, one for each function p : ω → S which
enumerates a countable parameter set Qp = range(p) ⊆ S, such that:

– Qp ⊆ ψp(A); and

qcpages.qc.cuny.edu/~rmiller/research


456 R. Miller and D. Mulcahey

– ψp(A) is a simulation of S over Qp; and
– if p and p′ are two such functions and p�n = p′�n, then for all k < n,

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).

We have to show that the existence of such an A implies that S has a uniformly
computable cover with a correspondence system. Now A has a perfect cover A,
by Theorem 2.4. Let M be a perfect correspondence system for A and A. The
correspondence system N will consist of all maps of the form ψp ◦α, for all finite
p : n→ S and all α ∈M such that range(α) is generated by {ψ−1

p (p(i)) : i < n}.
(Here we think of a finite function p : n → S as a function from ω into S by
repeating its image over and over: p(k + nm) = p(k) for all k and m.)

Now each finitely generated C ⊆ S with generators enumerated by p lies within
the image of ψp, and the finitely generated substructure ψ−1

p (C) ⊆ Amust be the
image of some Ai ∈ A under some α ∈M , since M is a perfect cover of A. Hence
C = (ψp ◦ α)(Ai) is the image of some map in N . Likewise, each Ai ∈ A is the
domain of some α ∈ M , hence also of some map in N . Moreover, each f ∈ IA

ij ,
for any i and j, lifts to an inclusion map within A, and then lifts further to an
inclusion map within S, via any ψp we like. Conversely, any inclusion C′ ⊆ C of
finitely-generated substructures of S is the lift (via ψp, where p enumerates first
the generators of C′, and then the generators of C) of an inclusion in A, which in
turn is the lift of some f in some IA

ij via some α, β ∈ M . If p′ is the restriction
of p to the generators of C′, then the inclusion C′ ⊆ C is the lift of f via (ψp′ ◦α)
and (ψp ◦β), which both lie in N . Thus A is a uniformly computable cover of S.

The preceding remarks also proved the first three parts in Definition 2.3. For
part 4, fix any f ∈ IA

ij for any i and j, along with any β ∈ N with domain Ai.
Then β = ψp ◦α for some α ∈M and some p : n→ S for which {ψ−1

p (p(k) : k <
n} generates range(α). Since M is a correspondence system, there is a γ ∈ M
with domain Aj such that α = γ ◦ f . But now there is a finite q such that
q�n = p and q(n + k) = ψp(ak), where a0, . . . , am generate γ(Aj) within A. So
(ψq ◦ γ) ∈ N , and

(ψq ◦ γ ◦ f) = (ψq ◦ α) = (ψp ◦ α),

with the last equality following because p� n = q� n and range(α) is generated
by the elements ψ−1

p (p(k)) = ψ−1
q (q(k)) for k < n. This proves part 4.

For part 5 of Definition 2.3, fix any β ∈ N with domain Ai and any finitely
generated C ⊆ S with β(Ai) ⊆ C. Now β = ψp◦α for some α ∈M and some finite
p : n → S, with the elements ψ−1

p (p(k)) generating range(α). Let q(k) = p(k)
for k < n, and let q(n), . . . , q(n+m− 1) enumerate the generators of C in S. By
assumption, ψq is an elementary embedding of A into S whose image contains
range(q). Let D = 〈ψ−1

q (q(k)) : k < m〉 ⊆ A. Since ψ−1
q (q(k)) = ψ−1

p (p(k)) for
all k < n, we know that α(Ai) ⊆ D, and since M is a correspondence system,
there is some β ∈M and some j and f ∈ IA

ij with D = range(β) and β ◦ f = α.
But then

(ψq ◦ β ◦ f) = (ψq ◦ α) = (ψp ◦ α),

proving part 5 of Definition 2.3, since (ψq ◦ β) ∈ N . Thus A is a uniformly
computable cover of S with correspondence system N . 	




Complete Determinacy and

Subsystems of Second Order Arithmetic

Takako Nemoto�

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
sa4m20@math.tohoku.ac.jp, nmt0731@yahoo.co.jp

Abstract. This paper investigates the determinacy and the complete
determinacy of infinite games, following reverse mathematics program
whose purpose is to find the set comprehension axioms that are nec-
essary and sufficient for these statements in the frame of second order
arithmetic. In some sense, this research clarifies how complex oracles we
need to obtain the algorithms which give a winning strategies and which
determine the winning positions for the players. It will be shown that,
depending on the complexity of the rules of games, the complexity of the
oracles changes drastically and that determinacy and complete determi-
nacy statements are not always equivalent.

keywords: infinite game, determinacy, complete determinacy, Wadge
class, reverse mathematics, second order arithmetic.

1 Introduction

We consider the following type of game: Two players, say player I and player
II, alternatively choose an element of X to form an infinite sequence f . Player I
wins iff a given formula ϕ(f) of f holds. Player II wins iff I does not win.

A determinacy statement asserts that one of the players has a winning strategy
in such games. This kind of statements has been of great interest in many fields
of mathematics and informatics, e.g., infinitary combinatorics, set theory and
automata theory.

It is quite natural to ask the complexity of a winning strategy and of an
algorithm to determine at which position a player wins (has a winning strategy)
in such a game. Because the determinacy of complex games, i.e., the games
whose rules ϕ(f) are complex (e.g., analytic), cannot be proved even in ZFC,
such a kind of research must be on games with lower complexity.

Even the determinacy for such games (e.g., Σ0
1 ,Σ0

2 andΣ0
3) is quite interesting

(e.g., from the viewpoint of admissible set theory, [11]) and has strong utility
(e.g., in automata theory and second order arithmetic). As applications, we
can list [7], which solves the problem whether the language recognized by an
automaton on infinite trees is empty, the proof in [9] of the implication of Σ1

1

choice from ATR0, and [4], which compares systems between ACA0 and Π1
1 -CA0.

� Partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education,
Culture, Sports, Science and Technology, Japan.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 457–466, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



458 T. Nemoto

The research on the strength of such weak determinacy from the viewpoint
of reverse mathematics (cf. [8]) is on going: In [3], [5], [6], [9] and [10], neces-
sary and sufficient set comprehension axioms for the determinacy statements are
investigated in the framework of second order arithmetic. These results can be
seen as answers to the question: How complex does a winning strategy become
for games with rules of a certain complexity?

For applications, it is also needed to know how complex the algorithm becomes
which recognizes the winning positions. To answer this question in a similar way,
we can use complete determinacy statements, which guarantee the existence of
the winning set. Here, we call W the winning set for player I if

(s ∈W → player I wins at a position s) ∧ (s �∈ W → player II wins at s).

This paper will measure the strength of complete determinacy statements from
the viewpoint of reverse mathematics.

It is known that the strength changes depending also on the set X of moves
that the players can choose at each turn. In the previous works, X is either N

or 2 = {0, 1}, i.e., they treat the games in the Baire space N
N and in the Cantor

space 2N. Accordingly, here we treat complete determinacy in these two spaces.
We also use a finer hierarchy (consisting of (Σ0

1)2,Bisep(Δ0
1, Σ

0
1), Sep(Σ0

1 , Σ
0
2),

etc.) of formulas than arithmetical hierarchyΣ0
n’s, since, as shown in the previous

works, the determinacy statement becomes drastically stronger even if the rules
of the games become stronger only slightly (for details, see Subsection 2.2).

The results of the previous works and of this paper are summarized as follows,
where Det (resp. Det∗) stands for determinacy in the Baire (resp. the Cantor)
space, where comp.Det (resp. comp.Det∗) stands for complete determinacy in the
Baire (resp. the Cantor) space and where the statements are equivalent to the
system on the same row over RCA0. Our contribution is the establishment of the
new two columns for comp.Det and comp.Det∗ and this shows that complete de-
terminacy statement is sometimes strictly stronger than the corresponding deter-
minacy statement: we see that Σ0

1 -comp.Det∗, Σ0
2 -comp.Det∗ and Σ0

1 -comp.Det
are strictly stronger than Σ0

1 -Det∗, Σ0
2-Det∗ and Σ0

1 -Det, respectively.

system -Det∗ -comp.Det∗ -Det -comp.Det

WKL0

Δ0
1

Σ0
1

Bisep(Δ0
1, Σ

0
1)

Δ0
1

ACA0 (Σ0
1)2

Σ0
1

Bisep(Δ0
1, Σ

0
1)

(Σ0
1 )2

ATR0
Δ0

2

Σ0
2

Δ0
2

Δ0
1

Σ0
1

Δ0
1

Bisep(Δ0
1, Σ

0
2)

Π1
1 -CA0

Bisep(Σ0
1 , Σ

0
2)

Sep(Σ0
1 , Σ

0
2)

Σ0
2

Bisep(Δ0
1, Σ

0
2)

Bisep(Σ0
1 , Σ

0
2)

Sep(Σ0
1 , Σ

0
2)

Bisep(Δ0
1, Σ

0
1)

(Σ0
1)2

Σ0
1

Bisep(Δ0
1, Σ

0
1)

(Σ0
1)2



Complete Determinacy and Subsystems of Second Order Arithmetic 459

2 Preliminaries

2.1 Subsystems of Second Order Arithmetic

The readers are assumed to be familiar with the basic definitions and results in
second order arithmetic. The language L2 consists of the language of first order
arithmetic plus set variables, set quantifiers and ∈. Small letters, x, y, z, ..., are
number variables. Capital letters, X,Y, Z, ..., are set variables. Classes Σ0

n, Π0
n

and Δ0
n are defined as usual (the superscripts are omitted in first order arith-

metic), where formulas may contain parameters. Formulas without set quan-
tifiers are called arithmetical. A formula is Σ1

1 (resp. Π1
1 ) if it is of the form

∃Xϕ(X) (resp. ∀Xϕ(X)), where ϕ(X) is arithmetical. For a class Γ of formu-
las, we loosely say that a formula is Γ if it is equivalent, within the theory in
which we are working, to a Γ formula.

For a class Γ of formulas, Γ comprehension is the following schema

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(x) is any Γ formula in which X does not occur freely.
For the classes (e.g., Δ0

1) which are defined within the theory in which we are
working, some modifications are needed. E.g., Δ0

1 comprehension is defined as
follows:

∀x(ϕ(x)↔ ¬ψ(x))→ ∃X∀x(x ∈ X ↔ ϕ(x)),

where ϕ(x) and ψ(x) are Σ0
1 .

This paper employs RCA0 as a base theory. Within RCA0, all recursive func-
tions are definable. The smallest ω-model (i.e., the model whose first order part
is standard) is the class REC of recursive sets. The first order part of RCA0 is
IΣ1, discrete ordered semi-ring axioms for (N,+, ·, 0, 1, <) plus Σ1 induction.

Definition 1 (RCA0). RCA0 is the L2-theory consisting of discrete ordered semi-
ring axioms for (N,+, ·, 0, 1, <) plus Δ0

1 comprehension and Σ0
1 induction.

For any class Γ of L2 formulas, ¬Γ is the dual class of Γ , namely, ϕ is ¬Γ iff
¬ϕ is Γ . Γ and ¬Γ comprehensions are equivalent over RCA0.

A finite sequence of natural numbers can be coded by a natural number in
RCA0. Basic operations, such as evaluation s(n), length |s|, segmentation s[n],
f [n] and concatenation s ∗ t, s ∗ f , on finite and infinite sequences of natural
numbers are available in RCA0 in a suitable sense. By convention, if |s| < n,
s[n] = s. Most notations in this paper are fairly standard (see [8, II.2]). We also
use the following abbreviations: 2≤n = {s ∈ 2<N : |s| ≤ n}, 2<n = {s ∈ 2<N :
|s| < n}, and 0n is the sequence of length n whose all components are 0.

A set T ⊆ 2<N is tree if, for any s ∈ 2<N, s ∈ T implies t ∈ T for any t ⊆ s.
T is finite if the lengths of sequences in T are bounded by some n.

Now we introduce and overview the supersystems of RCA0 that are widely
used in the researches of second order arithmetic. For the details, see [8].

Definition 2 (WKL0). Weak König’s lemma asserts that every infinite tree T ⊆
2<N has an infinite path i.e., f : N→ {0, 1} such that f [n] ∈ T for all n.

WKL0 is the system RCA0 + weak König’s lemma.



460 T. Nemoto

Clearly WKL0 includes RCA0. Although the first order part of WKL0 is the same
as that of RCA0, this inclusion is strict. A path of a recursive infinite tree is not
always recursive, but it can be low in terms of recursion theory (cf. [8, VIII.2]).
Therefore, if the determinacy of a class of games is equivalent to weak König’s
lemma over RCA0, then we can find a winning strategy, which is low, but no
recursive winning strategy in general. Similarly, if the complete determinacy
of the class is equivalent to it, then we can have a low oracle that allows an
algorithm to determine the winning positions.

Definition 3 (ACA0). ACA0 is the system RCA0 + Σ0
1 comprehension.

In this system we can treat number quantifiers freely. Actually, ACA0 proves
arithmetical comprehension. The first order part of ACA0 is Peano arithmetic.
The smallest ω-model of ACA0 is the class ARITH of arithmetical sets. Thus,
the equivalence to Σ0

1 comprehension means that we can find an arithmetical
winning strategy and an arithmetical oracle to the algorithm.

Definition 4 (ATR0). For a class Γ of formulas, Γ transfinite recursion con-
sists of all axioms of the following form:

WO(W,≺)→ ∃X∀x∀n(n ∈ Xx ↔ θ(n, {m : ∃y ≺ xθ(m,Xy)}),
where WO(W,≺) asserts that ≺ is a linear ordering on W without ≺-descending
chains, where θ is any Γ formula and where Xx = {n : (x, n) ∈ X}.

ATR0 is the system RCA0 + arithmetical transfinite recursion.

The first order part of ATR0 is Feferman’s system IR of predicative analysis.

Definition 5 (Π1
1 -CA0). Π1

1 -CA0 is the system RCA0 +Π1
1 comprehension.

The equivalence to Π1
1 comprehension means that we can find an analytic or

coanalytic winning strategy and an analytic or coanalytic oracle to the algorithm.
It is known RCA0 � WKL0 � ACA0 � ATR0 � Π1

1 -CA0.

2.2 Finer Hierarchy of Formulas

As mentioned in Introduction, we need a finer hierarchy of formulas than the
ordinary arithmetical hierarchy. The author [6] introduced the new classes of
formulas, imitating the description [1] of Wadge classes of Polish spaces.

Definition 6 ((Σ0
n)2). The class (Σ0

n)2 consists of formulas of the form ξ ∧¬η
where both ξ and η are Σ0

n.

Definition 7 (Bisep, Sep). Let Γ and Γ ′ be classes of formulas with a distinct
function variable f .

Bisep(Γ, Γ ′) consists of formulas of the form (ξ0(f)∧¬η0(f))∨(ξ1(f)∧η1(f)),
where ηi(f)’s are Γ ′ and where ξ0(f) and ξ1(f) are disjoint Γ , i.e., (within the
theory) there is no f with ξ0(f) ∧ ξ1(f). Sep(Γ, Γ ′) is the class of formulas of
the form (ξ(f) ∧ ¬η0(f)) ∨ (¬ξ(f) ∧ η1(f)), where ξ(f) is Γ and where ηi(f)’s
are Γ ′.



Complete Determinacy and Subsystems of Second Order Arithmetic 461

By [1], we have the following proper hierarchy of formulas. (Here we omit the
dual classes, e.g., Π0

n.) No intermediate class (corresponding to a Wadge class)
exists, except for “...” areas:

Δ0
1 � Σ0

1 � Bisep(Δ0
1, Σ

0
1) � (Σ0

1)2 � ...

� Δ0
2 � Σ0

2 � Bisep(Δ0
1, Σ

0
2) � Bisep(Σ0

1 , Σ
0
2) � ... � Sep(Σ0

1 , Σ
0
2) � ...

� Bisep(Δ0
2, Σ

0
2) � (Σ0

2)2 � ...

2.3 Games in Second Order Arithmetic

Let X ⊆ N. For a given formula ϕ(f) with a distinct functional variable f ∈ XN,
the game ϕ is as follows: Player I and player II alternatively choose an element
of X to form an infinite sequence f ∈ XN. Player I wins iff ϕ(f) holds. Player II
wins iff I does not win. We regard a class of formulas with a distinct functional
variable as a class of games. s ∈ X<N is called a position. In this paper, we
assume that player I is male and II is female.

A strategy for player I (resp. II) is a function assigning an element of X to each
even-(resp. odd-)length sequence from X . A strategy for a player is a winning
strategy if the player wins as long as he or she plays following it.

For a given class Γ of games in XN, Γ determinacy in XN is the following
statement: For every Γ game ϕ in XN, exactly one of the players has a winning
strategy. Strictly, this is a schema rather than one axiom. See [8].

For a game ϕ(f) in XN, player I (resp. II) wins ϕ(f) at s ∈ X<N if

(1) |s| is even and I (resp. II) has a winning strategy in the game ϕ(s ∗ f), or
(2) |s| is odd and II (resp. I) has a winning strategy in the game ϕ(s ∗ f).

Note that in case (2) players are exchanged.
If s = 〈〉, we simply say that player I (resp. II) wins ϕ(f).
For a class Γ of games, Γ and Γ ′ determinacies in XN are equivalent over

RCA0: Player I (resp. II) has a winning strategy in ¬ϕ(f) if player II (resp. I)
has a winning strategy in ϕ(f ′), where f ′ is defined by f ′(m) = f(m+ 1).

Definition 8 (complete determinacy). Let X ⊆ N. W ⊆ X<N is the win-
ning set for player I in ϕ(f) if, for any s ∈ X<N, s ∈ W implies that player I
wins ϕ(f) at s and s /∈W implies that player II wins ϕ(f) at s.

For a class Γ of formulas, Γ complete determinacy in XN consists of all
axioms of the form

∃W (W is the winning set for player I in ϕ(f)),

where ϕ(f) is a game in XN which belongs to Γ and W is not free in ϕ(f).

Clearly Γ complete determinacy in XN implies Γ determinacy in XN. Γ and ¬Γ
complete determinacies in XN are equivalent over RCA0.
Γ -Det (resp. Γ -Det∗) stands for Γ determinacy in the Baire space N

N (resp.
in the Cantor space 2N), and Γ -comp.Det (resp. Γ -comp.Det∗) stands for Γ
complete determinacy in the Baire space (resp. in the Cantor space).



462 T. Nemoto

3 WKL0 and Complete Determinacy

In this section, we prove thatΔ0
1-comp.Det∗,Δ0

1-Det∗,Σ0
1 -Det∗ and weak König’s

lemma are pairwise equivalent over RCA0.

Fact 1. ([5, Theorems 3.5 and 3.6], [6, Corollary 3.8]) Bisep(Δ0
1, Σ

0
1)-Det∗, Σ0

1 -
Det∗, Δ0

1-Det∗ and Weak König’s lemma are pairwise equivalent over RCA0.

Lemma 1 (Normal form theorem 1). ([8, Theorem II.2.7]) For any Σ0
1

formula ϕ(X), there is a Π0
0 formula θ with RCA0 � ∀X(ϕ(X)↔ ∃nθ(X [n])).

Theorem 1. WKL0 � Δ0
1-comp.Det∗.

Proof. Let ϕ(f) be a Δ0
1 game in the Cantor space. By Lemma 1, we can find

Π0
0 formulas θ and θ′ with ∀f ∈ 2N(ϕ(f) ↔ ∃nθ(f [n])) and ∀f ∈ 2N(¬ϕ(f) ↔
∃nθ′(f [n])). Δ0

1 comprehension yields T = {s ∈ 2<N : ∀t ⊆ s¬(θ(t) ∨ θ′(t))}.
Intuitively, T is the set of those positions at which none of the players has yet
won. Since there is no f ∈ 2N with ϕ(f) ∧ ¬ϕ(f), T has no infinite path.

WKL0 proves the finiteness of T . Let n be the maximal length of sequences in
T . Note that any s ∈ 2<N of length n+ 1 satisfies exactly one of ∃t ⊆ sθ(t) and
∃t ⊆ sθ′(t). For s ∈ 2<N, we can determine whether I wins at s as follows:

– If |s| > n, player I wins at s iff there exists t ⊆ s with θ(t).
– If |s| ≤ n and |s| is even (resp. odd), player I wins ϕ(f) at s iff I wins ϕ(f)

at either s ∗ 〈0〉 or s ∗ 〈1〉 (resp. both s ∗ 〈0〉 and s ∗ 〈1〉).
Precisely, Σ0

1 induction on k yields uk : (2≤n+1 − 2<n+1−k)→ {0, 1} such that

uk(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |s| = n+ 1 and ∃t ⊆ sθ(t),
0 if |s| = n+ 1 and ∃t ⊆ sθ′(t),
max{uk(s ∗ 〈0〉), uk(s ∗ 〈1〉)} if |s| ≤ n and |s| is even, and
min{uk(s ∗ 〈0〉), uk(s ∗ 〈1〉)} if |s| ≤ n and |s| is odd.

Δ0
1 comprehension yields u : 2<N → {0, 1} with ∀s ∈ 2<N(u(s) = un+1(s[n+ 1]))

and W = {s : u(s) = 1}. We show that if s ∈ W then player I wins ϕ(f) at
s and otherwise II wins ϕ(f) at s. Assume s ∈ W . We may assume that |s| is
even, since if |s| is odd, u(s) = 1 implies u(s ∗ 〈0〉) = u(s ∗ 〈1〉) = 1, and since
the claims for s ∗ 〈0〉 and for s ∗ 〈1〉 imply that for s.

For any even-length |s|, player I can win ϕ(s ∗ f) by playing as follows: At
any even-length t ∈ 2<N, he chooses 0 if u(s ∗ t ∗ 〈0〉) = 1 and he chooses 1
otherwise. If he plays following this strategy, the resulting sequence f satisfies
that g((s ∗ f)[m]) = 1 for all m, and so there exists m ≤ n with θ((s ∗ f)[m]).
Similarly, player II wins ϕ(f) at s if s /∈W . ��
Remark 1 (for the readers who are familiar with RCA∗

0). In the proof, uk is
bounded by some iterated power of n, and so only Π0

0 induction is required if the
language has exp. Therefore, on the basis of RCA∗

0, Δ0
1-comp.Det∗ is equivalent

to WKL∗
0. For the details of the equivalence over RCA∗

0, see [6].

Corollary 1. We can add Δ0
1-comp.Det∗ to the list of Fact 1.



Complete Determinacy and Subsystems of Second Order Arithmetic 463

4 ACA0 and Complete Determinacy

In this section we prove that Σ0
1 -comp.Det∗, (Σ0

1)2-Det∗ and Σ0
1 comprehension

(i.e., ACA0) are equivalent over RCA0.
ACA0 can be characterized game-theoretically as follows.

Fact 2. ([5, Theorems 3.7 and 3.8]) (Σ0
1)2-Det∗ and Σ0

1 comprehension are pair-
wise equivalent over RCA0.

For any Σ0
1 game ϕ(f) in the Cantor space, the statement “player I wins ϕ(f) at

s” can be written in a Σ0
1 formula in WKL0 (cf. [5, Corollary 3.4]). Hence ACA0

yields X = {s ∈ 2N : I wins ϕ(f) at s}. By Σ0
1 -Det∗, which is proved in ACA0,

s /∈ X implies that II wins ϕ(f) at s, and so ACA0 proves Σ0
1-comp.Det∗. The

next theorem is the converse.

Theorem 2. RCA0 � Σ0
1 -comp.Det∗ → Σ0

1 comprehension.

Proof. Let ψ(n) be a Σ0
1 formula of the form ∃mθ(n,m), where θ is a Π0

0 formula.
Consider the following game ϕ(f) in the Cantor space:

– player I chooses n ∈ N by playing his first 1 at his (n+ 1)-th turn.
– I wins iff there is m such that θ(n,m) holds.

To illustrate, the game goes as follows:

player I

n times
︷ ︸︸ ︷
0, ..., 0, 1 · · ·

player II ∗, ..., ∗ ∗ · · ·
Clearly ϕ(f) is Σ0

1 . Σ0
1 -comp.Det∗ yields the winning set W for player I in ϕ(f).

We can check that, for any n, player I wins at 02n∗〈1〉 iff ψ(n). Δ0
1 comprehension

yields X = {n : 02n ∗ 〈1〉 ∈ W}. It is easy to see X = {n : ψ(n)}. ��
Γ determinacy does not always imply Γ complete determinacy, as this theorem
with Fact 2 separates Σ0

1 -comp.Det∗ and Σ0
1-Det∗. Moreover the equivalence

between Γ and Γ ′ determinacies does not necessarily imply that between Γ
and Γ ′ complete determinacies. Indeed Δ0

1-comp.Det∗ and Σ0
1-comp.Det∗ are

not equivalent, while Δ0
1-Det∗ and Σ0

1 -Det∗ are.
The completion of (Σ0

1)2-Det∗ does not lift up the comprehension axiom:

Theorem 3. ACA0 proves (Σ0
1)2-comp.Det∗.

Proof. Let ϕ(f) be a (Σ0
1 )2 game ∃nθ(f [n]) ∧ η(f), where θ(x) is Π0

0 and
where η(f) is Π0

1 . V = {s : ∃t ⊆ sθ(t)∧ (I wins η(f) at s)} is provided by Π0
1 -

comp.Det∗, proved in ACA0. Define a new Σ0
1 game ϕ′(f) by ∃n(f [n] ∈ V ).

Similarly to the proof of [5, Theorem 3.7] (where we use Π0
1 choice, which is

provable in WKL0), we see that W = {s : player I wins ϕ′(f) at s}, provided by
Σ0

1 -comp.Det∗, is the winning set for player I in ϕ(f). ��
By Σ0

1 � Bisep(Δ0
1, Σ

0
1) � (Σ0

1)2, ACA0 proves also Bisep(Δ0
1, Σ

0
1)-comp.Det.

Corollary 2. We can add (Σ0
1)2-comp.Det∗, Bisep(Δ0

1, Σ
0
1)-comp.Det∗ and Σ0

1 -
comp.Det∗ to the list of Fact 2.



464 T. Nemoto

5 Π1
1 -CA0 and Complete Determinacy

Before turning to Π1
1 -CA0, we briefly mention complete determinacy for ATR0.

Fact 3. The arithmetical transfinite recursion is equivalent to Σ0
2 -Det∗, Δ0

2-
Det∗, Σ0

1 -Det, Δ0
1-Det and Δ0

1-comp.Det over RCA0:
See [8] for Σ0

1-Det, Δ0
1-Det, [5] for Σ0

2 -Det∗, Δ0
2-Det∗, [4] for Δ0

1-comp.Det.

Theorem 4. ATR0 � Δ0
2-comp.Det∗.

Proof. We can prove this in an almost same way as the proof of [9, Theorem
6.1], by replacing Π1

1 transfinite recursion with arithmetical transfinite recursion.
Note that, although the original theorem states the equivalence between Π1

1

transfinite recursion and Δ0
2-Det, the proof actually shows that between Π1

1

transfinite recursion and Δ0
2-comp.Det. ��

Corollary 3. We can add Δ0
2-comp.Det∗ to the list of Fact 3.

We turn to Π1
1 -CA0. The following is a game-theoretical characterization.

Fact 4. ([8, VI. 5] and [6]) Sep(Σ0
1 , Σ

0
2)-Det∗, Bisep(Σ0

1 , Σ
0
2)-Det∗, (Σ0

1)2-Det,
Bisep(Δ0

1, Σ
0
1)-Det and Π1

1 comprehension are pairwise equivalent over RCA0.

Over ACA0, Σ1
1 formulas have normal forms.

Lemma 2 (Normal form theorem 2). ([8, Lemma V.1.4]) For any Σ1
1 ϕ(X),

there is a Π0
0 formula θ with ACA0 � ∀X(ϕ(X)↔ ∃f ∈ N

N∀nθ(X [n], f [n])).

The next theorem separates the strengths of Σ0
1 -comp.Det and of Δ0

1-comp.Det,
similarly to the case of the Cantor space.

Theorem 5. RCA0 � Σ0
1 -comp.Det→ Π1

1 comprehension.

Proof. Assume Σ0
1-comp.Det. We prove Σ1

1 comprehension, which is equivalent
to Π1

1 comprehension. Let ψ(n) be ∃f∀mθ(n, f [m]), where θ is Π0
0 . We prove

the existence of X = {n : ψ(n)}. Set a Π0
1 game ϕ(f) in the Baire space by

∀mθ(f(0), f̃ [m]), where f̃ is a sequence in N
N defined by f̃(k) = f(2k + 2) for

all k. To illustrate, the game goes as follows:

player I n f̃(0) f̃(1) f̃(2) · · ·
player II ∗ ∗ ∗ · · ·

Intuitively, when player I chooses n, he wins iff he constructs an infinite sequence
witnessing for ψ(n). Σ0

1 -comp.Det yields the winning set W for player I in ϕ(f).
Then Δ0

1 comprehension yields X = {n : 〈n〉 ∈ W}. For n with ψ(n), player II
cannot win at 〈n〉 if he constructs f̃ with ∀mθ(n, f̃ [m]). Hence n ∈ X if ψ(n).
Conversely, player I cannot win ϕ(f) at 〈n〉 with ¬ψ(n), since no f̃ satisfies
∀mθ(n, f̃ [m]). Thus n ∈ X iff ψ(n). ��



Complete Determinacy and Subsystems of Second Order Arithmetic 465

Now we modify the last theorem to get the Cantor space version. For that
purpose, some definitions and notations are needed. g ∈ 2N is regular if, for
any n, there exists m > n with g(m) = 1. Note that the statement “f ∈ 2N is
regular” is Π0

2 . For a regular sequence g ∈ 2N, g is the unique sequence in N
N

such that
g = 〈 0, ..., 0

︸ ︷︷ ︸
g(0) times

, 1, 0, ..., 0
︸ ︷︷ ︸
g(1) times

, 1, 0, ..., 0
︸ ︷︷ ︸
g(2) times

, 1, ...〉.

Theorem 6. RCA0 � Σ0
2 -comp.Det∗ → Π1

1 comprehension.

Proof. This can be proved similarly to the last theorem. Assume Σ0
2 -comp.Det∗.

Let ψ(n) be ∃f∀mθ(n, f [m]), where θ is Π0
0 .

Define a Π0
2 game ϕ(f) by (f is regular) ∧ ∀nθ(f(0), 〈f(1), ..., f(m + 1)〉).

Intuitively, I chooses n by playing his first 1 at his (n+ 1)-th turn, and tries to
construct the sequence 〈 0, ..., 0

︸ ︷︷ ︸
g(0) times

, 1, 0, ..., 0
︸ ︷︷ ︸
g(1) times

, 1...〉, instead of a sequence g ∈ N
N

with ∀mθ(n, g[m]).
Σ0

2 complete determinacy yields the winning set W ⊆ 2<N for player I in ϕ(f).
Δ0

1 comprehension yields X = {n : 02n ∗ 〈1〉 ∈ W}. As in the proof of the last
theorem, we can also check X = {n : ψ(n)}. ��
Remark 2. For a given Π0

2 game ϕ(f) in the Cantor space, the statement “I has
a winning strategy in ϕ(f)” is Σ1

1 over ATR0 (cf. [6, Remark 4.4]), and so Π1
1 -

CA0 yields W = {s ∈ N
N : I wins ϕ(f) at s}. By Σ0

2-Det, proved in Π1
1 -CA0, W

is a winning set for player I in ϕ(f). Hence Σ0
2 -comp.Det∗ is implied by Π1

1 -CA0.

Theorem 3 shows that the completion of (Σ0
1)2-Det∗ does not strengthen the

system. Similarly, neither does that of (Σ0
1)2-Det nor of Sep(Σ0

1 , Σ
0
2)-Det∗.

Theorem 7. Π1
1 -CA0 proves 1. (Σ0

1)2-comp.Det and 2. Sep(Σ0
1 , Σ

0
2)-comp.Det∗.

Proof. 1. It can be proved in an almost same way to Theorem 3. Note that, for a
Π0

1 game ϕ(f) in the Baire space, the assertion “player I has a winning strategy
in ϕ(f)” is Σ1

1 over ATR0 and ATR0 proves Σ1
1 choice. (see [8, Lemma VI.5.2]).

2. Let ϕ(f) ≡ (∃nθ(f [n]) ∧ ¬η0(f)) ∨ (¬∃nθ(f [n]) ∧ η1(f)), where θ(x) is Π0
0

and where ηi(f)’s are Σ0
2 . V = {s ∈ 2<N : ∃t ⊆ sθ(t)∧(I wins ¬η0(f) at s)} and

V ′ = {s ∈ 2<N : I wins (¬∃nθ(f [n])∧ η1(f))∨ ∃nf [n] ∈ V at s} are provided by
Π1

1 -CA0. We can prove that player I wins ϕ(f) at s iff s ∈ V ′. ��
By Bisep(Δ0

1, Σ
0
1) ⊆ (Σ0

1)2 and 1 above, Π1
1 -CA0 proves also Bisep(Δ0

1, Σ
0
1)-

comp.Det, and by Σ0
2 ⊆ Bisep(Δ0

1, Σ
0
1) ⊆ Bisep(Σ0

1 , Σ
0
2) ⊆ Sep(Σ0

1 , Σ
0
2), 2 and

Theorem 6 show the equivalence amongΣ0
2 -comp.Det∗, Bisep(Δ0

1, Σ
0
2)-comp.Det∗,

Bisep(Σ0
1 , Σ

0
2)-comp.Det∗, Sep(Σ0

1 , Σ
0
2)-comp.Det∗ and Π1

1 comprehension.

Corollary 4. We can add the following to the list of Fact 4: Sep(Σ0
1 , Σ

0
2)-

comp.Det∗; Bisep(Σ0
1 , Σ

0
2)-Det∗ Σ0

2 -comp.Det∗, (Σ0
1)2-comp.Det, Bisep(Δ0

1, Σ
0
1)-

comp.Det and Σ0
1 -comp.Det.



466 T. Nemoto

6 Stronger Complete Determinacy Statements

In the previous works, stronger determinacy statements also have been inves-
tigated. Here we make brief comments on some stronger complete determinacy
statements.

As mentioned in the proof of Theorem 4, [9, Theorem 6.1] essentially shows
that Π1

1 -TR0, the system RCA0 +Π1
1 transfinite recursion, proves Δ0

2-comp.Det.
Π1

1 -TR0 also proves Bisep(Δ0
2, Σ

0
2)-comp.Det∗. This is essentially shown in the

proof of [6, Theorem 6.5], which proves Bisep(Δ0
2, Σ

0
2)-Det∗ in Π1

1 -TR0.
Together with the results of [6, Theorem 6.7 and 6.8] and [9], Bisep(Δ0

2, Σ
0
2)-

Det∗, Bisep(Δ0
2, Σ

0
2)-comp.Det∗, Δ0

2-Det, Δ0
2-comp.Det and Π1

1 transfinite recur-
sion are pairwise equivalent over RCA0.

Acknowledgments. The author would like to express her gratitude to Dr. Anto-
nio Montalbán, who gave her a chance to consider some problems in this paper
by his admirable talk at Kyoto University on August 2006. She is also greatly in-
debted to Prof. Kazuyuki Tanaka and to Mr. SATO Kentaro for their beneficent
comments on the draft of this paper.

References

1. Louveau, A.: Some results in the Wadge hierarchy of Borel sets, Cabal Seminar
79-81. Lecture Note in Mathematics, vol. 1019, pp. 28–55. Springer, Heidelberg
(1983)

2. Medsalem, M.O., Tanaka, K.: Δ0
3-determinacy, comprehension and induction. J.

Symbolic Logic 72, 452–462 (2007)
3. Medsalem, M.O., Tanaka, K.: Weak determinacy and iterations of inductive defi-

nitions. In: Proc. Computable Prospects of Infinity. World Scientific, Singapore (to
appear)

4. Montalbán, A.: Indecomposable linear orderings and Theories of Hyperarithmetic
Analysis. J. Math. Log. 6, 89–120 (2006)

5. Nemoto, T., MedSalem, M.O., Tanaka, K.: Infinite games in the Cantor space and
subsystems of second order arithmetic. Math. Log. Q. 53, 226–236 (2007)

6. Nemoto, T.: Determinacy of Wadge classes and subsystems of second order arith-
metic. Mathematical logic quarterly,
http://www.math.tohoku.ac.jp/∼sa4m20/wadge.pdf

7. Nießner, F.: Nondeterministic tree automata. In: Grädel, E., Thomas, W., Wilke,
T. (eds.) Automata Logics, and Infinite games, pp. 152–155. Springer, Heidelberg
(2002)

8. Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer, Heidelberg
(1999)

9. Tanaka, K.: Weak axioms of determinacy and subsystems of analysis I: Δ0
2-games

Z. Math. Logik Grundlag. Math. 36, 481–491 (1990)
10. Tanaka, K.: Weak axioms of determinacy and subsystems of analysis II: Σ0

2-games.
Ann. Pure Appl. Logic 52, 181–193 (1991)

11. Welch, P.: Weak systems of determinacy and arithmetical quasi-inductive defini-
tions, http://www.maths.bris.ac.uk/∼mapdw/det7.pdf

http://www.math.tohoku.ac.jp/~sa4m20/wadge.pdf
http://www.maths.bris.ac.uk/~mapdw/det7.pdf


Internal Density Theorems for Hierarchies of

Continuous Functionals

Dag Normann

Department of Mathematics, The University of Oslo, P.O. Box 1053,
Blindern N-0316 Oslo, Norway

dnormann@math.uio.no

Abstract. One standard way of constructing a hierarchy of total, con-
tinuous functionals over a fixed set of base types is to use a suitable
cartesian closed category of domains where we may construct the cor-
responding hierarchy of partial continuous functionals, and then extract
the hereditarily total ones. One important theorem, when available, is
the Density Theorem: Each finitary domain object can be extended to a
total one.

We will see how we in the context of limit spaces, may formulate and
prove versions of the density theorems and avoid domain theory.

Keywords: Continuous functional, Limit space, Probabilistic selection,
Density theorem.

1 Introduction

The countable and continuous functionals were independently defined by Kleene
[4] and Kreisel [5]. Kleene defined the countable functionals as a substructure
of the full hierarchy of total functionals over N of pure type, while Kreisel de-
fined the continuous functionals as functionals operating in a continuous way on
objects of lower types, using filters of formal neighborhoods to represent these
objects. Each countable functional Φ is linked to a set of associates α, functions
from N to N coding how Φ acts on countable functionals φ one type down via
defining a continuous function on the set of associates for such functionals.

Kleene and Kreisel seemed to agree that they had defined essentially the
same typed structure of functionals, and this is now a well established fact. In
the recent literature, the functionals are known as the Kleene-Kreisel continuous
functionals, we will just call them continuous here.

Both authors proved what is later known as the density theorem, Kleene
showed that uniformly in the type n we can decide in a primitive recursive
way the set of finite sequences of natural numbers that can be extended to an
associate for a functional of type n, and, when possible, uniformly construct one
such associate in a primitive recursive way. Kreisel showed that all formal neigh-
borhoods are elements of total filters. The proofs have many similarities, and
the consequence is that there is an effectively enumerable dense subset of the set
of continuous functionals for each type. Kreisel used this density theorem in his

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 467–475, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



468 D. Normann

description of the constructive content of a statement in analysis, and as a conse-
quence, in the proof of the Kreisel Representation Theorem. The density theorem
turned out to be a very important tool in analyzing the finer aspects of Kleene’s
[3] S1− S9-based notion of computations relative to continuous functionals.

In the approximately 50 years that has passed since Kleene’s and Kreisel’s
constructions, the study of the continuous functionals and corresponding hierar-
chies of partial functionals reflects all important aspects of CiE, from theorems
that are of interest mainly due to their mathematical elegance to modeling real
life computations (e.g. using Haskell). This will be discussed in more depth at
CiE2008,

This wide range of approaches makes the continuous functionals an interest-
ing structure from many points of view. In computer science we may see it as
the quotient structure of the hereditarily total objects in a, for other purposes,
interesting hierarchy of partial functionals (e.g. continuous or sequential), while
other characterizations are based on direct constructions of mathematical inter-
est. One of these is the approach via Kuratowski Limit Spaces [6] as suggested by
Scarpellini [9]. It has later turned out that this characterization of the continuous
functionals is rather useful. It can be used to show that the Kleene and Kreisel
approaches are indeed equivalent. It can be used to show that the domain theo-
retic definition of the continuous functionals over the reals, generalizing Kreisel’s
construction, and the TTE-construction, generalizing Kleene’s construction, are
equivalent. See Normann [7] and Schröder [10] for the two characterizations.

In this note, our starting point is that the continuous functionals are of inter-
est on their own, and that it thus is of interest to have a smooth construction
from which we in an effective way may develop an infrastructure without intro-
ducing domain theory, fragments of category theory or other forms of external
machinery. The motivation is a general view on issues of computability in data-
types. If a data-type can be viewed as a definable class in the universe HF of
hereditarily finite sets, then the concept of computability is absolute. For other
data-types, the strength of the chosen notion of computability may depend on
how we represent the data. If we can avoid hiding a lot of strength in the repre-
sentation of data, and still obtain the computability of some object or operator,
we have obtained a better result.

The core of the paper is Section 2, where we give alternative proofs of effective
density for the hierarchies of continuous functionals over N and over R. There
are not many proofs in Section 2, but one important aspect of our approach is
that it actually simplifies the matter to the extent that the proofs in Section 2
safely can be left for the reader. Another aspect is that we actually get slightly
better results than when using traditional methods, in particular when R is the
base type.

If we consider N and R as two base types, we cannot expect to have a density
theorem in the traditional domain-theoretical sense, because the total objects in
the domain interpretation of R → N is not dense. However, the set of constant
functions forms an effectively enumerable dense subset, so seen from within the
structure, effective density holds. One may even say that this simple example



Internal Density Theorems for Hierarchies of Continuous Functionals 469

visualizes the difference between the Kreisel density theorem and the Kleene
density theorem, the modern variant of Kreisel’s theorem does not hold, while
the modern version of Kleene’s theorem does hold. (This is extremely unfair to
Kreisel, who would probably not have considered formal neighborhoods not ex-
tendable to total objects if he found it interesting to consider this set of functions
at all.)

In Section 3 we will state and indicate the proof of a general result visualizing
this kind of limitations of Domain Theory.

2 The Core

2.1 Limit Spaces

Definition 1. ( Kuratowski [6]) A limit space is a set X together with a relation

x = lim
n→∞xn

between elements of X and sequences from X satisfying

i) If xn = x for all n, then x = limn→∞ xn.
ii) If x = limn→∞ xn then x = limn→∞ xf(n) for all increasing f : N→ N.

iii) If ¬(x = limn→∞ xn), there is an increasing function f : N → N such that
for no increasing g : N→ N we have that

x = lim
n→∞ xf(g(n)).

i) says that constant sequences converge, ii) says that a subsequence of a con-
vergent sequence is converging, and iii) says that if x is not a limit point of a
sequence, there is a subsequence that does not have x as a cluster point.

The axioms allow for more than one limit of a sequence, but this will not be
relevant to us.

Definition 2. Let X and Y be limit spaces (suppressing the notation for the
limit structure).

a) f : X → Y is continuous if

x = lim
n→∞xn ⇒ f(x) = lim

n→∞ f(xn)

for all x and {xn}n∈N.
Let Z = X → Y be the set of continuous functions from X to Y .

b) If f ∈ Z and {fn}n∈N is a sequence from Z, we let

f = lim
n→∞ fn

if for all x and {xn}n∈N,

x = lim
n→∞xn ⇒ f(x) = lim

n→∞ fn(xn).



470 D. Normann

The condition that a sequence of functions converges along any convergent se-
quence of inputs is a generalization of the property of being pointwise convergent
and equicontinuous for functions between metric spaces. It is not hard to see that
this construction organizes the space Z = X → Y into a limit space.

Any limit space will induce a topology: A set O is open if all sequences con-
verging to an x ∈ O will be almost contained in O. Conversely, every topological
space induce a limit structure, the set of convergences in terms of the topology.
A topological limit space is a limit space that is the limit space of its topol-
ogy. The corresponding topological spaces are called sequential. All limit spaces
considered in this paper will be topological.

Definition 3. a) Let ι be the base type.
If τ and δ are types, we let σ = (τ → δ) be a new type.

b) By recursion on the type σ, we define the limit spaces CtN(σ) and CtR(σ)
by
• CtN(ι) = N with the limit structure induced from the discrete topology.
• CtR(ι) = R with the limit structure of the Euclidian topology.
• If σ = (τ → δ), we let

CtP(σ) = CtP(τ)→ CtP(δ)

as constructed in Definition 2, where P = N or P = R

2.2 The Classical Continuous Functionals

For the typed hierarchy over N, it is quite easy to construct a dense set leading
to effective approximations. What is sort of new here is that we only need the
limit space structure to establish the basic properties:

Definition 4. By recursion on the type σ over ι we define the n’th approxima-
tion (F )n to F as follows:

If σ = ι (and F = m) we let

(m)n =
{
m if m ≤ n
n otherwise

If σ = τ → δ and f ∈ CtN(τ) we let

(F )n(f) = (F ((f)n))n.

The following facts are easy to prove by non-simultaneous induction on σ. c) is
proved by a simple use of the construction of typed limit spaces.

Theorem 1. For each type σ over ι we have

a) For each n, the set of (F )n, when F varies over CtN(σ), is finite.
b) If F ∈ CtN(σ) and n ≤ m, then ((F )m)n = (F )n.
c) If F = limn→∞ Fn, then F = limn→∞(Fn)n.



Internal Density Theorems for Hierarchies of Continuous Functionals 471

This theorem shows that for the hierarchy over N, we will have effectively enu-
merable dense subsets of every space CtN(σ), and we can effectively in any object
select a sequence from this set converging to the object.

From here on it is possible to interpret Gödel’s T , typed μ-recursion and even
the full Kleene schemes [3] within the framework of limit spaces, but this will be
to follow a side track.

2.3 The Hierarchy over the Reals

There is no way we in a continuous way can select a sequence converging to
x ∈ R from a fixed countable subset of R, simply because any such continuous
selection will be constant for each index. In this section we will construct a
set of “finitary” functionals in the hierarchy over the reals. The construction is
not new, it is copied from Normann [8]. What is new is again that all essential
properties can be proved in the context of limit spaces, and there is no need for
external structures like domains or TTE-codings.

Definition 5. By recursion on the type σ we define a finitary type-structure
{Xn(σ)}σ type for each n ∈ N as follows:

Xn(ι) = { kn! | − (n+ 1)! ≤ k ≤ (n+ 1)!}.
Xn(τ → δ) = {h | h : Xn(τ)→ Xn(δ)}.

We will now, by simultaneous recursion for each n, define an embedding νn,σ :
Xn(σ)→ CtR(σ) and for each a ∈ CtR(σ) a probability distribution μn,σ(a) on
Xn(σ).

Definition 6

1. Let σ = ι. We let νn,ι be the inclusion map.
If x �∈ 〈−(n + 1), n+ 1〉, we let μn,ι( kn! ) = 1 if k

n! is the object in Xn(ι)
closest to x, otherwise we let μn,ι( kn! ) = 0.
If x ∈ 〈−(n+ 1), n+ 1〉 there are unique k ∈ Z and y ∈ [0, 1〉 such that
x = k

n! + 1−y
n! .

Let μn,ι( kn! ) = y, μn,ι(k+1
n! ) = 1− y and μn,ι( l

n! ) = 0 for all l �= k, k + 1.
2. Let σ = τ → δ

Let h ∈ Xn(τ → δ), a ∈ CtR(τ).
Let

νn,σ(h)(a) =
∑

c∈Xn(τ)

μn,τ (a)(c) · νn,δ(h(c)).

Now let f ∈ CtR(τ → δ) and h ∈ Xn(τ → δ).
Let

μn,σ(f)(h) =
∏

c∈Xn(τ)

μn,δ(f(νn,τ (c)))(h(c)).



472 D. Normann

We observe that at type ι we are constructing explicit probability distributions,
while at higher types we are using finite products of probability distributions,
which again will be probability distributions. Thus μn,σ(a) is a probability dis-
tribution for all n, σ and a ∈ CtR(σ). We also observe that each CtR(σ) will be
a topological vector space (in the sequential topology). This observation is used
in:

Lemma 1. a) For each type σ and n ∈ N, νn,σ maps Xn(σ) into CtR(σ) and
for each F ∈ Xn(σ), the map

G 	→ μn,σ(G)(F )

is continuous as a map from CtR(σ) to [0, 1].
b) If F ∈ Xn(σ), then

μn,σ(νn,σ(F ))(F ) = 1.

The proof of a) is trivial, and the proof of b) is tedious but by direct calculation.
Both arguments are by induction.

Lemma 2. Let σ be a type, and for each n, let Yn ⊂ CtR(σ) be finite. Assume
that for all n ∈ N, μn is a probability distribution on Yn and that for all

{Fn}n∈N ∈
∏

n∈N

Yn

we have that
F = lim

n→∞Fn.

Then
F = lim

n→∞

∑

G∈Yn

μn(G) ·G.

Proof
We use induction on σ. For σ = ι, this is simple, so let σ = τ → δ.
Let a = limn→∞ an in CtR(τ). We must show that

F (a) = lim
n→∞

∑

G∈Yn

μn(G)G(an).

This follows from the induction hypothesis by letting μn induce a suitable prob-
ability distribution on Zn = {G(an) |G ∈ Yn}.
Theorem 2. Let σ be a type and let F, Fn ∈ CtR(σ) be such that F=limn→∞ Fn.
For each n, let Gn ∈ Xn(σ) be such that

μn,σ(Fn)(Gn) > 0.

Then
F = lim

n→∞ νn,σ(Gn).



Internal Density Theorems for Hierarchies of Continuous Functionals 473

Proof

We use induction on σ. For σ = ι, the theorem is trivial, so assume that σ =
τ → δ.

Let a = limn→∞ an in CtR(τ).
We must show that F (a) = limn→∞ νn,σ(Gn)(an). We have that

νn,σ(Gn)(an) =
∑

b∈Xn(τ)

μn,τ (an)(b) · νn,δ(Gn(b)).

For every {bn}n∈N ∈
∏
n∈N

Xn(τ) and every n we have that

(∗) μn,δ(Fn(νn,τ (bn)))(Gn(bn)) > 0

since μn,σ(Fn)(Gn) > 0.
Now, let us restrict ourselves to those {bn}n∈N such that for all n,

μn,τ (an)(bn) > 0.

Then, by the induction hypothesis for τ , a = limn→∞ νn,τ (bn), so

F (a) = lim
n→∞Fn(νn,τ (bn)).

Then, by (∗) and the induction hypothesis for δ ,

F (a) = lim
n→∞ νn,δ(Gn(bn)).

Now, by Lemma 2, the induction step follows.

Corollary 1.
{νn,σ(G) | n ∈ N ∧G ∈ Xn(σ)}

is dense in CtR(σ).

The corollary is not new. The density theorem was proved in [7], and the corol-
lary as formulated was essentially proved in DeJaeger [2], using the filter space
structure on CtR(σ).

3 Moving on

It is natural to restrict investigations of computability aspects to the natural
numbers and structures based on the natural numbers. After all, genuine data
are discrete. There are however good reasons for extending these investigations
to base data-types beyond N and even R, e.g to Lp-spaces, fractals and so on.
Of course, the TTE-program of Weihrauch and others, see [11], provides us with
one way of investigating computability over structures appearing in analysis.
Effective domain representations is another useful approach. We do however
also find it useful to see how far we can get towards constructing an effective



474 D. Normann

infrastructure on such spaces without introducing superstructures and imposing
external notions of computability on the given structures, see the introduction
for a discussion. One way to create a useful part of an infrastructure will be
to isolate a dense subset that in some way is effectively dense. We have shown
how to do it directly for two important special cases in Section 2, but though
the methods are new, the results are not so, they have been proved by other
methods, e.g. domain theory. It will be of interest to extend the formation of
effectively dense subsets to type structures with an alternative set of base types,
and then we believe that the methods developed in this paper will be useful.

The standard method for proving results like this using domain theory is to
show that the total elements are effectively dense in the underlying domain. If
we look at the hybrid type structure using both N and R as base types, this will
not work because N is strictly disconnected and R is path connected. This turns
out to be a rather general phenomenon.

A Polish space is a separable topological space that has a complete metric. If
we extend our pool of base types with sets of separable Banach spaces, everything
done in Section 2.3 extends smoothly. The main challenge is to provide the
Banach spaces themselves with probabilistic selection from a prefixed countable
dense subset, but to do so can be seen as an advanced exercise in a course on
metric spaces. Every Polish space can be topologically embedded into a separable
Banach space, actually into a subspace of l∞. However, our machinery fails when
dealing with base spaces with nontrivial connectedness components but without
some kind of convexity structure.

It is unclear to what extent we may construct useful countable dense subsets
of function spaces using the approaches discussed in this paper, but we will make
two observations showing that in the case of domain theory, we cannot expect
much beyond what has already been obtained. We will use the dense domain
representation of metric spaces as constructed in Blanck [1] in the definition and
theorem below.

Definition 7. Let X and Y be two topological spaces. We say that Y is com-
pactly saturated over X if, whenever C ⊆ D are compact subsets of X and
f : C → Y is continuous, then f can be extended to a continuous g : D → Y .

One consequence of this property will be that if X contains one non-trivial path,
then Y is path connected. If X contains one nontrivial copy of a disc, then all
loops in Y can be “filled” and so forth.

If X and Y are metric spaces such that the total objects are dense in the
domain representation of X → Y , then any local property of connectedness in
X will result in a corresponding global one in Y :

Theorem 3. Let X and Y be complete separable metric spaces and assume that
the set of total objects in the domain representation of X → Y is dense. Then

a) Either X is strongly disconnected or Y is connected.
b) Y is compactly saturated over X.



Internal Density Theorems for Hierarchies of Continuous Functionals 475

Part a) is trivial, but the proof of b) is quite long and we will only sketch the
idea behind the proof. Even the sketch cannot be read without the knowledge
of some domain theory.

The significance of this result is that we cannot rely on domain theory if we
want to find effectively enumerable dense subsets of function spaces, a more de-
tailed understanding of how the spaces in question relate will be necessary.

Idea of proof of b)

Let X , Y , C, D and f be given as in the statements of Definition 7 and
Theorem 3.

Let f̂ = �n∈Nf̂n be a domain representation of f , where {f̂n}n∈N is an in-
creasing sequence of finitary approximations.

Using the density property we will construct a sequence {gn}n∈N of total
extensions of the finitary objects ĝn where:

f̂n � ĝn
ĝn+1 is constructed from the part of gn needed to determine the modulus of
continuity of gn on D with a precision of at least 2−n, but adjusted “as little
as possible” in order to make ĝn+1 extend f̂n+1.

The details of the construction are quite lengthy, and so is the proof that they
work.

References

1. Blanck, J.: Domain representability of metric spaces. Annals of Pure and Applied
Logic 83, 225–247 (1997)

2. DeJaeger, F.: Calculabilité sur les réels. Thesis. Paris VII (2003)
3. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. Amer.

Math. Soc. 91, 1–52 (1959)
4. Kleene, S.C.: Countable functionals. In: Heyting, A. (ed.) Constructivity in Math-

ematics, pp. 81–100. North-Holland, Amsterdam (1959)
5. Kreisel, G.: Interpretation of analysis by means of functionals of finite type. In:

Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North-Holland, Am-
sterdam (1959)

6. Kuratowski, C.: Topologie, Warsawa, vol. I (1952)
7. Normann, D.: The continuous functionals of finite types over the reals. In: Keimel,

K., Zhang, G.Q., Liu, Y., Chen, Y. (eds.) Domains and processes, pp. 103–124.
Kluwer Academic Publishers, Dordrecht (2001)

8. Normann, D.: Applications of the Kleene-Kreisel Density Theorem to Theoretical
Computer Science. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational
Paradigms: Changing Conceptions of what is Computable, pp. 119–138. Springer,
Heidelberg (2008)

9. Scarpellini, B.: A model for Bar recursion of Higher Types. Comp. Math. 23, 123–
153 (1971)

10. Schröder, M.: Admissible representations of limit spaces. In: Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K. (eds.) Computability and complexity in Analysis.
Informatik Berichte, vol. 237, pp. 369–388 (2000)

11. Weihrauch, K.: Computable analysis. Texts in Theoretical Computer Science.
Springer, Heidelberg (2000)



Two-by-Two Substitution Systems and the

Undecidability of the Domino Problem

Nicolas Ollinger

Laboratoire d’informatique fondamentale de Marseille (LIF)
Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France
Nicolas.Ollinger@lif.univ-mrs.fr

Abstract. Thanks to a careful study of elementary properties of two-by-
two substitution systems, we give a complete self-contained elementary
construction of an aperiodic tile set and sketch how to use this tile set
to elementary prove the undecidability of the classical Domino Problem.

Introduction

The Domino Problem is the following simple problem: given a finite set of tiles,
copies of the unit square with colored edges, decide if it is possible to tile the
whole euclidian plane using as many copies of each tile as you need ensuring
that tiles colors match along edges, without scaling or rotating the tiles. This
problem was first described by Wang to study a particular syntactical restricting
of the Entscheidungsproblem (for a proof of the logical problem without using the
Domino Problem and an explanation of the field, see [6]). The Domino Problem
turns out to be undecidable, as it was proved in 1964 by Berger [1, 2], a student
of Wang. The undecidability of the Domino Problem as since been used outside
its original realm, providing a valuable tool to prove undecidability results, see
for example the results of Kari [7] on cellular automata.

The historical proof, as found in [1], is very technical. One technical difficulty
of the proof is the involvement of aperiodic tile sets: set of tiles that only admit
aperiodic tilings. Several authors worked both to ameliorate the proof of the
Domino Problem and to construct simpler aperiodic tile sets. The most quoted
proof is certainly the one from Robinson [12], the first proof involving substitu-
tions is the one of Mozes [10]. For an historical survey of the field, the reader
might consult [5] and [11].

Recently, several authors have been independently interested into providing
new proofs of the undecidability of the Domino Problem: Durand, Levin, and
Shen [3] revisited the classical Robinson proof technic introducing new tools
based on substitutions; Kari [8] proposed a completely new proof technic re-
ducing the Domino Problem to the immortality problem rather than on the
halting problem; Durand, Romashchenko, and Shen [4] proposed another new
proof technic based on Kleene’s fixed point theorem.

In the present paper, we give a complete self-contained elementary construc-
tion of an aperiodic tile set by combining tools from [3, 10, 12] with a careful

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 476–485, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Two-by-Two Substitution Systems and the Undecidability 477

study of two-by-two substitution systems. Our claim is that this proof both ex-
plains where the tile set comes from and why it works. Moreover, the number
of tiles (104) is a reasonable compromise between classically big tile sets (more
than 16000 tiles in [12, 3]) and very involved small tile sets (see [5] for details
on the competition). Furthermore, the tile set as a nice property to be easily
extendable to code any substitution, leading to a new and shorter proof of the
undecidability of the Domino Problem sketched in 4.

1 Two-by-Two Substitution Systems

A pattern P is a subset of the discrete plane Z
2. The translation P + u of a

pattern P by a vector u ∈ Z
2 is the pattern {z + u | z ∈ P}. Let �i denote for

all i ∈ N the pattern
{
x ∈ Z | 0 � x < 2i

}2: the square of size 2i with south-west
corner at

(
0
0

)
. The two-by-two square �1 is abbreviated as �. The two-by-two

scaling �(P) of a pattern P is the pattern {2z + c | z ∈ P , c ∈ �}.
Let Σ denote a finite set, or alphabet. A coloring C : P → Σ is a covering of

a pattern P , the support of C denoted as Sup(C), by letters of Σ. A subcoloring
C′ of a coloring C is a restriction of this coloring, formally C′ = C|Sup(C′). The
translation u · C of a coloring C by a vector u ∈ Z

2 is the coloring with support
Sup(C) + u satisfying u · C(z + u) = C(z) for all z ∈ Sup(C). A coloring C occurs
in a coloring C′, denoted as C ≺ C′, if a translation of C is a subcoloring of C′.

A coloring C is periodic, with period vector p ∈ Z
2, if, for all z ∈ Sup(C), if

z+p ∈ Sup(C) then C(z+p) = C(z). An aperiodic coloring is a coloring admiting
no non-trivial period (i.e. other than the trivial period 0). A set of coloring is
aperiodic if it is not empty and all its colorings are aperiodic.

Let X be the set of colorings with support Z
2. Endow X with the product

topology of the discrete topology on Σ. This topology is compatible with the
metric d defined for all colorings C, C′ ∈ X by d(C, C′) = 2−min{|z|, C(z) �=C′(z)}.
Such topology is compact and perfect. A subset of X both topologically closed
and closed by translations is a subshift from symbolic dynamics [9].

A two-by-two substitution system is a pair (Σ, s) where Σ is a finite alphabet
and s : Σ → Σ� is called the substitution rule. The local rule s is extended to a
global rule S : ΣP → Σ�(P) mapping colorings into colorings by:

∀z ∈ P , ∀c ∈ �, S(C)(2z + c) = s(C(z))(c) .

The restriction of the global rule to X is a continuous map. The global rule
weakly commutes with translations: S(u · C) = 2u · S(C) for all vector u ∈ Z

2

and all coloring C. The i-level image of a letter a ∈ Σ by s is the coloring Si(a)
with support �i.

Example 1. Figure 1 depicts a variation on the classical chair two-by-two sub-
stitution. This substitution will reappear later in this paper. ��
The literature provides several different methods to extend substitutions to col-
orings of the whole plane. A classical one is to consider the set Xs of colorings



478 N. Ollinger

(a) rule s (b) 4-level image S4
� �

Fig. 1. A sample two-by-two substitution with 5 letters

such that each of their finite subcolorings C occurs at some level i, that is there
exists a ∈ Σ such that C ≺ Si(a).

In this paper1, we prefer to take a more dynamical point of view by considering
the limit set ΛS , the intersection

⋂
n∈N

ΛnS of a decreasing sequence of nonempty
subshifts. Let Λ0

S = X and Λn+1
S = {u · S(C) | C ∈ Λns , u ∈ �}, for all n ∈ N. As

S weakly commutes with translations, ΛnS is precisely the closure by translation
of the compact set Sn(X). Notice that, depending on s, the sets Xs and ΛS
might be different.

Example 2. Consider the constant substitution on two letters ({a, b} , λx.λz.x).
The set Xs contains 2 elements, but ΛS contains infinitely many elements (the
closure by translation of 16 elementary elements). ��
An history for a coloring C ∈ X is a sequence (Ci, ui) ∈ (X ×�)N such that
C0 = C and Ci = ui · S(Ci+1), for all i ∈ N.

Proposition 1. The set ΛS is precisely the set of colorings admitting histories.

Proof. Consider an history (Ci, ui) ∈ (X ×�)N. As C0 is a translation of Si(Ci)
for all i ∈ N, straightforwardly C0 ∈ ΛS . Conversely, let C be a coloring in
ΛS . By construction, one can find (Ci, ui) ∈ (X ×�)N such that C0 = C and(∑i−1

j=0 2juj
)
·Si(Ci) = C. By compacity of X , one can extract from the iterated

images by S of subcolorings of the family (Ci) a new family of colorings (C′i) such
that C′i = ui · S(C′i+1), for all i ∈ N. �
1 In fact, even when claiming to construct tilings coding Xs, all the constructions we

know about really code ΛS and can do it for all s, not only s such that Xs = ΛS.



Two-by-Two Substitution Systems and the Undecidability 479

Informally, to code elements of ΛS using only local rules, one can code a whole
history and ensure that the validity of the history is locally checkable. One way
to achieve that is to ensure that part of the story at each position is locally
available. A story simply explains the value of at a particular position according
to an history: it is the sequence of substitution rules applied to obtain the value
at that particular position.

More formally, the story at position z ∈ Z
2 for an history (Ci, ui) ∈ (X ×�)N

is the sequence (ai, vi) ∈ (Σ ×�)N such that, for all i ∈ N, ai = s(ai+1)(vi) and
ai = Ci(zi) where zi ∈ Z

2 is the only position such that z is an element of the
pattern Pi = �i−∑i−1

j=0 2juj − 2izi. Notice that the subcoloring of C of support
Pi is a translation of Si(ai).

Every story is computable from the story of any among two of its four neigh-
bors, most of the time from any of them. Let

(
ai,

(
xi

yi

)) ∈ (Σ ×�)N be a story

at position z ∈ Z
2, the story (bi, ui) ∈ (Σ ×�)N at position z +

(
1
0

)
can be con-

structed as follows. Let k ∈ N be the smallest k such that xk = 0. Let uk =
(

1
yk

)
.

For all i < k, let ui =
(

0
yi

)
. For all i > k, let ui =

(
xi

yi

)
and bi = ai. For all

i � k let bi be such that bi = s(bi+1)(ui). This procedure will always produce
the story for position z +

(
1
0

)
, but when k is not defined. Stories at positions

z +
{−(

1
0

)
,
(
0
1

)
,−(

0
1

)}
can be defined symmetrically.

Proposition 2. Every history can be reconstructed from 1,2, or 4 of its stories.

Proof. By construction, an history is completely defined by the set of all its
stories. Consider any story (ai,

(
xi

yi

)
) of a given history. Four different cases may

occur depending on both sequences (xi) and (yi). If none of them is ultimately
constant, the history can be reconstructed by reconstructing the stories of each
position of the plane. If exactly one of them is ultimately constant, only half
a plane of stories can be reconstructed and two different stories, with different
ultimate constants, are needed. If both sequences are ultimately constant, only
a quarter of the plane of stories can be reconstructed and four different stories,
with different ultimate constants, are needed. �

A substitution is aperiodic if its limit set ΛS is aperiodic. A substitution is
unambiguous if, for every coloring C from its limit set ΛS , there exists a unique
coloring C′ and a unique translation u ∈ � satisfying C = u · S(C′). Notice that
the injectivity of the local rule is not sufficient to enforce unambiguity. Every
unambiguous substitution admits a unique history.

Proposition 3. Every unambiguous substitution is aperiodic.

Proof. Let s be an unambiguous substitution. Let us assume that s is not aperi-
odic. Let p be the smallest non-trivial period of a coloring in the limit set of s for
the maximum norm. Let C ∈ ΛS be p-periodic. Let u and C′ satisfy C = u ·S(C′).
By construction, (p+u) ·S(C′) is equal to C. As s is unambiguous, p has to be a
multiple of 2, p = 2p′, so that (p+u) ·S(C′) = u ·S(p′ · C′) and C′ = p′ · C′. Thus
C′ ∈ ΛS is p′-periodic and p′ is smaller than p, contradicting our hypothesis. �



480 N. Ollinger

Example 3. The substitution on Figure 1 is unambiguous thus aperiodic. ��
A syntactical way to enforce unambiguity of a substitution s, as used in [3], is
to ensure that it is injective and that one of the four projectors si : a �→ s(a)(i)
has an image disjoined from the images of the other three.

2 Tilings

A domino relation R ⊆ Y ×Y over a finite set Y satisfies the domino property :

∀a, b, c, d ∈ Y 4, aRc ∧ aRd ∧ bRd→ bRc (1)

The color set associated to a domino relationR is the set of equivalence classes of
the equivalence relation ∼R defined on Y 2 for all a, b, c, d ∈ Y by (a, c) ∼R (b, d)
if aRc ∧ aRd ∧ bRd. The right color of an element a ∈ Y is the color |a〉 such
that there exists b satisfying (a, b) ∼R |a〉. Symmetrically, the left color of an
element b ∈ Y is the color 〈b| satisfying (a, b) ∼R 〈b|. Straightforwardly, for all
a, b ∈ Y , aRb if and only |a〉 = 〈b|.

Tilings correspond to the extension of subshifts of finite type (SFT) [9] to Z
2:

colorings of the plane satisfying a finite set of local constraints. Several definitions
of tiling constraints are possible. In this paper, we focus on so called Wang tiles,
but instead of using the classical definition by colors, we use domino relations
to simplify the discussions. A tile set τ is a triple (T,H,V) where T is a finite
alphabet of tiles, H and V are domino relations over T . A tile set is degenerated
if two tiles a, b ∈ T define the same quadruple of colors (|a〉V , |a〉H , 〈a|V , 〈a|H)
and (|b〉V , |b〉H , 〈b|V , 〈b|H). A pair of tiles (a, b) ∈ T 2 matches horizontally if
aHb, matches vertically if aVb. A tiling T ∈ X is a coloring satisfying the tiling
constraints: for all z ∈ Z

2, the pair
(T (z), T (

z +
(
1
0

)))
matches horizontally

and the pair
(T (z), T (

z +
(
0
1

)))
matches vertically. The set of tilings Xτ of a

tile set τ is a subshift (of finite type). A tile set is aperiodic if its set of tilings is
aperiodic.

Example 4. The tile set τ0 =
(
�,

{
(u, v)

∣
∣|v − u| = (

1
0

)}
,
{

(u, v)
∣
∣|v − u| = (

0
1

)})

admits 4 tilings: the limit set of the simple substitution λx.λz.z. ��
A tile set (T ′,H′,V ′) codes a tile set (T,H,V), according to a coding rule t :
T → T ′� if t is injective and Xτ ′ = {u · t(C)|C ∈ Xτ , u ∈ �}.
Example 5. A simple coding scheme is depicted on figure 2. Given a tile set
(T,H,V), the coding tile set is constructed as a layered tile set : a synchronized
product of several layers, upper layers being constrained by lower layers. Layer 1
is the tile set from example 4. Layer 2 is constrained according to layer 1 : on top
of

(
0
0

)
stack elements of T ; on top of

(
1
0

)
stack elements of H/ ∼H; on top of

(
0
1

)

stack elements of V/ ∼V ; on top of
(
1
1

)
is an empty element. The matching rules

for layer 2 are simple : a tile in T is required to match horizontal and vertical
colors of its four neighbor tiles thus propagating its colors to the next

(
0
0

)
tile.

The depicted coding rule t maps every tile a as follows. On layer 1, t(a) is the



Two-by-Two Substitution Systems and the Undecidability 481

new tiles

layer 1

layer 2

τ H/ ∼H V/ ∼V

(a) coding tile set (b) coding rule

Fig. 2. A sample coding scheme

identity map. On layer 2, t(a) puts a on top of
(
0
0

)
, |a〉H on top of

(
1
0

)
and |a〉V

on top of
(
0
1

)
. ��

A tile set (T,H,V) codes a substitution s : T → T� if it codes itself according
to the coding rule s.

Proposition 4. A tile set both admitting a tiling and coding an unambiguous
substitution is aperiodic.

Proof. Let (T,H,V) be a tile set admitting a tiling and coding an unambiguous
substitution s : T → T�. By construction, every tiling is the translated image
of a tiling by s, thus Xτ ⊆ ΛS . As Xτ is not empty and ΛS is aperiodic, Xτ is
aperiodic. �

3 An Aperiodic Tile Set of 104 Tiles

To apply proposition 4, we construct a fixed point2 of a coding scheme in the
spirit of the one described in example 5 (this particular coding scheme will not
help: the new tile set is always strictly larger than the original one).

One can refine the scheme, as depicted on Figure 3: as the coding scheme
generates a layered tile set, one might forget about layer 1 on top of

(
0
0

)
and code

it all around on wires in
(
1
0

)
,
(
0
1

)
, and

(
1
1

)
. On top of

(
1
1

)
, 4 different corners can

occur corresponding to the 4 different corners in τ0. On top of
(
0
1

)
, 4 possible pairs

of wires propagates vertically crossing the H-colors that propagates horizontally.
The case of

(
1
0

)
is symmetrical. The new matching rule on layer 2 still requires

to match colors but also wires between
(
1
1

)
and its neighbors.

A priori, this new coding scheme cannot be applied to every tile set. In a
coded tiling, each tile is coded both by its layer 2 component on top of

(
0
0

)
and its

layer 1 component by a square wire around neighbors tiles. The only constraints
between layer 1 and layer 2 values are checked on

(
0
1

)
and

(
1
0

)
restricting possible

H-colors and V-colors for a given layer 1 tile. The coding scheme can only be

2 The way we use fixed points with tilings in this paper, whereas sharing similarities
with the approach in [4], is less sophisticated.



482 N. Ollinger

new tiles

layer 1

layer 2

layer 2 H-colors V-colors corners

(a) coding tile set (b) coding rule

Fig. 3. A second coding scheme

applied to tile sets closed with respect to this property: if a layer 2 tile a2 exists
and its four H-colors and V-colors are compatible with a given layer 1 tile a1,
the tile (a1, a2) occurs in the tile set.

The new coding scheme cannot be iterated: the coded tile set does not satisfy
the closure hypothesis. This can be corrected by adding one bit of information
on the wire pair edges of each tile to indicate on which side of the edge one can
find the nearest corner: on top of

(
1
1

)
corners are always inside; on top of

(
1
0

)
,

the nearest corners are outside for both vertical edges; on top of
(
0
1

)
, the nearest

corners are outside for both horizontal edges. The matching rule has to enforce
that both sides of a wire pair edge agree on the direction. With these new bits
of information, the coding scheme preserves the closure property and can be
iterated. Moreover, it is not strictly increasing and admits a fixed point: a tile
set τ of 104 tiles, the coding substitution of which is depicted on figure 4. The
bits on the edges are considered as a third layer, an inside edge being represented

(a) principle (b) 4-level image S4
� �

Fig. 4. A 104 tiles aperiodic tile set τ coding an unambiguous substitution



Two-by-Two Substitution Systems and the Undecidability 483

by a V shape pointing the center of the tile: exactly five tiles occur on layer 3,
the letters of figure 1.

Before proving the aperiodicity of τ , let us first describe it more precisely. The
tile set has three layers. Layer 1 is τ0. Layer 2 consists of X, H and V tiles (see
below) transmitting pairs of wires from edge to edge, each wire being colored by
an element of τ0 so that on edges, only pairs satisfying Hτ0 and Vτ0 are valid.
The matching rule on layer 2 is to match the colors of the facing wires. Layer 3
consists of the five letters from figure 1. The matching rule on layer 3 is to agree
on direction (exactly one V shape along each edge pointing in one of the two
directions). Only the following synchronizations between layers occur inside τ :

8 X tiles. layer 2 with layer 1
(
0
0

)
or

(
1
1

)
and layer 3 equal to .

48 H tiles. layer 2 with layer 1
(
0
0

)
or

(
1
0

)
and layer 3 equal to or .

48 V tiles. layer 2 with layer 1
(
0
0

)
or

(
0
1

)
and layer 3 equal to or .

There is only 48 tiles of type H and V (instead of 64) because the propagating
direction of their layer 3 has to satisfy the wire color constraint: if one of the
orthogonal wires is colored

(
1
1

)
, the direction has to point inside the

(
1
1

)
boundary.

The associated substitution rule s transforms a tile a as follows. In position(
0
0

)
, layer 1 is

(
0
0

)
and layers 2 and 3 are the same as for a. In position

(
1
1

)
, there

is an X tile with layer 1
(
0
0

)
and bottom-left wire color equal to the layer 1 of a.

In position
(
1
0

)
, there is an H tile with layer 1

(
1
0

)
: it propagates the wire colors

of both its neighbors and points in the same direction as the right edge of the
layer 3 of a. In position

(
0
1

)
, there is a V tile with layer 1

(
0
1

)
: it propagates the

wire colors of both its neighbors and points in the same direction as the top edge
of the layer 3 of a. Notice that the image of a tile is always defined as the wire
color constraint is always satisfied.

Theorem 1. The tile set τ is aperiodic.

Proof. The tile set τ admits at least one tiling. Consider the substitution s: the
four inside edges of each image of a tile by the substitution satisfy the matching
rules. Moreover, if two tiles a and b match either horizontally or vertically, s(a)
and s(b) will still match in the same direction. Therefore, ΛS ∩Xτ �= ∅.

The substitution s is unambiguous: it is clearly injective and all the si pro-
jectors have disjoined images.

The tile set τ codes s. Let T be a tiling of τ . As layer 1 admits only 4 tilings,
there exists u ∈ � such that, for all v ∈ �, u · T (v) has layer 1 v. Thus, u · T has
an X tile in

(
1
1

)
, an H tile in

(
1
0

)
, and a V tile in

(
0
1

)
. Thanks to the wire color

constraint, u · T|� has to be the image of a tile by s. Repeating the argument
on the 2Z

2 translations of T , one conclude that T is the translated image of
coloring by s. Moreover, this coloring is a valid tiling: as the information is
propagated on layer 2 and 3 by H and V tiles, if two tile images s(a) and s(b)
match, then a and b match. Therefore, as the image of a tiling by s is also a
tiling, Xτ = {u · s(C)|C ∈ Xτ , u ∈ �}.

As τ admits a tiling and codes an unambiguous substitution, it is aperiodic.
�



484 N. Ollinger

The tile set τ somehow uses its layers 1 and 2 to draw infinitely many infinite
grids to code an history of the substitution of figure 1: the set of layer 3 of tilings
is the limit set of the chair substitution. When comparing τ to aperiodic tile sets
of the literature, the author found the following facts. The PhD dissertation of
Berger [1] contains an aperiodic 104 tile set not found in the AMS memoir [2].
Berger’s tile set also has three layers, the first two being isomorphic to the one
used here... but the third layer is different leading to a more delicate proof and
a different set of tilings! Let now τ ′ be the modified tile set where the colors

(
0
0

)
,

(
1
0

)
and

(
0
1

)
are merged in one unique color. The tile set τ ′ admits more tilings

than just the repainted tilings of τ , it has 56 tiles: it is the tile set of Robinson
from [12], the aperiodicity proof of which is rather technical.

4 Enforcing Any Substitution

The tile set τ might be slightly modified to enforce the limit set of any substitu-
tion system s′: the idea is to use

(
1
1

)
squares of all sizes to propagate the history

of an element of ΛS′ . The transformed tile set τ(s′) is constructed from τ by
replacing � with �×Σ on layer 1 and on the wires of layer 2. The matching rule
is extended so that letters have to be equal on layer 1 on the four edges between(
0
0

)
and

(
1
0

)
,
(
0
0

)
and

(
0
1

)
,
(
1
0

)
and

(
1
1

)
, and

(
0
1

)
and

(
1
1

)
. Then, both X tile and V

tile wire colors are constrained. For any X tile, let a be the letter on the
(
1
1

)
wire

and b be the letter on layer 1, the constraint is b = s′(a)(u) where u depends
on the position of the

(
1
1

)
wire (

(
0
0

)
for top-right,

(
1
0

)
for bottom-right,

(
0
1

)
for

top-left,
(
1
1

)
for bottom-left). For any V tile with two

(
1
1

)
wire, let a be the letter

on the vertical
(
1
1

)
wire and b the letter on the horizontal one, the constraint is

b = s′(a)(u) where u =
(
x
y

)
depends on the positions of both wires (x = 0 for

right, x = 1 for left, y = 0 for bottom, y = 1 for top). Let π map every tile of
τ(s′) to s′(a)(u) where a and u are the letter and the value of � on layer 1.

Theorem 2. Let s′ be any substitution system. The tile set τ(s′) enforces s′:
π

(
Xτ(s′)

)
= ΛS′ .

Sketch of the proof. Every tiling of τ(s′) codes an history of S′ and every history
of S′ can be encoded into a tiling of τ(s′).

Corollary 1 (Berger, 1964 [1]). The Domino Problem is undecidable.

Sketch of the proof. Consider the following 6 letters substitution s:

T �→ t t

t t
V �→ v v

v v
H �→ h h

h h
t �→ T V

H T
v �→ T V

H V
h �→ T V

H H

Consider the letter T as a place for a tile , the letter H as a horizontal color
transmission path , and the letter V as a vertical color transmission path .
Every coloring C of the limit set ΛS containing letters H , V , T has the following
property: for all i ∈ N, a �i square of T letters, bordered horizontally by V letters



Two-by-Two Substitution Systems and the Undecidability 485

and vertically by H letters, eventually spaced by H and V letters providing color
transmission, occurs in C. To prove the undecidability of the Domino Problem,
recursively construct for every Turing machine a tile set with two layers: on
layer 1 put τ(s) with the additional constraint that it has only H , V , T letters
on layer 1 ; on layer 2 put tiles simulating Turing machine computations on
T tiles, so that the bottom left corner of each square (a T connected to a V
on the left and the H on the bottom) contains the initialization of the Turing
computation. This tile set tiles the plane if and only if the machine does not halt
starting from the empty string.

References

[1] Berger, R.: The Undecidability of the Domino Problem, Ph.D. thesis, Harvard
University (July 1964)

[2] Berger, R.: The undecidability of the domino problem. Memoirs American Math-
ematical Society 66 (1966)

[3] Durand, B., Levin, L., Shen, A.: Local rules and global order, or aperiodic tilings.
Math. Intelligencer 27(1), 64–68 (2005)

[4] Durand, B., Romashchenko, A., Shen, A.: Fixed point and aperiodic tilings
(preprint, 2007)

[5] Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the
Mathematical Sciences. W. H. Freeman and Company, New York (1989) (an in-
troduction)

[6] Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀∃∀
case. Proc. Natl. Acad. Science 48(3), 365–377 (1962)

[7] Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.
Comput. 21(3), 571–586 (1992)

[8] Kari, J.: The tiling problem revisited (extended abstract). In: Durand-Lose, J.,
Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 72–79. Springer, Heidel-
berg (2007)

[9] Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-
bridge University Press, Cambridge (1995)

[10] Mozes, S.: Tilings, substitution systems and dynamical systems generated by
them. J. Analyse Math. 53, 139–186 (1989)

[11] Radin, C.: Miles of tiles. Student Mathematical Library, vol. 1. American Math-
ematical Society, Providence (1999)

[12] Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12, 177–209 (1971)



The Relative Consistency of the Axiom of

Choice — Mechanized Using Isabelle/ZF

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
LP15@cam.ac.uk

Gödel [3] published a monograph in 1940 proving a highly significant theorem,
namely that the axiom of choice (AC) and the generalized continuum hypoth-
esis (GCH) are consistent with respect to the other axioms of set theory. This
theorem addresses the first of Hilbert’s famous list of unsolved problems in math-
ematics. I have mechanized this work [8] using Isabelle/ZF [5,6]. Obviously, the
theorem’s significance makes it a tempting challenge; the proof also has numer-
ous interesting features. It is not a single formal assertion, as most theorems are.
Gödel [3, p. 33] states it as follows, using Σ to denote the axioms for set theory:

What we shall prove is that, if a contradiction from the axiom of choice
and the generalized continuum hypothesis were derived in Σ, it could be
transformed into a contradiction obtained from the axioms of Σ alone.

Gödel presents no other statement of this theorem. Neither does he introduce a
theory of syntax suitable for reasoning about transformations on proofs, surely
because he considers it to be unnecessary.

Gödel’s work consists of several different results which, taken collectively,
express the relative consistency of the axiom the choice. The concluding inference
takes place at the meta-level and is not formalized. Standard proofs use meta-
level reasoning extensively. Gödel writes [3, p. 34],

However, the only purpose of these general metamathematical consid-
erations is to show how the proofs for theorems of a certain kind can
be accomplished by a general method. And, since applications to only a
finite number of instances are necessary . . ., the general metamathemat-
ical considerations could be left out entirely, if one took the trouble to
carry out the proofs separately for any instance.

I decided to take the trouble, with the help of a mechanical theorem prover.
In brief, the proof goes as follows. We define a class model, called L, for

the axioms of set theory.1 L can be seen as containing just the sets that must
exist because they can be defined by formulas. Since L is a proper class and
not a set, we need to be careful about the notion of satisfaction. We cannot
1 A class in ZF is simply a first-order formula in one variable. We typically endow

classes with set notation, e.g. writing a ∈ L rather than L(a), but they exist only in
the metalanguage.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 486–490, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Relative Consistency of the Axiom of Choice 487

talk within ZF about a formula being satisfied by a class model. Instead we
transform the formula, restricting each quantifier to range over L instead of
ranging over all sets. For example, we transform ∀xφ(x) into ∀x [x ∈ L→ φL(x)],
where φL(x) is the result of recursively transforming φ. This transformation is
called relativization. If the relativized formula is a theorem, then we say that the
original formula is true in L. We must prove that L satisfies (in that sense) all
the axioms of set theory, and we must further prove that L satisfies the axiom of
choice. Although we continue to work in first-order logic and ZF, relativizing all
quantifiers to L has the effect of augmenting our axiom system with the axiom
of choice.

– Provided we work entirely with formulas relativized to L, we can prove all
the consequences of the axioms of set theory including the axiom of choice.

– Because relativization is merely a syntactic transformation within first-order
logic, every proof in L is also a proof in the original set theory, which lacks
the axiom of choice.

– The relativization of false is false.

Thus, if we prove false using the axiom of choice, then we have also found a
contradiction in the original set theory. This is a strong form of relative consis-
tency. Gödel specifically notes that a contradiction in basic set theory “could
actually be constructed” [3, p. 87] from a contradiction in L. We merely have
to express this contradiction using formulas relativized to L. However, to show
that a proof exists using relativized formulas seems to require a small amount
of proof theory [8].

The main steps of the proof are as follows:

1. Define the class L.
2. Prove that L satisfies the axioms of set theory. For ZF, the main difficulty

is the axiom scheme of comprehension, also known as separation.
3. Prove that L satisfies the assertion “every set belongs to L,” which is tradi-

tionally written V = L.
4. Prove that V = L implies AC.

Set-theoretic notation complicates the formalization. We are accustomed to
writing unions, intersections, etc, with variable binding as in

⋃
x∈A B(x). But

formally, the language of set theory consists of first-order logic plus the member-
ship relation and equality. It has no terms other than individual variables. Before
we can relativize an expression E(x), we must translate it into a pure formula
φ(x, y) such that φ(x, y) ↔ y = E(x). We must even translate the complicated
expressions generated by Isabelle/ZF as it processes recursive definitions of sets
and functions. In mathematical textbooks, relativization is done implicitly: all
you have to do is put the superscript L on a term or formula. For example,
the claim that L satisfies V = L is trivially expressed by (V = L)L. In the
Isabelle/ZF proof, I have had to write out each relativized expression explicitly
for each concept used in the construction of L, in order to express (V = L)L.

Proving that L satisfies V = L is a key part of the proof, and despite first
appearances, it is not trivial. It amounts to saying that the construction of L is



488 L.C. Paulson

idempotent. In other words, if starting in L we repeat the construction of L, then
it will yield the whole of L and not some subclass of it. The underlying concept
is called absoluteness, which expresses that a given notion or expression is the
same in every transitive model of set theory.2 Most constructions are absolute.
For example, A ⊆ B can only mean that each element of A also belongs to B.
The empty set, obviously, can only be a set containing no elements. If A and B
are sets then their union can only be the set containing precisely the elements
of those sets. Wellorderings and ordinals are absolute. Powersets however are
not absolute, for there could be many subsets even of the natural numbers that
cannot be shown to exist; they could exist in some models and not in others.

Skolem’s paradox [4, p. 141] is a striking illustration that cardinality is not
absolute. Set theorists naturally assume that models exist of the ZF axioms, from
which it follows by the downward Löwenheim-Skolem theorem that there exists a
countable model M of ZF. The “paradox” is that this countable model “thinks”
that it contains arbitrarily large cardinals. More precisely, if α is an uncountable
cardinal according to M , then obviously α must be really be countable because
α ⊆M . The point is that none of the bijections between α and ω belong to M ;
although the property of being a bijection is absolute, the property of being the
set of all functions from α to ω is not. Neither is the property of being a cardinal.

Papers on formal verification often describe the work as “straightforward but
tedious.” The idempotence proof meets this description in the extreme. It has
been necessary to relativize all the concepts of set theory, from the empty set
to ordinals, recursive functions, etc. Then I had to prove that each of these
concepts was absolute. In essence, this amounts to examining each definition
to ensure that it uses only absolute constructions. Powersets are not absolute,
but they appear surprisingly often, and then an alternative definition must be
found and proved equivalent to the original one. The treatment of recursion was
particularly difficult. I had to prove much of the foundations of recursion again
from first principles. Having done this, we cannot merely note that all functions
defined by recursion are absolute, as textbooks do. We must take each recursive
definition, take it apart piece by piece, prove absoluteness for the pieces and
feed those results into a theorem that will yield absoluteness for that particular
function. I have done all of this with respect to an arbitrary transitive class
model M, and later instantiated the proofs to L.

Further tedium arises from the need to internalize the notion of formula. A
recursive datatype of formulas is defined, since it is needed to define L. Most of
the relativized formulas mentioned in the previous paragraph have to be trans-
lated a second time into this datatype of formulas. Fortunately, some of the
translations are done automatically.

Once the idempotence proof is done, we are justified in assuming V = L.
I have separately proved that V = L implies the axiom of choice. This proof
is straightforward both in concept and in execution. By transfinite induction,
each level of the construction of L is well-ordered. The wellordering comes in an
obvious way from the countability of the set of formulas. Gödel went on to prove

2 M is transitive if x ∈ M implies x ⊆ M.



The Relative Consistency of the Axiom of Choice 489

that V = L implies the generalized continuum hypothesis. Although I omitted
this step, it can probably be done with an acceptable amount of effort.

My formalization has two limitations. First, I am not able to prove that
L satisfies the axiom scheme of comprehension. Although Isabelle/ZF handles
schematic proofs easily, the proof of comprehension for the formula φ requires an
instance of the reflection theorem for φ. Each instance of reflection [7] involves
recursion over the structure of φ. Each instance of comprehension therefore has
a different proof and must be proved separately. At the meta-level, of course, all
of these proofs are instances of one algorithm, and they are generated by nearly
identical proof scripts. Reasoning at the meta-level, we can see that all instances
of the reflection theorem are available and that they imply all instances of the
axiom of comprehension. But these meta-level inferences cannot be formalized
in my framework. The inability to prove comprehension once and for all added
further tedium to the project: in the absoluteness proofs, I had to keep track of
each instance of comprehension that I used. Then, in order to instantiate these
proofs to L, I had to prove that each of those instances held in L. There are
about 35 such instances.

My formalization has another limitation. The proof that L satisfies V = L
cannot be combined with the proof that V = L implies the axiom of choice in
order to conclude that L satisfies the axiom of choice. The reason is that the
two instances of V = L are formalized very differently: one is relativized and
the other is not. These problems arise because my work builds on the existing
Isabelle/ZF formalization of set theory, comprising some 20 000 lines of proof
scripts, rather than creating an new mechanized proof system specifically for
Gödel’s proof. Using Isabelle/ZF allows much of the work to be undertaken in
the style of textbook proofs, and it enjoys the property that every proof involving
relativized formulas (including one of false) is also a proof in ZF.

We could remedy both limitations by tackling Gödel’s proof in a quite dif-
ferent way, working entirely in the metatheory. Unfortunately, experience shows
that a formalized metatheory is convenient only for proving metatheorical re-
sults and not for proving, e.g., specific theorems of set theory. The formaliza-
tion of the theorem statement would have to be done with care: the obvious
Con(ZF) → Con(ZF + (V=L)) sacrifices a crucial aspect of Gödel’s result,
namely that a contradiction in ZF + (V=L) can be effectively transformed into
a contradiction in ZF. Thus it appears necessary to introduce both proof theory
and a model of computation, imposing two unenlightening technical layers onto
Gödel’s construction. I leave such issues as a challenge for the theorem-proving
community.

A few other researchers have undertaken mechanized proof in set theory.
Quaife [9] has generated proofs of hundreds of elementary results using the Ot-
ter resolution theorem prover, starting with a machine-oriented formalization of
Bernays-Gödel set theory. BG set theory differs from ZF in that it replaces the
axiom scheme of comprehension by a finite set of primitives that can be used to
express particular comprehensions; these primitives are difficult to use, but they
allow the axiom system to be finite. Building on Quaife’s work, Belinfante has



490 L.C. Paulson

implemented a Mathematica program for translating comprehensions into the
BG formalism; he submits these to Otter and thereby has proved facts about
the ordinals [2], for example. The Mizar system is based on Tarski-Grothendieck
set theory. It is designed for formalizing mathematics [1] and not merely for for-
malizing set theory; however, much set theory has been formalized using Mizar,
for example some elementary facts concerning large cardinal axioms [10].

In many respects, my formalization follows traditional ones. My development
is largely based on Kunen [4]. My use of native set theory (as embodied in
Isabelle/ZF) is very much in the spirit of those proofs, although it leads to the
difficulties mentioned above. A byproduct of the work is a general theory of
absoluteness for arbitrary class models of ZF. It could be used for other formal
investigations of inner models.

Acknowledgements. Krzysztof Gra̧bczewski devoted much effort to an earlier,
unsuccessful, attempt to formalize Gödel’s proof. Isabelle is funded by the U.K.’s
Engineering and Physical Sciences Research Council, grants GR/M75440, GR/R
01156/01, GR/S57198/01, etc. Isabelle is developed in large part by Prof. Tobias
Nipkow’s group at the Technical University of Munich.

References

1. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in mizar.
Journal of Automated Reasoning 29(3-4), 189–224 (2002)

2. Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory.
Journal of Automated Reasoning 22(3), 341–378 (1999)

3. Gödel, K.: The consistency of the axiom of choice and of the generalized
continuum hypothesis with the axioms of set theory. In: Feferman, S., et al. (eds.)
Kurt Gödel: Collected Works, vol. II, pp. 33–101. Oxford University Press,
Oxford (1990); First published in 1940 by Princeton University Press

4. Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland,
Amsterdam (1980)

5. Paulson, L.C.: Set theory for verification: I. From foundations to functions.
Journal of Automated Reasoning 11(3), 353–389 (1993)

6. Paulson, L.C.: Set theory for verification: II. Induction and recursion. Journal of
Automated Reasoning 15(2), 167–215 (1995)

7. Paulson, L.C.: The reflection theorem: A study in meta-theoretic reasoning. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 377–391. Springer,
Heidelberg (2002)

8. Paulson, L.C.: The relative consistency of the axiom of choice — mechanized
using Isabelle/ZF. LMS Journal of Computation and Mathematics 6, 198–248
(2003), http://www.lms.ac.uk/jcm/6/lms2003-001/

9. Quaife, A.: Automated deduction in von Neumann-Bernays-Gödel set theory.
Journal of Automated Reasoning 8(1), 91–147 (1992)

10. Urban, J.: Basic facts about inaccessible and measurable cardinals. Journal of
Formalized Mathematics 12 (2000),
http://mizar.uwb.edu.pl/JFM/Vol12/card fil.html

http://www.lms.ac.uk/jcm/6/lms2003-001/
http://mizar.uwb.edu.pl/JFM/Vol12/card_fil.html


Upper Semilattices in Many-One Degrees

Sergei Podzorov�

Sobolev Institute of Mathematics
Akad. Koptyug pr., 4, 630090, Novosibirsk, Russian Federation

podz@math.nsc.ru

Abstract. The paper gives an overview over recent results of the au-
thor on various upper semilattices of many-one degrees. The local iso-
morphism type (i.e. the collection of isomorphism types of all principal
ideals) of m-degrees belonging to any fixed class of arithmetical hierar-
chy is completely described. The description of the semilattices of simple,
hypersimple and Δ0

2 m-degrees up to isomorphism is also given.

Keywords: Distributive Upper Semilattice, Many-One Degree, Lach-
lan Semilattice, Arithmetical Hierarchy, Computably Enumerable Set,
Simple Set, Hypersimple Set, Immune Set, Hyperimmune Set.

1 Distributive Upper Semilattices

The notion of upper semilattice is well known. Let L = 〈L,�L〉 be a partially
ordered set. It is called an upper semilattice if for any a, b ∈ L there exists
sup{a, b} in L. Similarly L is a lower semilattice if inf{a, b} exists for any a, b ∈ L.
Partially ordered sets with both properties are called lattices.

It is usual to denote sup{a, b} as an union a∪b and inf{a, b} as an intersection
a∩b. So an upper semilattice L can be considered as a structure in the language
with one binary operation and one can write L = 〈L,�L,∪L〉. Similarly if L is
a lattice than L = 〈L,�L,∪L,∩L〉.

A lattice L is called distributive if the distributivity identity x ∩L (y ∪L z) =
(x ∩L y) ∪L (x ∩L z) holds for any x, y, z ∈ L. It is well known [5] that the next
conditions are equivalent:

1. L is distributive;
2. identity x ∪L (y ∩L z) = (x ∪L y) ∩L (x ∪L z) holds for any x, y, z ∈ L;
3. L does not contain a sublattice isomorphic with either the pentagon or the

diamond.

Upper semilattice is called distributive if for any x, y ∈ L and z �L x ∪L y
there exist zx, zy ∈ L such that zx �L x, zy �L y and z = zx ∪L zy.

�

�

�

�

�

�x

x ∪ y
y

zy

z

zx

� Supported by RFBR grant 08-01-00336.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 491–497, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



492 S. Podzorov

One can easily prove [5, 4] that any lattice L is distributive as a lattice if and
only if it distributive as an upper semilattice (for distributive lattices zx = z∩Lx
and zy = z ∩L y).

We are not going to consider lower semilattices. So by semilattice we often
mean upper semilattice.

For any semilattice L the next four conditions are equivalent [5, 4]:

1. L is distributive;
2. any finite F ⊆ L can be extended to a distributive finite subsemilattice
LF ⊆ L (i.e. F ⊆ LF ⊆ L, LF is finite and the union operation on LF is the
same as in L);

3. L is isomorphic to direct limit of some family of finite distributive semilattices
(with corresponding homomorphisms);

4. the lattice J(L) of ideals of L (w.r.t. inclusion) is distributive.

A semilattice is said to be bounded if it has the least element ⊥L and the
greatest element 	L.

For any preordered set A = 〈A,�A〉 one can define an associated poset Ã =
〈Ã,� �A〉 in a natural way. Elements of Ã are classes of the equivalence relation
x ≡A y ⇔ x �A y & y �A x. By [x]A (or simply [x] if A is clear from the
context) we denote the class containing x. We also write [x]A �A [y]A instead
of [x]A � �A [y]A, omitting tilde in the superscript.

A preordered set P = 〈P,�P〉 is called a presemilattice (prelattice) if its
associated poset P̃ is a semilattice (lattice). A presemilattice (prelattice) is said
to be distributive if its associated semilattice (lattice) possesses the property of
distributivity.

Proposition 1. A partially ordered set L = 〈L,�L〉 with (at most) countable
nonempty universe L is a bounded distributive semilattice if and only if there
exists a sequence {Di = 〈Di,�i〉}i∈N such that

1. D0 ⊆ D1 ⊆ . . . are finite subsets of N, {0, 1} ⊆ D0 and
⋃
i∈N

Di = N;
2. for any i ∈ N the structure Di is a distributive prelattice with the least

element [0]Di and the greatest element [1]Di ;
3. for any i ∈ N and x, y ∈ Di x �i y implies x �i+1 y; the natural map-

ping from D̃i to D̃i+1 given by the rule [x]Di �→ [x]Di+1 preserves the union
operation;

4. the structure 〈N,�ω〉 where x �ω y ⇔ (∃i ∈ N)(x, y ∈ Di & x �i y) is a
presemilattice and its associated semilattice is isomorphic to L.

Proof. Sufficiency is obvious because L is isomorphic to a direct limit of a family
{D̃i : i ∈ N} (with natural homomorphisms). For necessity fix the sequence
L0 ⊆ L1 ⊆ . . . of finite sets such that

⋃
i∈N

Li = L, ⊥L,	L ∈ L0 and for
every i ∈ N Li is distributive semilattice with the order and the union operation
from L. Such a sequence could be found because L is at most countable and
every finite subset of L could be extended to finite distributive subsemilattice.
Every Li is a lattice because it is a finite semilattice with the least element.



Upper Semilattices in Many-One Degrees 493

Fix a surjective mapping f from N onto L, such that f(0) = ⊥L, f(1) = 	L
and (f(x) = f(y)) ⇒ (x = y) ∨ (f(x) = f(0)). It only remains to define Di =
f−1(Li \ {⊥L}) ∪ {n � i : f(n) = ⊥L} and x �i y ⇔ f(x) �L f(y) for any
x, y ∈ Di. ��

2 Many-One Reducibility and Degrees

Let A,B ⊆ N. Say that A is m-reducible to B (A �m B) if either A is a
computable set or there exists a total computable function f such that x ∈ A⇔
f(x) ∈ B for all x ∈ N.

This notion slightly differs from the classical notion of many-one reducibil-
ity [12] but the difference is inessential. The only cases when A �m B is in
accordance to this definition but not in classical terms is when A is computable
and B is equal ∅ or N.

The m-reducibility relation is a preorder on P(N); elements of the associ-
ated order are called m-degrees. Many-one degrees with m-reducibility relation
form a semilattice [12] which we denote by Lm = 〈Lm,�m〉. This semilattice
is distributive [12, 4] and contains the least element which consists of all com-
putable sets. There is a natural nontrivial automorphism of Lm defined by the
rule degm(A) �→ degm(A) where A = N \A is a complement of A.

Classes of arithmetical hierarchy are closed downward with respect to m-
reducibility (i.e. if B is in Σ0

n, Π0
n or Δ0

n for some n ∈ N and A �m B then A
belongs to the same class). So for each C ∈ {Σ0

n, Π
0
n, Δ

0
n : n ∈ N} one can easily

define poset LCm consisting of all m-degrees which are subsets of C. Every such
poset is an ideal in Lm so it is a distributive semilattice itself. For C = Σ0

n or
Π0
n this semilattice is bounded. It is also true that LΣ0

n
m
∼= LΠ

0
n

m due to natural
automorphism of Lm mentioned above. The semilattice LΣ0

1
m consisting of all

computably enumerable m-degrees is also denoted by Lcem.
Say that m-degree is immune (hyperimmune, hyperhyperimmune) if it contains

computable or immune (hyperimmune, hyperhyperimmune) set.

Proposition 2. Immune (hyperimmune, hyperhyperimmune) m-degrees form
an ideal in Lm.

Proof. If A and B are immune (hyperimmune, hyperhyperimmune) then the set
A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B} is also immune (hyperimmune,
hyperhyperimmune). So if m-degrees a and b are immune (hyperimmune, hy-
perhyperimmune) then their union in Lm has the same property. It only remains
to prove that these properties of degrees are closed downward with respect to
m-reducibility.

Let B is immune (hyperimmune, hyperhyperimmune) and A �m B. If A is
computable then degm(A) is immune (hyperimmune, hyperhyperimmune) by
definition. Suppose that f is a total computable function such that x ∈ A ⇔
f(x) ∈ B for any x ∈ N. If Range(f) ∩ B is finite then A is computable and
have the required property by definition. Suppose that Range(f) ∩B is infinite



494 S. Podzorov

and fix a total computable function g such that Range(f) = Range(g) and g
is injective. It is easy to check that the set g−1(B) is immune (hyperimmune,
hyperhyperimmune) and m-equivalent to A. ��
A computably enumerable m-degree is said to be simple (hypersimple, hyperhy-
persimple) if it contains a computable or a simple (hypersimple, hyperhypersim-
ple) set.

Corollary 1. Simple (hypersimple, hyperhypersimple) m-degrees form an ideal
in Lcem.

Proof. Immediately follows from proposition 2 and the automorphism of Lm
mentioned above. ��
Corollary 1 shows that we can introduce the distributive semilattices of simple,
hypersimple and hyperhypersimple m-degrees. Denote them by Lsm, Lhsm and
Lhhsm respectively.

3 Arithmetical Presentations of Upper Semilattices

Let L be a nonempty and at most countable semilattice. By a presentation of
L we mean an arbitrary preorder �L on N such that 〈N,�L〉 is a presemilattice
and the semilattice associated with it is isomorphic to L.

For n ∈ N a presentation �L is said to be Σ0
n-presentation if the binary

relation �L belongs to the class Σ0
n of arithmetical hierarchy and there exists a

total computable function u which presents the union operation (i.e. [u(x, y)] =
[x] ∪ [y] in the semilattice associated with 〈N,�L〉 for any x, y ∈ N).

Let us define a Lachlan presentation. A presentation �L of a semilattice L is
called n-Lachlan if there exists a sequence {Di = 〈Di,�i〉}i∈N such that

1. D0 ⊆ D1 ⊆ . . . are finite subsets of N, {0, 1} ⊆ D0 and
⋃
i∈N

Di = N;
2. for any i ∈ N the structure Di is a distributive prelattice with the least

element [0]Di and the greatest element [1]Di;
3. for any i ∈ N and x, y ∈ Di x �i y implies x �i+1 y; the natural mapping

from D̃i to D̃i+1 given by the rule [x]Di �→ [x]Di+1 preserves the union
operation;

4. the sequence {Di}i∈N is strongly computable (i.e. one can compute a canon-
ical index of Di uniformly on i);

5. the ternary relation x, y ∈ Di & x �i y belongs to the class Π0
n+2 of the

arithmetical hierarchy;
6. there exist functions ui, vi : D2

i → Di which are uniformly computable in i

such that ui and vi present the union and the intersection operations on D̃i
respectively;

7. x �L y ⇔ (∃i ∈ N)(x, y ∈ Di & x �i y) for any x, y ∈ N.

It is clear that every n-Lachlan presentation is a Σ0
n+3-presentation. Propo-

sition 1 implies that any semilattice with n-Lachlan presentation is distributive



Upper Semilattices in Many-One Degrees 495

and bounded. The converse is not true but it can be proved that any distributive
bounded semilattice which has a Σ0

n+3-presentation also has n-Lachlan presen-
tation. Moreover it can be proved that if �1

L is a Σ0
n+3-presentation of a dis-

tributive bounded semilattice L then there exist an n-Lachlan presentation �2
L

of L and a total computable function f such that the mapping [x] �→ [f(x)] is
an isomorphism between the semilattices associated with 〈N,�1

L〉 and 〈N,�2
L〉

respectively [9].
Presentations which are 0-Lachlan are also called Lachlan presentations. Up-

per semilattice is called Lachlan semilattice if it has a Lachlan presentation. So
results from [9] give us the next statement: an upper semilattice is Lachlan if
and only if it is a bounded distributive semilattice with a Σ0

3-presentation.

4 Principal Ideals in Many-One Degrees

Since Lm is distributive and has a minimal element every principal ideal in Lm is
a distributive bounded semilattice. The converse is also true: Ershov showed [3, 4]
that every at most countable bounded distributive semilattice is isomorphic to
some principal ideal in Lm.

Previously the same author investigated principal ideals generated by hyper-
hypersimple m-degrees. It was proved [2] that Lhhsm contains infinitely many
minimal elements (above the least element) and atomless element, i.e. element
with no minimal elements below (and also that this semilattice is not a lattice
and have undecidable first-order theory).

In 1972 Lachlan [6] gave a full description of principal ideals in the computably
enumerable m-degrees. He proved that an upper semilattice is isomorphic to a
principal ideal in Lcem if and only if it is a Lachlan one (Lachlan semilattices were
introduced in this paper). Due to results of [9] described in previous section it
could be said that the principal ideals in Lcem are exactly the distributive bounded
semilattices with Σ0

3 -presentations.
In [8] the author showed that the same is true for simple and hypersimple

m-degrees. See further results on Lsm and Lhsm in the next section.
In 2007 generalization of Lachlan result to arithmetical m-degrees was ob-

tained. The next theorem was proved by the author.

Theorem 1 (see [11]). For any n ∈ N and an at most countable upper semi-
lattice L the next four conditions are equivalent:

1. L is distributive bounded semilattice with a Σ0
n+3-presentation;

2. L is isomorphic to a principal ideal in LΣ
0
n+1

m generated by a coimmune or
computable set from Σ0

n+1;

3. L is isomorphic to a principal ideal in LΠ
0
n+1

m generated by an immune or
computable set from Π0

n+1;

4. L is isomorphic to a principal ideal in LΔ
0
n+2

m generated by an arbitrary set
from Δ0

n+2.



496 S. Podzorov

5 Universal Lachlan Semilattice and Ideals in Lm

It is known that the greatest element of Lcem (formed by creative sets) is join-
irreducible (i.e. is not the union of two elements which are strictly below it).
So the structure Lce−m = Lcem \ {	Lce

m
} is distributive upper semilattice as well

as Lcem . It also true that 	Lce
m

is not a minimal cover in Lcem that is for every
a < 	Lce

m
there exists b ∈ Lcem such that a < b < 	Lce

m
. So the semilattice Lce−m

has no greatest element. The proof of both facts could be found in [4].
In 1978 Denisov [1] established that the natural Σ0

n+3-presentation of Lcem
(this natural presentation is �π defined by the formula x �π y ⇔ Wx �m Wy)
possesses the special property of universality. Briefly this property means that
for any Lachlan semilattice L any effective embedding of an ideal in L into Lce−m
could be extended to an effective embedding of the whole semilattice L into
Lce−m (see [1] for details). Denisov proved (see [1] and also [7, p. 534]) that this
property defines Lcem up to isomorphism (more precisely any bounded distributive
semilattice with universal Σ0

n+3-presentation is isomorphic to Lcem). Presently
semilattices isomorphic to Lcem are called universal Lachlan semilattices.

Some of the semilattices introduced in section 2 coincide with the universal
Lachlan semilattice with the greatest element excluded. They are listed in the
next theorem proved by the author.

Theorem 2 (see [10]). Upper semilattices Lhsm , Lsm, Lce−m and LΔ0
2

m are iso-
morphic.

The result on isomorphism between Lce−m and LΔ0
2

m was announced by Denisov
in 1978 (see [1] and also [7, p. 735]) but the proof has never been published
before [10].

Notice that these semilattices are not only isomorphic to each other but also
form the chain of ideals: Lhsm � Lsm � Lce−m � LΔ0

2
m . For the semilattice Lhhsm of

hyperhypersimple m-degrees problems solved for the semilattice of hypersimple
m-degrees are still open. It is not known whether Lhhsm is isomorphic to Lce−m and
even not known whether any Lachlan semilattice could be embedded in Lhhsm as
an ideal.

References

[1] Denisov, S.D.: Structure of the upper semilattice of recursively enumerable m-
degrees and related questions. I. Algebra and Logic 17, 418–443 (1978)

[2] Ershov, Y.L.: Hyperhypersimple m-degrees. Algebra i Logika 8, 523–552 [in Rus-
sian] (1969)

[3] Ershov, Y.L.: The upper semilattice of numerations of a finite set. Algebra and
Logic 14, 159–175 (1975)

[4] Ershov, Y.L.: Numbering theory. Nauka, Moskow [in Russian] (1977)
[5] Grätzer, G.: Generall lattice theory. Birkhäuser Verlag, Basel (1998)
[6] Lachlan, A.: Recursively enumerable many-one degrees. Algebra and Logic 11,

186–202 (1972)



Upper Semilattices in Many-One Degrees 497

[7] Odifreddi, P.: Classical recursion theory, vol. II. Elsevier, Amsterdam (1999)
[8] Podzorov, S.Y.: On the local structure of Rogers semilattices of Σ0

n-computable
numberings. Algebra and Logic 44, 82–94 (2005)

[9] Podzorov, S.Y.: Numbered distributive semilattices. Siberian Adv. in Math 17,
171–185 (2007)

[10] Podzorov, S.Y.: The universal Lachlan semilattice without the greatest element.
Algebra and Logic 46, 163–187 (2007)

[11] Podzorov, S.Y.: Arithmetical m-degrees. Siberian Math. J. (submitted),
http://www.nsu.ru/education/podzorov/Arithm.pdf

[12] Rogers, H.: Theory of recursive functions and effective computability. McGraw-
Hill Book Company, New York (1967)

http://www.nsu.ru/education/podzorov/Arithm.pdf


Union of Reducibility Candidates for Orthogonal

Constructor Rewriting

Colin Riba

Projet Everest
INRIA Sophia Antipolis�

Colin.Riba@sophia.inria.fr

Abstract. We revisit Girard’s reducibility candidates by proposing a
general of the notion of neutral terms. They are the terms which do not
interact with some contexts called elimination contexts. We apply this
framework to constructor rewriting, and show that for orthogonal con-
structor rewriting, Girard’s reducibility candidates are stable by union.

1 Introduction

The most flexible termination proof methods for various extensions of typed
λ-calculi use type interpretations [2, 5, 6, 7, 16]. Among them we distinguish
three families: Girard’s reducibility candidates [10], Tait’s saturated sets [20],
and interpretations based on biorthogonality [11, 16]. An interesting way to
compare different type interpretations is to study their stability by union. This
is even a necessary property in some cases [2, 7, 21].

This paper concerns the extension of the simply-typed λ-calculus with con-
structor rewriting. We are not interested in termination criteria by themselves,
but by the investigation of the closure properties of types interpretations that al-
low to formulate different termination criteria. We focus on Girard’s reducibility
candidates and their stability by union.

We give a generalization of the notion of neutral terms that allows to define
Girard’s reducibility candidates in a generic way. Neutral terms are the terms
that do not interact with some contexts called elimination contexts. Terms which
are not neutral are observable since they interact with some elimination contexts.
We call them values. We instantiate this framework with constructor rewriting.
In order to get interesting values, we use elimination contexts with destructors
to eliminate the constructors.

Next, we study the question of stability by union. By instantiating the con-
dition of [18], we show that reducibility candidates are stable by union for or-
thogonal constructor rewriting. The proof uses a result of [13] on the existence
of external redexes for orthogonal Context-sensitive Conditional Expression Sys-
tems (CCERSs).

The paper is organized as follows. We present our notations in Sect. 2.

� 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 498–510, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 499

Section 3 presents a general definition of reducibility families and type inter-
pretations. We apply it by briefly discussing Tait’s saturated sets for the pure
λ-calculus and one possible extension to deal with rewriting.

Section 4 is devoted to Girard’s reducibility candidates, of which we suggest
a generalization in Sect. 4.1. We instantiate it in Sect. 4.2 to the framework of
λ-calculus plus constructor rewriting.

We then discuss stability by union in Sect. 5. We first briefly present the
key problems and known results. Section 5.1 recalls a necessary and sufficient
condition for the stability by union of Girard’s candidates. In Sect. 5.2, we show
that this condition is met with orthogonal constructor rewriting.

We assume familiarity with typed λ-calculus [4], reducibility [9, 14] and rewrit-
ing [22]. Concerning CCERSs, we refer to [12]. The paper (except Sect. 5.2) is
based on parts of the Phd thesis of the author [17] (in French).

2 Simply Typed λ-Calculus with Constructor Rewriting

Given a set A, �a denotes a finite sequence of elements of A of length |�a|.

Terms and types. A signature Σ is a family of sets (Σn)n∈N such that Σn contains
algebraic symbols of arity n. We consider λ-terms with uncurried symbols f in
a signature Σ and variables x ∈ X :

t, u ∈ Λ(Σ) ::= x | λx.t | t u | f(t1, . . . , tn) ,

where f ∈ Σn. Let Λ be the set of pure λ-terms Λ(∅). A substitution is a function
σ : X → Λ(Σ) of finite domain. The capture avoiding application of σ to the
term t is written tσ or t[σ(x1)/x1, . . . , σ(xn)/xn] if Dom(σ) = {x1, . . . , xn}.

Given base types B ∈ B, simple types are defined as usual:

T,U ∈ T (B) ::= B | U ⇒ T .

Typing contexts are functions Γ of finite domain from variables to types, written
x1 : T1, . . . , xn : Tn. Given a type assignment τ : Πn∈N.Σn → T (B)n+1, the
typing relation Γ �τ t : T is inductively defined by the following rules:

(Ax)
Γ, x : T �τ x : T

(Symb)
Γ �τ t1 : T1 . . . Γ �τ tn : Tn

Γ �τ f(t1, . . . , tn) : T
τ(f) = (T1, . . . , Tn, T)

(⇒I)
Γ, x : U �τ t : T

Γ �τ λx.t : U ⇒ T
(⇒E)

Γ �τ t : U ⇒ T Γ �τ u : U

Γ �τ t u : T

Constructor rewriting. Assume given a set C ⊆ Σ of constructor symbols c of
type (�T, B) with B ∈ B. For normalization, B must occur only at positive positions
in �T [15]. As we are not interested in strong normalization conditions, we do not
care of this restriction here.



500 C. Riba

A constructor rewrite system (or rewrite system) on C is a set R of rewrite
rules f(�l) �→R r such that r ∈ Λ(Σ), FV(r) ⊆ FV(f(�l)), f ∈ Σ\C (defined symbols
are not constructors) and �l are terms of the grammar

p ::= x | c(p1, . . . , pn) ,

where c ∈ C (hence, �l are patterns).
A rewrite system R is typed if for each rewrite rule f(�l) �→R r with τ(f) =

(�T, T), there exists a (necessarily unique) context Γ with Dom(Γ) = FV(f(�l))
such that

Γ �τ f(�l) : T and Γ �τ r : T .

Example 2.1. We consider the type Nat of Peano’s numbers, with construc-
tors 0 : Nat and S : (Nat, Nat). The following system, defining addition, is a
constructor rewrite system:

plus(x, 0) �→ x plus(x, S(y)) �→ plus(S(x), y) .

Reductions. A rewrite relation is a binary relation →R⊆(Λ(Σ) \ X )×Λ(Σ) which
is stable by contexts and substitutions. We let (t)R =def {v | t →R v} and say that
a term t is R-reducible (or reducible) if (t)R �= ∅. We define the product extension
of →R as (t1, . . . , tn) →R (u1, . . . , un) when there is k ∈ {1, . . . , n} such that
tk →R uk and ti = ui for all i �= k. We denote by SNR the set of strongly
normalizing terms for →R, which is the smallest set of terms such that

∀t. (∀u. t →R u =⇒ u ∈ SNR) =⇒ t ∈ SNR .

Given a constructor rewrite system R, we let →βR be the smallest rewrite
relation on Λ(Σ) containing �→R and β-reduction: (λx.t)u �→β t[u/x].

3 Reducibility Families

In this section, we present a general notion of reducibility family and of type
interpretation. We then briefly take a look at their instantiation to deal with the
pure λ-calculus and with the combination of λ-calculus with rewriting.

Definition 3.1. Let →R be a rewrite relation on Λ(Σ).

(i) The function space is the function ⇒ : P(Λ(Σ))2
→ P(Λ(Σ)) defined as

A ⇒ B =def {t | ∀u. u ∈ A =⇒ t u ∈ B} .

(ii) A reducibility family for →R is a set of sets Red ⊆ {A | X ⊆ A ⊆ SNR}

which is closed by intersections and by the function space.
(iii) A type interpretation in Red is a map � � : T (B) → Red such that for all

T,U ∈ T (B) we have �U ⇒ T� = �U� ⇒ �T�.
(iv) A type interpretation � � is adequate if for all Γ , t, T and σ we have

(
Γ �τ t : T ∧ σ |=� � Γ

)
=⇒ tσ ∈ �T� ,

where σ |=� � Γ iff σ(x) ∈ �Γ(x)� for all x ∈ Dom(Γ).



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 501

Pure λ-calculus. Let Red be a reducibility family and � � : T (B) → Red be a
type interpretation. Let us see, in the case of the pure λ-calculus, some sufficient
conditions to ensure that � � is adequate. As usual, we reason by induction on
Γ � t : T and by cases on the last applied typing rule.

We only have to check the rules (Ax), (⇒ E) and (⇒ I). The rule (Ax)
is trivial while (⇒ E) is dealt with by definition of the function space ⇒ .
Concerning the rule (⇒I), it is sufficient that for all A ∈ Red,

∀t, u ∈ Λ. (t[u/x] ∈ A ∧ u ∈ SNβ) =⇒ (λx.t)u ∈ A . (1)

As for X ⊆ A ⊆ SNβ, condition (1) has to be preserved by ⇒ : Red2
→ Red.

We can conveniently formulate this by using elimination contexts [1]. For the pure
λ-calculus, they are defined by the grammar

E[ ] ∈ E⇒ ::= [ ] | E[ ] t .

Then, we get the following clauses: for all E[ ] ∈ E , all x ∈ X and all t, u ∈ Λ,

E[ ] ∈ SNβ =⇒ E[x] ∈ A , (2)
(E[t[u/x]] ∈ A ∧ u ∈ SNβ) =⇒ E[(λx.t)u] ∈ A . (3)

The sets A ⊆ SNβ satisfying (2) and (3) are Tait’s saturated sets [20]. The set
of saturated sets, denoted by SATβ, forms a reducibility family.

Remark 3.2. Note that properties (2) and (3) use call-by-name evaluation con-
texts to prove strong normalization of the full reduction →β.

Showing that SATβ is not empty amounts to showing that SNβ ∈ SATβ. We must
check properties (2) and (3) with A = SNβ, which in this case are consequences
of two important facts. First, a reduction step from a term of the form E[(λx.t)u]
(resp. E[x]) occurs either in the elimination context E[ ] or in the term (λx.t)u,
but involves no interaction between them:

∀v. E[x] →β v =⇒ (v = E ′[x] with E[ ] →β E
′[ ]) (4)

∀v. E[(λx.t)u] →β v =⇒ (v = E ′[s] with (E[ ], (λx.t)u) →β (E ′[ ], s)) (5)

Second, property (3) follows from (5) and the fact that (λx.t)u ∈ SNβ as
soon as t[u/x] ∈ SNβ and u ∈ SNβ. This property holds in turn thanks to
the Weak Standardization Lemma, which was used in [3] for extensions of the
Calculus of Constructions. It is obvious for the pure λ-calculus.

Lemma 3.3 (Weak Standardization). A reduct of a β-redex (λx.t)u is either
t[u/x] or a β-redex (λx.t ′)u ′ with (t, u) →β (t ′, u ′).

λ-calculus with rewriting. To deal with rewriting, we must consider the rule
(Symb). For constructors, we have to use specific interpretations of base types
(eg. using inductive types, as in [6]). We concentrate on symbols f ∈ Σ\C. Given
f of type (�T, T) and �t ∈ ��T �, we have to make sure that f(�t) ∈ �T�. Sufficient



502 C. Riba

conditions for this are given by termination criteria, a subject that we do not
treat in this paper (see for instance [6, 1, 2, 5, 7]).

Here, we are interested in the exploration of reducibility families that allow to
formulate termination criteria. As for the λ-calculus, we can use a non-interaction
property similar to (5):

∀v. E[f(�t)] →βR v =⇒

(
v = E ′[s] with (E[ ], f(�t)) →βR (E ′[ ], s)

)
. (6)

But rewrite systems do not satisfy in general the weak standardization lemma.
Therefore, in order to get f(�t) ∈ SNβR, we need v ∈ SNβR for all v such that
f(�t) →βR v. This is subsumed by the clause

(∀v. E[f(�t)] →βR v =⇒ v ∈ A)
=⇒ E[f(�t)] ∈ A . (7)

In this case, we also need saturated sets to be stable by reduction: if t ∈ A and
t →βR u then u ∈ A.

4 Neutral Terms and Reducibility Candidates

We now turn to Girard’s reducibility candidates [10]. They form a reducibility
family in which properties (3) and (7) can be formulated in a uniform and
elegant way. This is due to neutral terms, that enjoy non-interaction properties
such as (4), (5) and (6).

We first give a general formulation, and then apply it to constructor rewriting.

4.1 A General Formulation

We give a generalization of the original notion of neutral terms that allows to
define reducibility candidates in a generic way. The key idea is that neutral
terms are the terms that do not interact with elimination contexts. In the whole
section, we assume given a rewrite relation →R.

Elimination contexts will be defined as a special case of evaluation contexts.

Definition 4.1 (Evaluation Contexts). Let [ ] ∈ X be a distinguished vari-
able. A set of evaluation contexts for →R is a set E of terms E[ ] which is

(i) stable by reduction: if E[ ] ∈ E and E[ ] →R t then t = F[ ] ∈ E;
(ii) stable by composition: if E[ ] ∈ E and F[ ] ∈ E then E[F[ ]] ∈ E, where

E[t] =def (E[ ])[t/[ ]].

We now assume given a set E of evaluation contexts for →R.

Definition 4.2 (Neutral Terms). A term t is neutral for →R in E if for all
E[ ] ∈ E,

∀v. E[t] →R v =⇒ (v = E ′[t ′] with (E[ ], t) →R (E ′[ ], t ′)) .

We denote by NRE the set of neutral terms for →R in E.



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 503

The terms that are not neutral interact with evaluation contexts. They are there-
fore observable, and we think of them as being values.

Definition 4.3 (Values). A value for →R in E is a term which is not neutral.
We denote by VRE the set of values for →R in E.

Example 4.4. For the pure λ-calculus, taking E⇒ as evaluation contexts, the
values are exactly the terms of the form λx.t. Hence values are determined by
the shape of evaluation contexts. Thanks to Weak Standardization (Lem. 3.3),
we can use call-by-name evaluation contexts to prove the strong normalization
of the full β-reduction (see also Rem. 3.2).

To build reducibility candidates, we are interested in neutral terms and evalua-
tion contexts that enjoy some properties. This leads to the notion of elimination
contexts.

Definition 4.5 (Elimination Contexts). Let E be a set of evaluation contexts
for →R. Then E is a set of elimination contexts for →R if

(i) all variables are neutral: X ⊆ NRE ,
(ii) if t ∈ NRE and E[ ] ∈ E then E[t] ∈ NRE .

Example 4.6. For the pure λ-calculus, E⇒ is a set of elimination contexts.

We now define reducibility candidates in the usual way: our generalization re-
gards neutral terms and their definition using elimination contexts. Assume that
E is a set of elimination contexts for →R.

Definition 4.7 (Reducibility Candidates). The set CRRE of reducibility
candidates for →R in E is the set of all C ⊆ SNR such that

(CR0) if t ∈ C and t→R u then u ∈ C,
(CR1) if t ∈ NRE and ∀u. t →R u =⇒ u ∈ C then t ∈ C.

Note that CRRE is a complete lattice for ⊆ whose top element is SNR and whose
greatest lower bounds are intersections. In order to verify that X is contained in
any candidate, it is interesting to look at the least reducibility candidate. This
is HNRE , the set of hereditary neutral terms, defined as the smallest set of terms
such that

∀t ∈ NRE . (∀u. t →R u =⇒ u ∈ HNRE) =⇒ t ∈ HNRE .

Since variables are neutral terms in normal form (recall that by assumption
→R⊆(Λ(Σ) \ X )×Λ(Σ)), we have X ⊆ HNRE ⊆ C for every C ∈ CRRE .

The non-interaction between neutral terms and elimination contexts has the
following simple but fundamental consequence.

Lemma 4.8. Let t ∈ NRE and E[ ] ∈ E ∩ SNR. Then, for all C ∈ CRRE ,

(∀u. t →R u =⇒ E[u] ∈ C) =⇒ E[t] ∈ C .



504 C. Riba

Proof. First, since t ∈ NRE and E[ ] ∈ E , we have E[t] ∈ NRE by Def. 4.5.(ii).
Hence, we only have to show that (E[t])R ⊆ C.

We reason by induction on E[ ] ∈ SNR. Let v such that E[t] →R v. Since t is
neutral, we have v = E ′[t ′] with (E[ ], t) →R (E ′[ ], t ′), and there are two cases.

Case of E[ ] →R E
′[ ]. We have E ′[ ] ∈ E by Def. 4.1.(i) and E ′[ ] ∈ SNR since

E[ ] ∈ SNR. For all u ∈ (t)R, since E[u] →R E
′[u] and E[u] ∈ C, we have

E ′[u] ∈ C by (CR0). Hence, we can apply the induction hypothesis on E ′[ ]
and we conclude that E ′[t] ∈ C.

Case of t →R t
′. In this case, we have E[t ′] ∈ C by assumption. 
�

We now give a sufficient condition for CRRE to be a reducibility family (in the
sense of Def. 3.1) when E contains [ ]t for all t ∈ SNR. The key point is to show
that ⇒ is a function from CR2

RE to CRRE . We rely on Lem. 4.8.

Lemma 4.9. If E contains [ ] t for all t ∈ SNR and moreover [ ]t ∈ SNR for
all t ∈ SNR, then CRRE is a reducibility family.

Proof. It remains to show that ⇒ : CR2
RE → CRRE . Let A,B ∈ CRRE . First, we

have A ⇒ B ⊆ SNR: for all t ∈ A ⇒ B, since X ⊆ A we have tx ∈ B ⊆ SNR,
hence t ∈ SNR. Let us now check the clauses (CR0) and (CR1).

(CR0) Let t ∈ A ⇒ B and u ∈ (t)R. For all a ∈ A, we have ta ∈ B, hence ua ∈ B
by (CR0) applied to B. It follows that u ∈ A ⇒ B.

(CR1) Let t ∈ NRE such that (t)R ⊆ A ⇒ B and let a ∈ A. For all u ∈ (t)R, we
have ua ∈ B. Since [ ]a ∈ SNR, it follows from Lem. 4.8 that ta ∈ B. We
conclude that t ∈ A ⇒ B. 
�

Example 4.10. For the pure λ-calculus, CRβE⇒
is the usual set of reducibility

candidates. In particular, each C ∈ CRβE⇒
satisfies property (3).

4.2 Application to Constructor Rewriting

Let R be a constructor rewrite system on C. If we use elimination contexts of
the form E⇒ , then the values are the terms of the form λx.t.

However, we would like to build values from constructors. This is particularly
useful with inductive types [6]. According to Def. 4.3, we have to make them
observable. To this end, we introduce appropriate destructors in elimination
contexts. To each c ∈ C of type (�T, B) with |�T | > 0 and each i ∈ {1, . . . , |�T |}, we
associate a new unary destructor symbol dc,i defined by the rewrite rule

dc,i(c(x1, . . . , xn)) �→D xi .

Let � be a new nullary symbol. For the elimination of a nullary constructor c,
we use a new unary destructor dc defined by the rewrite rule

dc(c) �→D � .



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 505

Lemma 4.11. Let E⇒C be the set of terms defined by the grammar

E[ ] ∈ E⇒C ::= [ ] | E[ ] t | d(E[ ]) ,

where d is a destructor of a constructor of C. Then,

(i) E⇒C is a set of evaluation contexts for →βRD.
(ii) The values in E⇒C for →βRD are exactly the terms of the form

– λx.t; or
– c(�t) with c ∈ C.

(iii) E⇒C is a set of elimination contexts for →βRD.
(iv) Each C ∈ CRβRDE⇒C satisfies properties (3) and (7).

Proof

(i) It is clear that E⇒C is a set of evaluation contexts for →βRD.
(ii) It is clear that the terms of (ii) are values. We check that if t is a value,

then it is in one of these forms. Assume now that E[ ] ∈ E⇒C is a minimal
context that interacts with t. Note that the top symbol of E[ ] is either an
application or a destructor d. We consider these two cases:
The top symbol of E[ ] is an application. In this case, E[ ] is of the

form F[ ]u. By minimality, F[ ] = [ ] and t is an abstraction.
The top symbol of E[ ] is a destructor. In this case, E[ ] is of the form

d(F[ ]). By minimality, F[ ] = [ ] and t is a constructor.
(iii) The fact that E⇒C is a set elimination contexts is a direct consequence of

the shape of values (ii).
(iv) From (ii) we know that terms of the form (λx.t)u and f(�t) with f ∈ Σ \ C

are neutral. Properties (3) and (7) then follow from Lem. 4.8. 
�
Example 4.12. Consider the system presented at example 2.1. Its values are
the terms of the form

λx.t S(t) 0 .

Indeed, we have

(λx.t)u →β t[u/x] dS,1(S(t)) →D t d0(0) →D � .

5 Stability by Union

A reducibility family Red is stable by union if

∀R. R ⊆ Red =⇒

⋃
R ∈ Red .

The main question on stability by union is the following: given a rewrite relation
→R, does there exists a reducibility family Red for →R which is stable by union
and leads to an adequate type interpretation?



506 C. Riba

For the pure λ-calculus, it is well-known that the answer is positive: Tait’s
saturated sets (presented in Sect. 3) are stable by union and lead to an adequate
type interpretation. This has been exploited for instance in [2, 21].

The question becomes more difficult with rewriting. We have seen in Sect. 3
that rewrite systems do not satisfy in general the weak standardization lemma
(Lem. 3.3), and that we need a reducibility family satisfying a clause like (7). But
this is precisely what makes stability by union difficult. Assume given R ⊆ Red

such that for all v ∈ (E[f(�t)])βR, we have v ∈ ⋃
R. Then, unless we find some

A ∈ R such that (E[f(�t)])βR ⊆ A, there is no reason to have E[f(�t)] ∈ ⋃
R.

Besides, using intersection and union types, we have shown in [19] that there
are confluent typed rewrite systems for which no reducibility family that is stable
by union leads to an adequate type interpretation.

However, we can in some cases obtain a reducibility family which is stable by
union. In [18], we have given a necessary and sufficient condition for reducibility
candidates to be stable by union; and in [19], we have given a necessary and
sufficient condition for the closure by union of biorthogonals [11, 16, 8] to be
reducibility candidates. The second condition is strictly more general than the
first one.

We now recall the condition established in [18] for the stability by union of
reducibility candidates, and then show that it is met with orthogonal constructor
rewriting.

5.1 Reducibility Candidates

The study of stability by union of reducibility candidates of [18] carries over to
our generalization of neutral terms and elimination contexts. The key observation
is a characterization of the membership of a term to a candidate using a weak
observational preorder.

Definition 5.1. Let t �N u if and only if t, u ∈ SNR and

∀v ∈ VRE . t→
∗
R v =⇒ u →

∗
R v .

Every candidate C ∈ CRRE is a non-empty subset of SNR which is downward-
closed wrt. �N . Reducibility candidates are stable by union exactly when the
converse is also true.

Theorem 5.2 ([18]). The following are equivalent:

(i) CRRE is stable by union;
(ii) CRRE is the set of all non-empty C ⊆ SNR which are downward-closed wrt.

the preorder �N ;
(iii) every strongly normalizable neutral term t which is reducible has a reduct

u such that t �N u. Such u is a strong principal reduct1of t.

Proof. For each t ∈ SNR, we let CR(t) be the smallest reducibility candidate
containing t. Note that CR(t) = {u | u �N t}.
1 Called ”principal reduct” in [18].



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 507

(i) =⇒ (ii). Let C ⊆ SNR be a non-empty set downward-closed wrt. �N . Since
CR(t) is downward closed wrt. �N for all t ∈ SNR, C =

⋃
{CR(t) | t ∈ C}.

Hence C ∈ CR because CR is stable by union.
(ii) =⇒ (iii). Let t ∈ N ∩ SNR be reducible. For all u ∈ (t)R, the set CR(u) is

non-empty and downward-closed wrt. �. Therefore, the set C of all v such
that v ∈ CR(u) for some u ∈ (t)R is non-empty and downward-closed wrt.
�N . It follows that C ∈ CR and that t ∈ C since (t)R ⊆ C. Hence there is
u ∈ (t)R such that t �N u.

(iii) =⇒ (i). Let ∅ �= C ⊆ CR. In order to show
⋃ C ∈ CR, the key-point is to

show that if t ∈ N is such that (t)R ⊆
⋃ C then t ∈ ⋃ C. If (t)R = ∅ then

t ∈ C for all C ∈ C and we are done. Otherwise, we have t ∈ SNR since
(t)R ⊆

⋃ C ⊆ SNR. Let u be a strong principal reduct of t. There is C ∈ C
such that u ∈ C, and since t �N u and C is downward-closed wrt. �N , we
have t ∈ C, hence t ∈ ⋃ C. 
�

Example 5.3 ([18, 21]). For the pure λ-calculus, thanks to the weak stan-
dardization lemma (Lem. 3.3), CRβE⇒

is stable by union.

5.2 Application to Orthogonal Constructor Rewriting

Recall that a rewrite system R is orthogonal if it is left-linear and has no critical
pairs [22]. For instance, the system of Ex. 2.1 is orthogonal.

In this section, we show that if R is an orthogonal constructor rewrite system,
then CRβRDE⇒C is stable by union. According to Thm. 5.2, this amounts to
showing that every strongly normalizing reducible neutral term has a strong
principal reduct. We prove it by using a general theorem on external redexes [13]
(see also [12]). This result applies to the framework of orthogonal CCERSs, of
which our higher-order rewrite systems β ∪R∪ D are an instance.

To prove our result, we need some machinery to deal with the term structure.
We use the following standard notations: a position in a term t is a finite word
on N\ {0}, φ ·ψ denotes the concatenations of the words φ and ψ. Moreover, t|φ
is the subterm of t at position φ, and t[u]φ is the term t in which the subterm
of t at position φ is textually replaced by u.

The notion of descendant, which is standard in rewriting theory, is used to
trace terms during reduction. We do not detail the definition which is quite tech-
nical and can be found in standard textbooks [22], but we provide an example.

Example 5.4. Consider the derivation

P : (λx.plus(x, 0)) 0 plus(y, S(z)) →β plus(0, 0) plus(y, S(z))

– The β-redex (λx.plus(x, 0)) 0 has no descendant along P.
– The first occurrence of 0 in plus(0, 0) is the only descendant along P of the

argument 0 of the β-redex (λx.plus(x, 0)) 0.
– plus(0, 0) is the only descendant of plus(x, 0) along P.
– plus(y, S(z)) is the only descendant of plus(y, S(z)) along P.

We use the notions of redex-arguments and of external redexes of [13, 12].



508 C. Riba

Definition 5.5. A term u is a redex-argument of t if either

(i) t has a subterm of the form (λx.t1)t2 and u is a subterm of t1 or t2, or
(ii) t has a subterm of the form lσ, where l �→R r is a rewrite rule and σ a

substitution, and there is a variable x of l such that u is a subterm of σ(x).

The key notion is that of external redex.

Definition 5.6. A redex at position φ in a term t is external if for any deriva-
tion P : t →

∗
βRD v, no descendant of φ along P appears inside redex-arguments.

Hence every descendant of an external redex is external. Note that every external
redex is outermost, but the converse is false.

Using external redexes, we have the following weak standardization lemma.
We apply it in Lem. 5.8 to show that every neutral term which has an external
redex has a strong principal reduct.

Lemma 5.7 (Weak Standardization). Assume that R is orthogonal. Let
t →βRD u by contracting an external redex of t. If t →βRD v by contract-
ing a different redex, then there is w such that u →

∗
βRD w and v →βRD w by

contracting a descendant of t →βRD u (which is therefore external in v).

Proof. Let φ and ψ be the respective positions of the redexes contracted in
t →βRD u and t →βRD v. We show that there exists w such that the redex
contracted in v →βRD w is a descendant of φ. It is an external redex of v because
φ is external in t.

Note that since φ is external in t, for every φ1, φ2 such that φ = φ1 · φ2,
φ2 is external in t|φ1

: if a descendant φ ′
2 of φ2 appears in a redex argument of

a reduct u of t|φ1
, then φ1 ·φ ′

2, which is a descendant of φ, appears in a redex
argument of t[u]φ1

, which is a reduct of t.
We now reason by induction on t.

t ∈ X . Not possible.
t = λx.t1. In this case, u = λx.u1 and v = λx.v1. Moreover we have φ = 1 ·φ1,

ψ = 1 ·ψ1, t1 →βRD u1 by contracting φ1 and t1 →βRD v1 by contracting
ψ1. Since φ1 is external in t1, by induction hypothesis there is w1 such that
u1 →

∗
βRD w1 and v1 →βRD w1 by contracting a descendant of φ1. It follows

that u →
∗
βRD λx.w1 and v →βRD λx.w1 by contracting a descendant of φ.

t = t1 t2 with t1 not an abstraction. There are i, j ∈ {1, 2} such that φ =
i · φ1 and ψ = j ·ψ1. Moreover, u = u1 u2 and v = v1 v2 with ti →βRD ui,
tj →βRD vj, uj = tj and vi = ti. There are two cases.
If i = j, then we reason as in the case of t = λx.t1.
Otherwise i �= j. Let w = w1w2 with wi = ui and wj = vj. We have

u →βRD w and v →βRD w by contracting a descendant of φ.
t = (λx.t1)t2. Since φ is external in t, φ is the root β-redex of t. Therefore

u = t1[t2/x] and v = (λx.t ′1)t ′2 with (t1, t2) →βRD (t ′1, t
′
2). We are done

by taking w =def t
′
1[t ′2/x] since (λx.t ′1)t ′2 is a descendant of (λx.t1)t2 and

t1[t2/x] →
∗
βRD t

′
1[t ′2/x].



Union of Reducibility Candidates for Orthogonal Constructor Rewriting 509

t = f(�t) and t is not a RD-redex. We reason as in the case of t1 t2 with t1
not an abstraction.

t = f(�t) and t is a RD-redex. Since φ is external in t, it is the roofRD-redex
of t. Hence there is a rule l �→RD r and a substitution σ such that t = lσ and
u = rσ. Because l is linear, there is a substitution σ ′ such that σ →βRD σ ′

and v = lσ ′. We are done by taking w =def rσ
′ since lσ ′ is a descendant of

lσ and rσ →
∗
βRD rσ

′. 
�
Lemma 5.8. Assume that R is orthogonal and let t ∈ NβRDE⇒C . If t →

∗
βRD v

with v ∈ VβRDE⇒C , then for all u such that t →βRD u by contracting an external
redex of t, we have u →

∗
βRD v.

Proof. Let u such that t→βRD u by contracting an external redex of t and let
v ∈ VβRDE⇒C such that t →

∗
βRD v. Since t is neutral, we have t →

+
βRD v. We

reason by induction on the length of the derivation.

Base Case. Since t is neutral, it follows from Lem. 4.11.(ii) that t →βRD v

by contracting a top redex of t. Since every external redex is outermost, it
follows that every external redex of t is a root redex of t. By orthogonality,
this is the redex contracted in t →βRD v, and we have u = v.

Induction Case. Assume that t →βRD s →
∗
βRD v. If s is a value, then rea-

soning as in the base case we have s = u, hence u →
∗
βRD v. Otherwise

s is neutral. If s is obtained from t by contracting the same redex as in
t →βRD u, then s = u and u →

∗
βRD v. Otherwise, by weak standardization

(Lem. 5.7), there is w such that u →
∗
βRD w and s →βRD w by contracting

an external redex of s. We then have w →
∗
βRD v by induction hypothesis,

hence u →
∗
βRD v. 
�

If t is neutral and t→βRD u by contracting an external redex of t, then we have
t �N u. Hence u is a strong principal reduct of t. Then, by Thm. 5.2 CRβRDE⇒C
is stable by union if all neutral terms have external redexes. It remains to show
this last property, which follows from the next theorem, proved in [13]. We can
apply it because the CCERS β ∪ R ∪ D is orthogonal as soon as the rewrite
system R is orthogonal.

Theorem 5.9 ([13, 12]). If R is orthogonal then every reducible term has an
external redex.

Theorem 5.10. If R is orthogonal then CRβRDE⇒C is stable by union.

References

[1] Abel, A.: Termination Checking with Types. RAIRO – Theoretical Informatics
and Applications 38(4), 277–319 (2004); Special Issue (FICS 2003)

[2] Abel, A.: Semi-Continuous Sized Types and Termination. In: Ésik, Z. (ed.) CSL
2006. LNCS, vol. 4207, pp. 72–88. Springer, Heidelberg (2006)

[3] Altenkirch, T.: Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh (1993)



510 C. Riba

[4] Barendregt, H.P.: Lambda Calculi with Types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, Oxford
University Press, Oxford (1992)

[5] Barthe, G., Grégoire, B., Pastawski, F.: Type-Based Termination of Recursives
Definitions in the Calculus of Inductive Constructions. In: Proceedings of LPAR
2006, pp. 257–271 (2006)

[6] Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive-Data-Types Systems. Theo-
retical Computer Science 271, 41–68 (2002)

[7] Blanqui, F., Riba, C.: Combining Typing and Size Constraints for Checking the
Termination of Higher-Order Conditional Rewrite Systems. In: Hermann, M.,
Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 105–119. Springer,
Heidelberg (2006)

[8] Danos, V., Krivine, J.-L.: Disjunctive Tautologies as Synchronisation Schemes. In:
Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 292–301.
Springer, Heidelberg (2000)

[9] Gallier, J.H.: On Girard’s Candidats de Reducibilité. In: Odifredi, P. (ed.) Logic
and Computer Science. Academic Press, London (1989)

[10] Girard, J.-Y.: Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. PhD thesis, Université Paris 7 (1972)

[11] Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)
[12] Glauert, J., Kesner, D., Khasidashvili, Z.: Expression Reduction Systems and

Extensions: An Overview. In: Middeldorp, A., van Oostrom, V., van Raamsdonk,
F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 496–553. Springer, Heidelberg (2005)

[13] Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Perpetuality ans Uniform Nor-
malization in Orthogonal Rewrite Systems. Information and Computation 164(1),
118–152 (2001)

[14] Krivine, J.-L.: Lambda-Calcul, Types et Modèles. Masson (1990)
[15] Mendler, N.P.: Recursive Types and Type Constraints in Second Order Lambda-

Calculus. In: Proceedings of LiCS 1987, pp. 30–36. IEEE Computer Society, Los
Alamitos (1987)

[16] Parigot, M.: Proofs of Strong Normalization for Second Order Classical Natural
Deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)

[17] Riba, C.: Definitions par Réécriture dans le λ-Calcul: Confluence, Réductibilité
et Typage. PhD thesis, INPL (2007)

[18] Riba, C.: On the Stability by Union of Reducibility Candidates. In: Seidl, H. (ed.)
FOSSACS 2007. LNCS, vol. 4423, pp. 317–331. Springer, Heidelberg (2007)

[19] Riba, C.: Strong Normalization as Safe Interaction. In: Proceedings of LiCS 2007,
pp. 13–22. IEEE Computer Society, Los Alamitos (2007)

[20] Tait, W.W.: A Realizability Interpretation of the Theory of Species. In: Parikh,
R. (ed.) Logic Colloquium. LNCS, vol. 453, pp. 240–251 (1975)

[21] Tatsuta, M.: Simple Saturated Sets for Disjunction and Second-Order Existential
Quantification. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp.
366–380. Springer, Heidelberg (2007)

[22] Terese: Term Rewriting Systems. In: Bezem, M., Klop, J.W., de Vrijer, R.C. (eds.)
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (2003)



The Quantum Complexity of Markov Chain

Monte Carlo�

Peter C. Richter

Laboratoire de Recherche en Informatique
Université de Paris-Sud XI

91405 Orsay, France
richterp@lri.fr

Abstract. Markov chain Monte Carlo (MCMC) is the widely-used clas-
sical method of random sampling from a probability distribution π by
simulating a Markov chain which “mixes” to π at equilibrium. Despite
the success quantum walks have been shown to have in speeding up
random walk algorithms for search problems (“hitting”) and simulated
annealing, it remains to prove a general speedup theorem for MCMC
sampling algorithms. We review the progress toward this end, in partic-
ular using decoherent quantum walks.

1 Introduction

Many important problems in computer science are solved most efficiently or ele-
gantly by simulating a random walk on a Markov chain. Local search algorithms
for graph connectivity and constraint satisfaction have complexity given by the
hitting time of a Markov chain – the expected time for a random walk to reach
a “marked” state. Markov chain Monte Carlo algorithms for approximating the
permanent of a nonnegative matrix and the volume of a convex body have com-
plexity tightly related to the mixing time of a Markov chain – the time at which
a random walk reaches an almost π-distributed state, where π is the Markov
chain’s stationary (equilibrium) distribution.

Quantum computing offers the possibility of implementing algorithms based
on so-called quantum walks. Since such an algorithm must be more efficient than
a classical randomized algorithm to be interesting, a central question is whether
quantum walks have “hitting” and “mixing” times which are generically faster
than their classical counterparts. In the case of hitting time, this question was
answered in the affirmative by Szegedy [2], building on the work of Ambainis
[3] who proved such a speedup on the Johnson graph and used it to show that
the element distinctness problem has a quantum algorithm which is faster than
any classical randomized algorithm. Despite much study of the mixing time case
[4,5,6], it remains unknown whether a generic quantum speedup of the mixing

� This material is based upon work supported by the National Science Foundation
under Grant No. 0523866 and is adapted in part from the author’s PhD thesis at
Rutgers University [1].

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 511–522, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



512 P.C. Richter

time is achievable. Such a discovery would imply quantum speedups for a number
of MCMC approximate sampling and counting algorithms. We survey the partial
progress that has been achieved thus far.

2 Classical Markov Chains

The theory of Markov chains and random walks has a large literature. Here
we present just enough background to discuss the mixing time and hitting time
parameters relevant to algorithmic applications. See [7] for more information.

Basic definitions. Let S be a countable set of states. Unless otherwise stated,
we take N := |S| < ∞. An S × S matrix P is a transition probability matrix if
it is column-stochastic; i.e., if each of its columns is a distribution (probability
vector), or equivalently, if it preserves l1 norm of nonnegative vectors. Let q be
a distribution on S. The sequence of random variables (Xt)t∈[0..∞) distributed
according to P tq is a discrete-time Markov chain. More frequently, we use the
term Markov chain to refer to any valid transition probability matrix P , without
specifying q. We can think of any Markov chain as a random walk on a graph or
digraph. For example, the simple random walk on a d-regular graph G = (V,E)
is the Markov chain P (y, x) = 1

d if (x, y) ∈ E, P (y, x) = 0 if (x, y) /∈ E.
A stationary distribution π for a Markov chain P is a probability vector satisfy-

ing Pπ = π. The Perron-Frobenius Theorem for nonnegative matrices guarantees
the existence of a stationary distribution for any finite Markov chain. Moreover,
uniqueness and strict positivity of the stationary distribution are guaranteed if
P is irreducible; i.e., if the digraph G underlying P is strongly connected. For
example, the stationary distribution of the simple random walk on a regular
graph is the uniform vector u = [ 1

N , . . . ,
1
N ]†.

Reversible Markov chains. Most MCMC applications involve so-called “reversible”
Markov chains. Let P be a Markov chain and π > 0 be a distribution satisfying the
detailed balance conditionP (y, x)π(x) = P (x, y)π(y); or equivalently, suppose that
the matrix

M(P ) :=
√
R

−1
P
√
R where R := diag(π) (1)

is symmetric. Then P is reversible and π is its stationary distribution. For exam-
ple, a Markov chain P that is symmetric (i.e., P equals its transpose) is reversible
with uniform stationary stationary distribution and satisfies M(P ) = P .

A particularly famous example of a reversible Markov chain is the Metropolis
process. Suppose we wish to sample from an arbitrary distribution π > 0 on a
set S and are able to construct a single irreducible Markov chain P on S. When
S is a set of combinatorial objects (e.g., microstates in statistical physics or data
structures in computer science), one typically obtains P by a local update rule
(e.g., change a single spin or flip a single edge), called the Glauber dynamics in
statistical physics. We obtain the Metropolis process P ′ using P as follows: at
each state x ∈ S, select an adjacent state y with probability P (y, x) and move
to y with probability min{1, P (x,y)

P (y,x) · π(y)
π(x)}; otherwise, stay put. Applications of



The Quantum Complexity of Markov Chain Monte Carlo 513

the Metropolis process include approximating the permanent of a nonnegative
matrix and the volume of a convex body.

Mixing and hitting times. How quickly, if at all, does an irreducible Markov
chain converge to its stationary distribution π? Let us define the matrix P∞ :=
[ππ · · ·π]. Convergence P t → P∞ is guaranteed provided that P is aperiodic; i.e.,
the lengths of all closed walks in the graph G underlying P must be mutually
coprime. If G is undirected, P is aperiodic precisely when G is non-bipartite. A
Markov chain which is both irreducible and aperiodic is ergodic. The asymptotic
behavior of an ergodic Markov chain is summarized by the fundamental theorem
of Markov chains: If P is an ergodic Markov chain, then it has a unique stationary
distribution π, and P t → P∞ as t→∞.

The speed at which an ergodic Markov chain P converges from an initial
distribution ex concentrated at x ∈ S to its stationary distribution π is captured
by the mixing time

τx := min{t : ||P tex − π||1 ≤ 1/e} (2)

where || · ||1 is the l1 vector norm. The maximum mixing time over all initial
states (or equivalently, distributions) is

τ := max
x

τx = min{t : ||P t − P∞||1 ≤ 1/e} (3)

where || · ||1 is the l1 matrix norm. The parameter 1/e is somewhat arbitrary,
in that we can change it to any ε > 0 provided we multiply the mixing time by
O(log 1/ε). The mixing time of a reversible Markov chain with (real) eigenvalues
{λk}Nk=1 is closely related to its spectral gap δ := 1−λ, where λ := max{λ2, |λN |}
[8,9,10]:

Theorem 1. Let P be a reversible, ergodic Markov chain with stationary distri-
bution π and spectral gap δ. Its mixing time satisfies (a) τx ≤ δ−1 (log 1/π(x) +
log 2e), and (b) τ ≥ 1

2 |λ|δ−1.

Suppose that some states M ⊆ S of an ergodic Markov chain P are “marked,”
and we stop the random walk upon reaching a marked state. The hitting time is
the expected time for this to occur. One can show [2]:

Theorem 2. Let P be a symmetric, ergodic Markov chain with uniform sta-
tionary distribution u and spectral gap δ. Let states M ⊆ S be “marked,” where
|M | = εN . Then the hitting time hu is at most 1/(δε).

A somewhat different search method is simulated annealing; one can show that
it too scales like 1/δ [11].

3 Quantum Walk Constructions

Both discrete-time [12,3,2] and continuous-time [13,14,15] quantum walks have
found application in quantum algorithms.



514 P.C. Richter

Discrete-time quantum walks. A discrete-time quantum walk is a unitary process
{U t|ψ〉}, or more frequently the unitary operator U generating this process. Of
particular relevance in algorithmic applications are those U whose coefficients
are derived naturally and efficiently from a corresponding classical Markov chain
P – e.g., with the same locality structure as U [16]. This turns out to be possible
only if we are willing to let U operate on the Hilbert space generated by the state
transitions (directed edges) of P rather than the states themselves [17,18].1 We
describe the standard recipe for “quantizing” a Markov chain this way. For addi-
tional background on quantum walks, see the surveys of Ambainis [19], Kempe
[20], and Kendon [21].

The Grover walk was invented by Watrous [12] as a quantization of the simple
random walk on a regular graph to show that quantum logspace machines can
simulate their classical counterparts. It has since found application in numerous
quantum algorithms. The idea of the walk is to apply the Grover diffusion op-
erator locally as a substitute for the classical state transitions. The Grover walk
on a d-regular graph is given by

W := SC (4)

where
S : |x〉|y〉 
→ |y〉|x〉 (5)

is a “swap” of two registers (each a state in S) and where

C :=
∑

x

|x〉〈x| ⊗ (2|ux〉〈ux| − I) (6)

is the “coin flip,” a Grover reflection2 about the vector:

|ux〉 :=
1√
d

∑

y:(x,y)∈E
|y〉 (7)

The uniform superposition

|u〉 :=
1√
dN

∑

(x,y)∈E
|x〉|y〉 (8)

is a fixed point of W .
Szegedy [2] generalized the Grover walk to arbitrary Markov chains. The idea

is to replace each local reflection about |ux〉 by one about:

|px〉 :=
∑

y∈S

√
P (y, x)|y〉 (9)

1 For example, there is no unitary matrix with tridiagonal nonzero structure, so there
is no discrete-time quantum walk U : HZ → HZ on the line Z.

2 Other quantum coin flips are possible, for example the Hadamard and DFT operators
[20].



The Quantum Complexity of Markov Chain Monte Carlo 515

When P is the simple random walk on a regular graph, this reduces to the Grover
walk. If P is reversible with stationary distribution π, then the eigenvector

|π̃〉 :=
∑

x

√
π(x)|x〉|px〉 =

∑

x

√
π(x)|px〉|x〉 (10)

of WP is a fixed point.

Continuous-time quantum walks. The continuous-time quantum walk {e−iHt|ψ〉}
generated by a time-independent Hamiltonian H merits special focus beyond
that of its discrete-time counterpart. This is because the precise relationship
between discrete-time and continuous-time quantum walks, unlike that of their
classical counterparts, is not well understood.

Obtaining a natural quantization of the simple random walk on a graph is an
easier proposition in continuous time than in discrete time. Farhi and Gutmann
[13,14] noted that the Laplacian matrix of a graph G = (V,E) is symmetric
and can therefore be used as a natural walk Hamiltonian on G. Aharonov and
Ta-Shma [15] observed that another matrix

HP := I −M(P ) (11)

can be used as a natural walk Hamiltonian for a reversible Markov chain, where
M(P ) is the matrix (1). Their walk reduces to the Farhi/Gutmann walk when
P is the simple random walk on a regular graph. It is easy to see that the
ground state (minimum-eigenvalue eigenvector) of the Aharonov/Ta-Shma walk
Hamiltonian is:

|π〉 :=
∑

x

√
π(x)|x〉 (12)

Quantum walk speedup theorems. A key property of discrete- and continuous-
time quantum walks useful for proving general quantum speedup theorems is the
size of the phase gap Δ(P ), the smallest nontrivial polar angle in the spectrum
of WP (or eiHP , in continuous time). In either case, we have:

Δ(P ) = Ω(
√
δ) (13)

Szegedy [2] used a stronger form of this property to show that a natural notion
of “quantum hitting time” of a symmetric Markov chain is at most the square
root of its classical counterpart:

Theorem 3. Let P be a symmetric, ergodic Markov chain and let hu be its
hitting from the uniform distribution u to the marked set M . Then the quantum
hitting time is O(

√
hu).

A subtlety is that this is only a decision algorithm, not a search algorithm –
i.e., the algorithm decides with high probability whether or not M is empty, but
does not necessarily output an element of M with high probability. Magniez et
al. [22] proved a weaker upper bound for a search algorithm that holds for all
reversible Markov chains:



516 P.C. Richter

Theorem 4. Let P be a reversible, ergodic Markov chain with stationary dis-
tribution π and spectral gap δ. Let M , the set of marked states, satisfy ε :=∑

x∈M π(x) > 0. Then there is a quantum algorithm finding a marked state with
constant success probability with cost O(1/

√
δε).

A similar
√
δ−1 speedup theorem was shown recently for simulated annealing

[11]. What we would like to know is: can such a speedup be proven for the
mixing time?

4 Sampling Via Quantum Walks

The ability of quantum walks to speed up mixing processes was first demon-
strated by Nayak et al. [4,5] and Aharonov et al. [6] on cycles and by Moore and
Russell [23] on hypercubes.

Mixing time revisited. Recall that the mixing time τx (2) of a classical random
walk satisfies the inequality

δ−1 ≤ τx ≤ δ−1 log 1/π(x) (14)

where δ is the spectral gap of P . Although this inequality is tight with respect
to δ, it is somewhat unsatisfactory in the following sense. Let P be the simple
random walk on a regular graph G on N vertices. It can be shown [24] that the
diameter d of G satisfies:

d(G) = O(
√
δ−1 logN) (15)

Clearly, d(G) is a lower bound on any notion of the “quantum mixing time” from
a worst-case start vertex s ∈ V . But (14) shows that the classical random walk
on P does significantly worse than this. For example, consider the simple case
in which P is the simple random walk on a line: its spectral gap is δ = Θ( 1

N2 ),
so the random walk on P samples from (close to) its uniform distribution only
after Θ(N2) walk steps.

Fundamentally, the random walk’s mixing performance bottleneck is its Gaus-
sian width. After t steps, most of the probability mass is supported on only the
middle Θ(

√
t) vertices of the line. What we would like is an algorithm that

spreads mass nearly uniformly across Θ(t) vertices after t steps. More generally,
we would like an algorithm that “mixes” in time:

T = O(
√
δ−1 logN) (16)

A promising avenue that has received attention in recent years is replacing P by
a quantum walk.

Quantum walks on cycles and hypercubes. Figure 1 compares the behavior of
random and quantum walks on the one-dimensional infinite line. In continuous



The Quantum Complexity of Markov Chain Monte Carlo 517

−80 −60 −40 −20 0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fig. 1. The behavior of random vs. quantum walks in one dimension

time, a distribution pt initally concentrated at the origin propagates by the
simple random walk P according to

pt(x) = e−(I−P )tp0 = e−2tIx(2t) ≈ 1√
4πt

exp(−x2/4t) (17)

where Ix is the modified Bessel function of order x and the latter expression
is a Gaussian of width

√
2t. Using P as the Hamiltonian for a continuous-time

quantum walk, a wavefunction |ψt〉 initially concentrated at the origin spreads
as

〈x|ψt〉 = e−iP t(−i)|x|J|x|(2t) (18)

where J|x| is a Bessel function of order |x|. For |x| � 1 the quantity |J|x|(t)| is
(a) exponentially small in |x| for t < (1 − ε) · |x| and (b) of order |x|−1/2 for
t > (1 + ε) · |x| (Childs [25]). The two “peaks” t ∈ [(1 − ε) · |x|, (1 + ε) · |x|] of
|〈x|ψt〉|2 in Figure 1 are relatively thin – indeed, the total amplitude of |ψt〉 is
spread almost entirely and nearly uniformly over the interval between the two
peaks. Nayak et al. [4,5] showed that the discrete-time quantum walk on the line
with the so-called “Hadamard” coin flip also puts amplitude Ω(1/

√
t) on the

vertices within an interval of length Θ(t) around the origin at time t.
Nayak et al. [4,5] and Aharonov et al. [6] were the first to investigate analyti-

cally whether quantum walks might speed up classical mixing processes. Nayak
et al. [4,5] showed the following:



518 P.C. Richter

Theorem 5. There is a notion of “quantum mixing time” which is O(n) for
the Hadamard walk on the cycle Zn.

Aharonov et al. [6] showed that under a different notion of mixing time, the
bound is O(n logn). The classical mixing time is Θ(n2). Moore and Russell [23]
showed:

Theorem 6. The “quantum mixing times” of the Grover and continuous-time
quantum walks on the hypercube Z

d
2 are O(d).

The classical mixing time is O(d log d).

Obstacles for unitary walks. Let U be a discrete-time quantum walk operator,
or let U = eiH where H is a continuous-time quantum walk Hamiltonian, and
define the N ×N stochastic matrix

Pt(y, x) := |〈y|U t|x〉|2 (19)

induced by starting the quantum walk from a classical state, running it for time
t, and measuring the walk register in the classical basis.3 A key observation of
Aharonov et al. [6] is that while Pt does not converge to a limit (due to the
underlying unitary dynamics), its time average does: if U is a unitary operator
and ωT is the uniform distribution on [0..T ], then the following limit matrix
exists.

Π := lim
T→∞

Et←ωT [Pt] (20)

However, it is typically the case that the quantum walk generated by a Markov
chain P with stationary distribution π satisfies

Π �= [ππ · · ·π] = P∞ (21)

even though in the classical case we have P t → P∞. Moreover, the columns of
Π are not identical, so the limiting distribution of the time-averaged quantum
walk depends on the initial state. Even when P is symmetric (so that π is
the uniform distribution u), we rarely have an “ergodic theorem” (time-space
average) Π = [uu · · ·u] [6,26]. Consider for example the pathological case of the
quantum walk on the complete graph KN , for which Π has diagonal elements
≈ 1− 1

N and off-diagonal elements ≈ 1
N .

5 Decoherent Quantum Walks

Decoherence was first identified as useful to quantum walks in numerical exper-
iments performed by Kendon and Tregenna [27]. This discovery was supported
by analytical estimates of Fedichkin et al. [28,29,30] and was proven in [31].

3 If the walk is discrete-time and requires a second register, we consider its effect on
a single register.



The Quantum Complexity of Markov Chain Monte Carlo 519

Decoherence can be useful. Non-unitary interaction with the surrounding en-
vironment, or decoherence, is a key physical obstacle to building a quantum
computer. But in small amounts, decoherence was identified by Kendon and
Tregenna [27] as a way to improve spreading and mixing properties of quantum
walks. Under a Bernoulli decoherence model (i.e., wavefunction collapse occurs
at each walk step with fixed probability p), the Hadamard walk on the n-cycle
is observed to “mix” faster and more smoothly. On the other hand, high rates
of decoherence in quantum walks have been shown to degrade mixing properties
substantially by the quantum Zeno effect (Alagic and Russell [32]). Fedichkin
et al. [28,29,30] gave analytical estimates suggesting O(n) and O(d log d) scaling
of decoherent quantum walks on the cycle Zn and hypercube Z

d
2, respectively.

They conjectured the optimally-mixing quantum walk to be decoherent rather
than unitary.

For an excellent survey of these and other aspects of decoherent quantum
walks, see Kendon [21].

General properties of decoherent walks. It was proven in [31,33] that a decoherent
quantum walk derived from a symmetric underlying Markov chain “mixes” to
the correct (uniform) stationary distribution, and the “mixing time” is largely
insensitive to the precise form of the decoherence model.

Let 〈HP , ωT 〉 denote the continuous-time quantum walk with Hamiltonian
H under decoherence model ωT , a T -parametrized family of probability mass
(or density) functions on [0,∞) characterizing the (random) time at which a
total measurement of the walk is performed in the classical basis. One can show
[31,33]:

Theorem 7. Let P be a symmetric, irreducible Markov chain and ωT be any
“smooth” decoherence model.4 For T sufficiently large (but fixed), the T ′-repeated
quantum walk 〈HP , ωT 〉 “mixes” as T ′ →∞.

Thus, decoherent quantum walks (which are non-unitary) circumvent the barrier
to uniform-mixing identified by Aharonov et al. [6]. Moreover, the “mixing time”
is robust [31]:

Theorem 8. Up to logarithmic factors in N and T ′, the T ′-repeated quantum
walk 〈HP , ωT 〉 has the same “mixing time” under any “smooth” decoherence
model.

Decoherent walks on lattices. Let us turn our attention now to the special case in
which P is the simple random walk on the d-dimensional periodic lattice (torus)
Z
d
n. In this case, one can prove a quantum speedup for the mixing time [31].

Recall that the classical mixing time is O(n2d log d), which stays under the target
upper bound (16) only when Z

d
n is quite high-dimensional: in particular, when

d is roughly of order n2 or larger. That the low-dimensional case is a bottleneck
is unsurprising considering the discussion immediately preceding (16).
4 More precisely, ωT is a family of distributions satisfying Et←ωT [eiθt] → 0 as T → ∞

for any θ �= 0.



520 P.C. Richter

In [31] it is proven that the “quantum mixing time” of the decoherent quantum
walk on the torus is T · T ′ = O(nd log d):

Theorem 9. Let P be the simple random walk on Z
d
n, the d-dimensional torus

with n ≥ 2 vertices per side. The O(log d)-repeated continuous-time quantum
walk 〈HP , ωnd/2〉 mixes.

This beats the target upper bound (16) and confirms the O(n) and O(d log d)
scaling estimates of Fedichkin et al. [28,29,30]. Previously, mixing speedups were
known only for the unitary quantum walks of Nayak et al. [4,5] and Aharonov
et al. [6] on the cycle and of Moore and Russell [23] on the hypercube – see Ta-
ble 1. Thus, this result shows that introducing a small amount of decoherence to
a quantum walk can simultaneously force convergence to the uniform distribu-
tion while preserving a quantum mixing speedup, an advantageous combination
for algorithmic applications.

Table 1. Known mixing upper bounds for random vs. quantum walks

Graph Spectral estimate (16) Random walk Quantum walk

Zn O(n log n) O(n2) O(n) [4,5,6]

Z
d
n O(d

√
dn log n) O(n2d log d) O(nd log d) [31]

Z
d
2 O(d

√
d) O(d log d) O(d) [23]

A final remark: The continuous-time quantum walk can be simulated effi-
ciently by a quantum circuit – in particular, without destroying the quantum
speedup over the classical mixing time. Nevertheless, one would like to know
whether the Grover walk mixes just as well as the continuous-time walk. There
is some positive evidence for the torus Z

2
n [34,35,36] and a proof for the hyper-

cube Z
n
2 [23].

6 Outlook

Characterizing the quantum speedup achievable for the mixing time remains an
active area of research. Is a generic quantum mixing speedup of

√
δ−1 provable?

If so, is decoherence is a necessary ingredient? If not, which Markov chains
admit no such speedup? Can a quantum speedup be demonstrated for mixing
of a reversible (but asymmetric) Markov chain to its non-uniform stationary
distribution?

Acknowledgements. Thanks to Mario Szegedy, Viv Kendon, and Todd Brun for
their feedback on [31,33].

References

1. Richter, P.: Quantum walks and ground state problems. PhD thesis, Rutgers Uni-
versity (2007)

2. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. IEEE
FOCS, pp. 32–41 (2004)



The Quantum Complexity of Markov Chain Monte Carlo 521

3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Com-
put. 37(1), 210–239 (2007)

4. Nayak, A., Vishwanath, A.: Quantum walk on the line. DIMACS TR 2000-43.
quant-ph/0010117

5. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional
quantum walks. In: Proc. ACM STOC, pp. 37–49 (2001)

6. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs.
In: Proc. ACM STOC, pp. 50–59 (2001)

7. Lovász, L.: Random walks on graphs: a survey. In: Combinatorics: Paul Erdos is
Eighty, Bolyai Society (1993)

8. Aldous, D.: Some inequalities for reversible Markov chains. J. Lond. Math.
Soc. 25(2), 564–576 (1982)

9. Diaconis, P., Strook, D.: Geometric bounds for eigenvalues of Markov chains. Ann.
Appl. Probab. 1, 36–61 (1991)

10. Sinclair, A.: Improved bounds for mixing rates of Markov chains and multicom-
modity flow. Combin. Probab. Comput. 1, 351–370 (1992)

11. Somma, R., Boixo, S., Barnum, H.: Quantum simulated annealing. arXiv:0712.1008
[quant-ph] (2007)

12. Watrous, J.: Quantum simulations of classical random walks and undirected graph
connectivity. J. Comput. System Sci. 62(2), 376–391 (2001)

13. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58,
915 (1998)

14. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum
and classical random walks. Quantum Inf. Process. 1, 35 (2002)

15. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation. SIAM J. Com-
put. 37(1), 47–82 (2007)

16. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev.
A 48, 1687 (1993)

17. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Statist.
Phys. 85, 551–574 (1996)

18. Meyer, D.: On the absence of homogeneous scalar unitary cellular automata. Phys.
Lett. A 223(5), 337–340 (1996)

19. Ambainis, A.: Quantum walks and their algorithmic applications. Internat. J.
Quantum Inf. 1, 507–518 (2003)

20. Kempe, J.: Quantum random walks – an introductory overview. Contemporary
Physics 44(4), 307–327 (2003)

21. Kendon, V.: Decoherence in quantum walks – a review. quant-ph/0606016
22. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In:

Proc. ACM STOC, pp. 575–584 (2007)
23. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Rolim, J.D.P., Vad-

han, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 164–178. Springer, Heidel-
berg (2002)

24. Spielman, D.: Lecture notes for Spectral Graph Theory and its Applications (Yale
University) (Fall 2004)

25. Childs, A.: Quantum information processing in continuous time. PhD thesis, Mas-
sachusetts Institute of Technology (2004)

26. Gerhardt, H., Watrous, J.: Continuous-time quantum walks on the symmetric
group. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003
and APPROX 2003. LNCS, vol. 2764, pp. 290–301. Springer, Heidelberg (2003)

27. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys.
Rev. A 67, 042315 (2003)



522 P.C. Richter

28. Fedichkin, L., Solenov, D., Tamon, C.: Mixing and decoherence in continuous-time
quantum walks on cycles. Quantum Inf. Comput. 6, 263–276 (2006)

29. Solenov, D., Fedichkin, L.: Continuous-time quantum walks on a cycle graph. Phys.
Rev. A 73, 012313 (2006)

30. Solenov, D., Fedichkin, L.: Non-unitary quantum walks on hyper-cycles. Phys. Rev.
A 73, 012308 (2006)

31. Richter, P.: Quantum speedup of classical mixing processes. Phys. Rev. A 76,
042306 (2007)

32. Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube. Phys.
Rev. A 72, 062304 (2005)

33. Richter, P.: Almost uniform sampling via quantum walks. New J. Phys. 9(72)
(2007)

34. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks.
Phys. Rev. A 69, 052323 (2004)

35. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum
walks: coins and initial states. New J. Phys. 5(83) (2003)

36. Mackay, T., Bartlett, S., Stephenson, L., Sanders, B.: Quantum walks in higher
dimensions. J. Phys. A 35, 2745 (2002)



Topological Dynamics of 2D Cellular Automata

Mathieu Sablik1 and Guillaume Theyssier2

1 UMPA, (UMR 5669 — CNRS, ENS Lyon), 46,
allée d’Italie 69364 Lyon cedex 07, France

and
LATP, (UMR 6632 — CNRS, Université de Provence), CMI, Université de Provence,

Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13,
France

mathieu.sablik@umpa.ens-lyon.fr, sablik@cmi.univ-mrs.fr
2 LAMA, (UMR 5127 — CNRS, Université de Savoie), Campus Scientifique, 73376

Le Bourget-du-lac cedex, France
guillaume.theyssier@univ-savoie.fr

Abstract. Topological dynamics of cellular automata (CA), inherited
from classical dynamical systems theory, has been essentially studied in
dimension 1. This paper focuses on 2D CA and aims at showing that
the situation is different and more complex. The main results are the
existence of non sensitive CA without equicontinuous points, the non-
recursivity of sensitivity constants and the existence of CA having only
non-recursive equicontinuous points. They all show a difference between
the 1D and the 2D case. Thanks to these new constructions, we also
extend undecidability results concerning topological classification previ-
ously obtained in the 1D case.

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
of cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells, which evolve uniformly and synchronously according to a
local rule depending only on a finite number of neighboring cells. A snapshot of
the states of the cells at some time of the evolution is called a configuration, and
a cellular automaton can be view as a global action on the set of configurations.

Despite the apparent simplicity of their definition, cellular automata can have
very complex behaviours. One way to try to understand this complexity is to
endow the space of configurations with a topology and consider cellular automata
as classical dynamical systems. With such a point of view, one can use well-
tried tools from dynamical system theory like the notion of sensitivity to initial
condition or the notion of equicontinuous point.

This approach has been followed essentially in the case of one-dimensional
cellular automata. P. Kůrka has shown in [1] that 1D cellular automata are
partitioned into two classes:

– Eq, the set of cellular automata with equicontinuous points,
– S, the set of sensitive cellular automata.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 523–532, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



524 M. Sablik and G. Theyssier

We stress that this partition result is false in general for classical (continuous)
dynamical systems. Thus, it is natural to ask whether this result holds for the
model of CA in any dimension, or if it is a “miracle” or an “anomaly” of the
one-dimensional case due to the strong constraints on information propagation
in this particular setting. One of the main contributions of this paper is to show
that this is an anomaly of the 1D case (section 3): there exist a class N of 2D
CA which are neither in Eq nor in S.

Each of the sets Eq and S has an extremal sub-class: equicontinous and expan-
sive cellular automata (respectively). This allows to classify cellular automata
in four classes according to the degree of sensitivity to initial conditions. The
dynamical properties involved in this classification have been intensively studied
in the literature for 1D cellular automata (see for instance [1,2,3,4]). Moreover,
in [5], the undecidability of this classification is proven, except for the expansivity
class whose decidability remains an open problem.

In this paper, we focus on 2D CA and we are particularly interested in differ-
ences from the 1D case. As said above, we will prove in section 3 that there is
a fundamental difference with respect to the topological dynamics classification,
but we will also adopt a computational complexity point of view and show that
some properties or parameters which are computable in 1D are non recursive in
2D (proposition 5 and 8 of section 4). To our knowledge, only few dimension-
sensitive undecidability results are known for CA ([6,7]). However, we believe
that such subtle differences are of great importance in a field where the common
belief is that everything interesting is undecidable.

Moreover, we establish in section 4 several complexity lower bounds on the
classes defined above and extend the undecidability result of [5] to dimension
2. Notably, we show that each of the class Eq, S and N is neither recursively
enumerable, nor co-recursively enumerable. This gives new examples of “natural”
properties of CA that are harder than the classical problems like reversibility,
surjectivity or nilpotency (which are all r.e. or co-r.e.).

2 Definitions

Let A be a finite set and M = Z (for the one-dimensional case) or Z
2 (for the

two-dimensional case). We consider AM, the configuration space of M-indexed
sequences in A. If A is endowed with the discrete topology, AM is compact,
perfect and totally disconnected in the product topology. Moreover one can define
a metric on AM compatible with this topology:

∀x, y ∈ AM, dC(x, y) = 2−min{‖i‖∞:xi �=yi i∈M}.

Let U ⊂M. For x ∈ AM, denote xU ∈ AU the restriction of x to U. Let U ⊂M

be a finite subset, Σ is a subshift of finite type of order U if there exists F ⊂ AU

such that x ∈ Σ ⇐⇒ xm+U ∈ F ∀m ∈ M. In other word, Σ can be viewed as
a tiling where the allowed patterns are in F .

In the sequel, we will consider tile sets and ask whether they can tile the plane
or not. In our formalism, a tile set is a subshift of finite type: a set of states (the



Topological Dynamics of 2D Cellular Automata 525

tiles) given together with a set of allowed patterns (the tiling constraints). We
will restrict to 2 × 1 and 1 × 2 patterns (dominos) since it is sufficient to have
the undecidability results of Berger [8].

A cellular automaton (CA) is a pair (AM, F ) where F : AM → AM is defined
by F (x)m = f((xm+u)u∈U) for all x ∈ AM and m ∈M where U ⊂ Z is a finite set
named neighborhood and f : AU → A is a local rule. The radius of F is r(F ) =
max{‖u‖∞ : u ∈ U}. By Hedlund’s theorem [9], it is equivalent to say that F is
a continuous function which commutes with the shift (i.e. σm ◦ F = F ◦ σm for
all m ∈ M).

We recall here general definitions of topological dynamics used all along the
article. Let (X, d) be a metric space and F : X → X be a continuous function.

• x ∈ X is an equicontinuous point if for all ε > 0, there exists δ > 0, such
that for all y ∈ X , if d(x, y) < δ then d(Fn(x), Fn(y)) < ε for all n ∈ N.
• (X,F ) is sensitive if there exists ε > 0 such that for all δ > 0 and x ∈ X ,

there exists y ∈ X and n ∈ N such that d(x, y) < δ and d(Fn(x), Fn(y)) > ε.

3 Non Sensitive CA without Any Equicontinuous Point

In this section, we will construct a 2D CA which has no equicontinuous point
and is not sensitive to initial conditions. This is in contrast with dimension 1
where any non-sensitive CA must have equicontinuous points as shown in [1].

The CA (denoted by F in the following) is made of two components:

– an obstacle component (almost static) for which only finite type conditions
are checked and corrections are made locally ;

– a particle component whose overall behaviour is to move left and to bypass
obstacles.

Formally, F has a Moore’s neighborhood of radius 2 (25 neighbors) and a
state set A with 12 elements : A =

{
U,D, 0, 1, ↓, ↑,←,→,↙,↘,↖,↗}

where
the subset AF = {1, ↓, ↑,←,→,↙,↘,↖,↗} corresponds to the obstacle com-
ponent and {U,D, 0} to the particle component.

Let ΣF be the subshift of finite type of AZ
2

defined by the set of allowed
patterns constituted by all the 3 × 3 patterns appearing in the following set of
finite configurations:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ↘ ↓ ↓ ↓ ↙ ∗ ∗
∗ ∗ ∗ → 1 1 1 ← ∗ ∗
∗ ∗ ∗ → 1 1 1 ← ∗ ∗
∗ ∗ ∗ → 1 1 1 ← ∗ ∗
∗ ∗ ∗ ↗ ↑ ↑ ↑ ↖ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

where ∗ stand for any state in A \ AF .



526 M. Sablik and G. Theyssier

In the sequel, a configuration x is said to be finite if the set
{
z : x(z) �= 0

}
is

finite. Moreover, in such a configuration, we call obstacle a maximal 4-connected
region of states from AF .

The following lemma (the proof is straightforward) states that finite configu-
rations from ΣF consist of rectangle obstacles inside a free A \AF background.
Moreover, obstacles are spaced enough to ensure that any position “sees” at
most one obstacle in its 3× 3 neighborhood.

Lemma 1. Let x ∈ ΣF be a finite configuration. For any z ∈ Z
2 we have the

following:

– either x(z) ∈ AF and z belongs to a rectangular obstacle;
– or x(z) �∈ AF and the set of positions

{
z′ : x(z′) ∈ AF and ‖z′ − z‖∞ ≤ 1

}

is empty or belongs to the same obstacle.

The local transition function of F can be sketched as follows:

– states from AF are turned into 0’s if finite type conditions defining ΣF are
violated locally and left unchanged in any other case ;

– states U and D behave like a left-moving particle when U is just above D
in a background of 0’s, and they separate to bypass obstacles, U going over
and D going under, until they meet at the opposite position and recompose
a left-moving particle (see figure 1).

DD

U U

U

D

U

D

Fig. 1. A particle separating into two parts (U and D) to bypass an obstacle (the black
region)

A precise definition of the local transition function of F is the following:

1. if the neighborhood (5× 5 cells) forms a pattern forbidden in ΣF , then turn
into state 0 ;

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighborhood detailed in figure 2

3. in any other case, turn into state 0.

The possibility to form arbitrarily large obstacles prevents F from being sen-
sitive to initial conditions.

Proposition 1. F is not sensitive to initial conditions.

Proof. Let ε > 0. Let cε be the configuration everywhere equal to 0 except in
the square region of side 2

⌈− log ε
⌉

around the centre where there is an obstacle.



Topological Dynamics of 2D Cellular Automata 527

�

∗ ∗ ∗
AF x ∗
AF AF ∗

�

�→ x,

�

AF AF ∗
AF x ∗
AF AF ∗

�

�→ x,

AF AF AF
AF x AF
AF AF AF

�→ x,

0/AF 0 0
AF 0 0
AF U 0

�→ U,

0 0 0

0 0 0
AF U 0

�→ U,

0 0 0

0 0 U

AF AF D/AF

�→ U,

0 0 0

0 0 U

0 0/AF AF

�→ U,

0 U 0/AF

0 0 AF

0 0 AF

�→ U,

0 U AF

0 0 AF

0 0 D

�→ U,

AF D 0
AF 0 0

0/AF 0 0
�→ D,

AF D 0

0 0 0

0 0 0
�→ D,

AF AF U/AF

0 0 D

0 0 0
�→ D,

0 0/AF AF

0 0 D

0 0 0
�→ D,

0 0 AF

0 0 AF

0 D 0/AF

�→ D,

0 0 U

0 0 AF

0 D AF

�→ D

0/AF 0/AF U

0/AF 0 D

0/AF 0/AF 0/AF

�→ D,

0/AF 0/AF 0/AF
0/AF 0 U

0/AF 0/AF D

�→ U

Fig. 2. Transition rule of F where x stands for any state in AF , ’∗’ means any state
in A \ AF (2 occurrences of ∗ are independent), and curved arrows mean that the
transition is the same for any rotation of the neighborhood pattern

∀y ∈ AZ
2
, if d(y, cε) ≤ ε/4 then ∀t ≥ 0, d

(
F t(cε), F t(y)

) ≤ ε since a well-formed
obstacle (precisely, a partial configuration that would form a valid obstacle when
completed by 0 everywhere) is inalterable for F provided it is surrounded by
states in A\AF (see the 3 first transition rules of case 2 in the definition of the
local rule): this is guarantied for y by the condition d(y, cε) ≤ ε/4. ��
The next lemma shows that ΣF attracts any finite configuration under the action
of F .

Lemma 2. For any finite configuration x, there exists t0 such that ∀t ≥ t0 :
F t(x) ∈ ΣF .

The following lemma establishes the key property of the dynamics of F : particles
can reach any free position inside a finite field of obstacles from arbitrarily far
away from the field.

Lemma 3. Let x ∈ ΣF ∩
({0} ∪ AF

)Z
2

be a finite configuration. For any z0 ∈
Z

2 such that x(z0) = 0 there exists a path (zn) such that:

1. ‖zn‖∞ →∞
2. ∃n0, ∀n ≥ n0, if xn is the configuration obtained from x by adding a par-

ticle at position zn (precisely, xn(zn) = U and xn
(
zn + (0,−1)

)
= D) then(

Fn(xn)
)
(z0) ∈ {U,D}.

Proof. First, since x ∈ ΣF and x(z0) = 0, then either x
(
z0 + (0, 1)

)
= 0 or

x
(
z0 + (0,−1)

)
= 0. We will consider only the first case since the proof for the

second one is similar. Let (zn) be the path starting from z0 defined as follows:



528 M. Sablik and G. Theyssier

– If x
(
zn + (1, 0)

)
= 0 and x

(
zn + (1,−1)

)
= 0 then zn+1 = zn + (1, 0).

– Else, position zn + (1, 0) and/or position zn + (1,−1) belongs to an obsta-
cle P . Let a, b and c be the positions of the upper-left, upper-right and
lower-right outside corners of P and let p be its half perimeter. Then define
zn+1, . . . , zn+p+1 to be the sequence of positions made of:
• a (possibly empty) vertical segment from zn to a,
• the segment [a; b],
• a (possibly empty) vertical segment from b to zn+p+1 where zn+p+1 is

the point on [b; c] such that zna+ bzn+p+1 = bc.

We claim that the path (zn) constructed above has the properties of the lemma.
Indeed, one can check that for each case of the inductive construction of a point
zm from a point zn we have:

– ‖zm‖∞ > ‖zn‖∞,
–

(
Fm−n(xm)

)
(zn) = U and

(
Fm−n(xm)

)
(zn + (0,−1)) = D (straightforward

from the definition of F ). ��
Proposition 2. F has no equicontinuous points.

Proof. Assume F has an equicontinuous point, precisely a point x which verifies
∀ε > 0, ∃δ : ∀y, d(x, y) ≤ δ ⇒ ∀t, d(F t(x), F t(y)

) ≤ ε.
Suppose that there is z0 such that x(z0) = 0 and let ε = 2−‖z0‖∞−1. We will

show that the hypothesis of x being an equicontinuous point is violated for
this particular choice of ε. Consider any δ > 0 and let y be the configuration
everywhere equal to 0 except in the central region of radius − log �δ� where it is
identical to x. Since y is finite, there exists t0 such that y+ = F t0(y) ∈ ΣF (by
lemma 2). Moreover, the proof of lemma 2 guaranties that for any positive integer
t,

(
F t(y+)

)
(z0) = x(z0) = 0. So we can apply lemma 3 on y+ and position z0

to get the existence of a path (zn) allowing particles placed arbitrarily far away
from z0 to reach the position z0 after a certain time. For any sufficiently large
n, we can construct a configuration y′ obtained from y by adding a particle at
position zn. By the property of (zn), we have:

(
Fn(y)

)
(z0) �= (

Fn(y′)
)
(z0) and

therefore d
(
Fn(y), Fn(y′)

)
> ε. Since, if n > − log �δ�, both y and y′ are in the

ball of centre x and radius δ, we have the desired contradiction.
Assume now that ∀z, x(z) ∈ AF . There must exist some z0 such that x(z0) �= 1

(since the uniform configuration everywhere equal to 1 is not an equicontinuous
point). It follows from the definition of ΣF that z0 belongs to a forbidden pattern
for ΣF . Therefore

(
F (x)

)
(z0) = 0 and we are brought back to the previous case

of this proof. ��

4 Undecidability of Topological Classification Revisited

We will use simulations of Turing machines by tile sets in the classical way (orig-
inally suggested by Wang [10]): the tiling represents the space-time diagram of
the computation and the transition rule of the Turing machine are converted into



Topological Dynamics of 2D Cellular Automata 529

tiling constraints. Without loss of generality, we only consider Turing machines
working on a semi-infinite tape with a single final state. The ith machine of this
kind in a standard enumeration is denoted by Mi. In the sequel we use the fol-
lowing notations. First, to each Mi we associate a tile set Ti whose constraints
ensure the simulation of Mi as mentioned above; Second, when constructing a
CA G, we denote by ΣG the subshift of its admissible obstacles, which plays the
same role as ΣF for F with some differences detailed below.

In [5], the authors give a recursive construction which produce either a 1D
sensitive CA or a 1D CA with equicontinuous points according to whether a
Turing machine halts on the empty input. By noticing that a 1D CA is sensitive
(resp. has equicontinuous points) in the 1D topology if and only if it is sensitive
(resp. has equicontinuous points) in the 2D topology when viewed as a 2D CA
(neighbors are aligned, e.g. horizontally), we get the following proposition.

Proposition 3. There is a recursive function Φ1 : N→ CA such that Φ1(i) ∈ Eq
if Mi halts on the empty input and Φ1(i) ∈ S otherwise.

However, this is not enough to establish the overall undecidability of the topo-
logical classification of 2D CA. The main concern of this section is to complete
proposition 3 in order to prove a stronger and more complete undecidability
result summarized in the following theorem.

Theorem 1. Each of the class Eq, S and N is neither r.e. nor co-r.e. Moreover
any pair of them is recursively inseparable.

The proof of this theorem rely on different variants of the construction of the
automaton F above. Each time, the construction scheme is the same, and the
desired property is obtained by adding various contents inside obstacles and
slightly changing the rules of destruction of obstacles according to that content.

The next proposition can be established by using a mechanism to bound or
not the size of admissible obstacles according to whether a Turing machine halts
or not. The idea is to force the tiling representation of a computation on a
blank tape in each obstacle (using the lower left corner) and to forbid the final
state. The proof mechanism used for F can be applied if there is no bound on
admissible obstacles. Otherwise, we get a sensitive CA.

Proposition 4. There is a recursive function Φ2 : N→ CA such that Φ2(i) ∈ S
if Mi halts on the empty input and Φ2(i) ∈ N otherwise.

Before going on with the different constructions needed to prove theorem 1,
let us stress the dynamical consequence of the construction of proposition 4.
It is well-known that for any 1D sensitive CA of radius r, 2−2r is always the
maximal admissible sensitivity constant (see for instance [1]). Thanks to the
above construction it is easy to construct CA with tiny sensitivity constants as
shown by the following proposition.

Proposition 5. The (maximal admissible) sensitivity constant of sensitive 2D
CA cannot be recursively (lower-)bounded in the number of states and the neigh-
borhood size.



530 M. Sablik and G. Theyssier

Proof. It is straightforward to check that for each CA Φ2(i) whereMi halts after
n steps on the empty input, the maximal admissible obstacle is of height O(n)
and of width at least O(log(n)). The proposition follows since the sensitivity
constant of any CA Φ2(i) ∈ S is precisely 2−l/2+1 where l is the minimum
between the largest height and the largest width of admissible obstacles. ��

Back to the path towards theorem 1, the following proposition uses the same
ideas as proposition 4 but it exchanges the role of halting and non-halting com-
putations.

Proposition 6. There is a recursive function Φ3 : N→ CA such that Φ3(i) ∈ N
if Mi halts on the empty input and Φ3(i) ∈ S otherwise.

The properties of the CA F and the other constructions above rely on the fact
that obstacles able to stop or deviate particles cannot be fit together to form
larger obstacles. Thus, F and other CA have no equicontinuous point. In the
following, we will use a new kind of obstacles: they are protected from particles
by a boundary as the classical obstacles of F , but they are made only of successive
boundaries like onion skins. With this new construction it is not difficult to build
an equicontinuous point provided there are arbitrarily large valid obstacles. The
next proposition use this idea to reduce existence of equicontinuous point to a
tiling problem.

Proposition 7. There is a recursive function Φ4 which associate with any tile
set T a CA Φ4(T ) which is in class Eq if T tiles the plane and in class N
otherwise.

Proof (sketch). Given a tile set T , the CA Φ4(T ) is identical to F , except that it
has a second kind of obstacles, called T -obstacles. T -obstacles are square patterns
of states from the set E = T ×X with X = {↓, ↑,←,→,↙,↘,↖,↗,−} and
where the T component is a valid tiling and the X component is made from the
set of 2× 2 patterns appearing in the following finite configuration:

↓ ↓
↘ ↓ ↓ ↓ ↙

→ → ↘ ↓ ↙ ← ←
→ → → − ← ← ←

→ ↗ ↑ ↖ ←
↗ ↑ ↑ ↑ ↖
↑ ↑ ↑ ↑ ↑

↑ ↑

The X component is used to give everywhere in T -obstacles a local notion of
inside and outside as depicted by figure 3 (up to π/2 rotations): roughly speak-
ing, arrows point to the inside region. Other constraints concerning T -obstacles
are checked locally:

– any pair of obstacles must be at least 2 cells away from each other;
– their shape must be a square and this is ensured by requiring that any cell

of a T -obstacle can have {0, U,D} neighbors only in its outside region;



Topological Dynamics of 2D Cellular Automata 531

� � �
↓

� � �
� ↘
�

−

Fig. 3. Inside (white) and outside (black) positions for states of X

– the behaviour of particles with T -obstacles is the same as with classical
obstacles (they can not cross them and states U and D separate to bypass
them).

The overall dynamics of Φ4(T ) is similar to that of F with the following ex-
ception, which is the key point of the construction: destruction of non-valid
T -obstacles is done progressively to preserve as much as possible valid zones
inside non-valid obstacles. More precisely any cell in a state from E remains un-
changed unless one of the following conditions is verified in which case it turns
into state 0:

– if there is an error in the inside neighborhood;
– if there is a position in the outside neighborhood such that the pattern

formed by that position together with the cell itself is forbidden;
– if there is a state from E in the 5× 5 neighborhood which is not connected

to the cell by states from E.

One can check that proposition 1 is still true. Moreover proposition 2 is true if and
only if their is a bound on the size of valid T -obstacle. Indeed, lemma 2 and 3 are
always true and the only point which can be eventually false with the CA Φ4(T )
is the last case in the proof of proposition 2. Precisely, if a valid configuration
x such that ∀z, x(z) ∈ E can be constructed, then it is an equicontinuous point.
Otherwise, if such a x is not valid, then it contains an error somewhere and the
proof scheme of proposition 2 can be applied to Φ4(T ). The proposition follows
since such a valid x can be constructed if and only if T can tile the plane. ��

The previous propositions give a set of reductions from Turing machines or tile
sets to CA and one can easily check that the main theorem follows using Berger’s
theorem [8] and classical results of the set of halting Turing machines.

To finish this section, we will discuss another difference between 1D and
2D concerning the complexity of equicontinuous points. Let us first recall that
equicontinuous point in 1D CA can be generated by finite words often called
“blocking” words. Precisely, for any F with equicontinuous points, there exists
a finite word u such that ∞u∞ is an equicontinuous point for F (proof in [1]).
The previous construction can be used with the tile set of Myers [11] which can
produce only non-recursive tilings of the plane. Therefore the situation is more
complex in 2D, and we have the following proposition.

Proposition 8. There exists a 2D CA having equicontinuous points, but only
nonrecursive ones.



532 M. Sablik and G. Theyssier

5 Open Problems

It is well-known that equicontinuous CA are exactly ultimately periodic CA (if
they are also bijective, they are periodic). The proof techniques developed by
Kari in [6] allow to prove that there is no recursive lower-bound on the pre-
period and period of 2D equicontinuous CA. An interesting open question in the
continuation of this paper is to determine whether periods of 1D equicontinuous
CA (bijective or not) can be recursively bounded or not. The only known result
in 1D is that pre-periods are not recursively bounded (this is essentially the
nilpotency problem).

It is interesting to notice that for 1D CA, classes S and Eq are easily definable
in first-order arithmetic. This is due to the characterisation by blocking words
mentioned above: the existential quantification over configurations can be re-
placed by a quantification over finite words in the definition of Eq. Proposition 8
shows that first-order definability of S, Eq or N for 2D CA is more challenging.
We believe they are but at a higher level in the arithmetical hierarchy.

References

1. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory and Dynamical Systems 17, 417–433 (1997)

2. Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular
automata. Israel J. Math. 99 (1997)

3. Blanchard, F., Tisseur, P.: Some properties of cellular automata with equiconti-
nuity points. Ann. Inst. Henri Poincaré, Probabilités et statistiques 36, 569–582
(2000)

4. Fagnani, F., Margara, L.: Expansivity, permutivity, and chaos for cellular au-
tomata. Theory of Computing Systems 31(6), 663–677 (1998)

5. Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity clas-
sification for cellular automata. In: Morvan, M., Rémila, É. (eds.) DMCS 2003.
Volume AB of DMTCS Proceedings, pp. 117–128 (2003)

6. Kari, J.: Reversibility and Surjectivity Problems of Cellular Automata. Journal of
Computer and System Sciences 48(1), 149–182 (1994)

7. Bernardi, V., Durand, B., Formenti, E., Kari, J.: A new dimension sensitive prop-
erty for cellular automata. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS
2004. LNCS, vol. 3153, pp. 416–426. Springer, Heidelberg (2004)

8. Berger, R.: The undecidability of the domino problem. Mem. Amer. Math Soc. 66
(1966)

9. Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Sys-
tems. Mathematical Systems Theory 3(4), 320–375 (1969)

10. Wang, H.: Proving theorems by pattern recognition ii. Bell System Tech. Jour-
nal 40(2) (1961)

11. Myers, D.: Nonrecursive tilings of the plane. ii. The Journal of Symbolic
Logic 39(2), 286–294 (1966)



Complexity of Aperiodicity for Topological

Properties of Regular ω-Languages

Victor L. Selivanov1,� and Klaus W. Wagner2

1 A.P. Ershov Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

vseliv@nspu.ru
2 Institut für Informatik

Julius-Maximilians-Universität Würzburg
wagner@informatik.uni-wuerzburg.de

Abstract. We study the complexity of aperiodicity restricted to topo-
logical properties of regular ω-languages (i.e. properties closed under
the Wadge equivalence on the Cantor space of ω-words) restricted to
aperiodic sets. In particular, we show the PSPACE-completeness of such
problems for several usual deterministic and non-deterministic automata
representations of regular ω-languages.

Keywords: Regular aperiodic ω-language, Wadge reducibility, aperiodic
automaton, deterministic Muller automaton, nondeterministic Büchi au-
tomaton, monadic second-order formula.

1 Introduction

The study of complexity questions for different types of automata on finite and
infinite words is an important research topic in automata theory closely related
to the synthesis and verification of finite-state systems. Whereas there are many
complexity results on finite automata accepting finite words, there are only a
few results on finite ω-automata. As a prominent example of the latter let us
mention the recent result that the problem of deciding membership in the class
of regular aperiodic ω-languages is PSPACE-complete when the ω-languages are
given by nondeterministic Büchi automata [DG08].

In this paper we study the complexity of aperiodicity restricted to topological
properties. By topological property we mean here a property closed under the
Wadge equivalence on the Cantor space Aω of ω-words. For L,K ⊆ Aω, L is
said to be Wadge reducible to K (in symbols L ≤W K), if L = g−1(K) for some
continuous function g : Aω → Aω. By ≡W we denote the induced equivalence
relation which gives rise to the corresponding quotient partial ordering. Following
a well established jargon, we call this ordering the structure of Wadge degrees.
The operation L ⊕ K = {a · ξ, b · η | b ∈ A� {a}, ξ ∈ L, η ∈ K}, where a is a

� Supported by DFG Mercator program, by DFG-RFBR Grant 06-01-04002 and by
RFBR grant 07-01-00543a.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 533–543, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



534 V.L. Selivanov and K.W. Wagner

fixed letter in A, induces the operation of least upper bound in the structures of
Wadge degrees.

To explain our results, let us recall some facts from [Wag79] where the Wadge
degrees of regular ω-languages (over any alphabet A with at least two symbols)
were determined, in particular the following results were established:

1) The structure (R;≤W ) of regular ω-languages under the Wadge reducibility
is almost well-ordered with order type ωω, i.e. there are regular ω-languagesAα ∈
R, for each ordinal α < ωω, such that Aα <W Aα ⊕Aα <W Aβ for α < β < ωω

and any regular set is Wadge-equivalent to one of the sets Aα, Aα, Aα⊕Aα(α <
ωω).

2) Any class Rα = {C ∈ R | C ≤W Aα} is decidable.

Let A be the class of regular aperiodic (or star-free) ω-languages. This class is
certainly the most important and popular proper subclass of R that has many
interesting characterizations and plays a noticeable role in the literature on spec-
ification and verification. We are interested in the complexity of the topological
properties restricted to A, in particular of the classes Aα = Rα ∩A. The classes
Aα were studied in detail in [Se07] where it was in particular observed that
the sets Aα in 1) may be assumed aperiodic, hence the structure of the Wadge
degrees of sets in A coincides with the structure of those in R.

From a result in [DG08] it follows that the class A is decidable in PSPACE
w.r.t. the deterministic Muller representation. Since the classes Rα are decidable
in polynomial time P w.r.t. the Muller representation [KPB95, WY95], each class
Aα is also decidable in PSPACE . Is this upper complexity bound optimal or
can one find a clever more efficient algorithm for deciding Aα? We consider
questions of this type and determine the complexity of many similar natural
problems (for different known representations of regular ω-languages and for
different topological properties). For some cases we were able to obtain only
partial results. One of our main results is the following

Theorem 1. Let C be a nonempty Boolean combination of classes from {Aα |
1 ≤ α < ωω} ∪ {co-Aα | 1 ≤ α < ωω} where C =def A� C. Then the problem of
deciding, given a deterministic Muller (Rabin, Mostowski, Streett), or nondeter-
ministic Büchi (Muller, Rabin, Mostowski) automaton M, whether Lω(M) ∈ C
is PSPACE-complete.

Since R0 = A0 = {∅}, from the well known facts it follows that A0 is decidable
in P for any kind of automata representation. This is the reason for the absence
of the ordinal 0 in the formulation of Theorem 1. This result and its proof below
informally mean that the aperiodicity property is in a sense independent from the
topological property (such an independence was already clear from the results
in [Se07]). Surprisingly, the complexity estimation in Theorem 1 is the same for
several popular automata representations of regular ω-languages.

As is well known, along with the different kind of automata, the regular
ω-languages are characterized by several other popular formalisms including
monadic second-order logic or ω-regular expressions. We provide also some



Complexity of Aperiodicity for Topological Properties 535

information on the complexity of classes from the last theorem for the cor-
responding representations of regular ω-languages. E.g., we prove the follow-
ing result where Lφ denotes the set of ω-words satisfying a sentence φ. For
k ≥ 1 define the tower-of-exponents function exp by exp(0,m) =def m and
exp(k + 1,m) =def 2exp(k,m).

Theorem 2. Let C be a Boolean combination of classes from {Aα | 1 < α <
ωω} ∪ {co-Aα | 1 < α < ωω} where C =def A� C. Then the problem of
deciding, given a weak monadic second-order formula φ, whether Lφ ∈ C is
DSPACE(exp(O(n), 1))-complete.

After recalling in the next section notation, notions and facts we rely upon we
consider subsequently the complexity problems with respect to the automata
representations, the representation by monadic second-order formulas, and the
representations by ω-regular expressions.

2 Preliminaries

We assume the reader to be acquainted with automata on finite and infinite
words and standard notation about languages. Regular languages are languages
L(M) recognized by deterministic finite automata (dfa) M or, equivalently,
by nondeterministic finite automata (nfa). Aperiodic regular languages are lan-
guages recognized by the so called aperiodic (or counter-free) dfa’s (for de-
tails see e.g. [Th90, Th97, PP04] and Appendix). Moreover, for any dfa M =
(Q,A, δ, s0, F ), L(M) is aperiodic iff M is aperiodic, i.e. δ(q, um) = q implies
δ(q, u) = q for all states q ∈ Q, words u ∈ A∗ and m ≥ 1.

Unlike automata on finite words, for automata on ω-words the acceptance
conditions were defined in different ways by different authors, and it is not clear
which of these conditions are more natural than the others. As a result, there are
several notions of automata accepting ω-words: deterministic (or nondetermin-
istic) Büchi (Muller, Rabin, Mostowski, Streett) automata. Regular ω-languages
coincide with the ω-languages Lω(M) recognized by deterministic Muller (Ra-
bin, Mostowski, Streett) automata or nondeterministic Büchi (Muller, Rabin,
Mostowski, Streett) automata M. Regular aperiodic ω-languages are the ω-
languages recognized by aperiodic deterministic Muller (equivalently, Mostowki)
automata.

Relate to any alphabet A = {a, . . .} the signature σA = {≤,Qa, . . . , } where
≤ is a binary relation symbol and Qa (for each a ∈ A) is a unary relation symbol.
A word u = u0 . . . un ∈ A+ may be considered as a structure u = ({0, . . . , n};≤
, Qa, . . .) of signature σA where≤ has its usual meaning and Qa(a ∈ A) are unary
predicates on {0, . . . , n} defined by Qa(i)↔ u(i) = a. For a sentence φ of σA, let
Lφ = {u ∈ A∗ | u |= φ} be the language defined by σA (the empty word can also
be included in consideration in a natural way). In automata theory people are
mostly interested in definability by first-order sentences and by monadic second-
order sentences (which, along with the syntax of first-order logic, may include
unary predicate variables and the possibility to quantify over such variables).



536 V.L. Selivanov and K.W. Wagner

Monadic second-order (resp., first-order) sentences define exactly the regular
languages (resp., the aperiodic regular languages).

The logical formalism is adapted to the context of ω-words in the obvious
way. Relate to any ξ ∈ Aω the structure ξ̃ = (ω;≤, Qa, . . .) of the signature
σA = {≤,Qa, . . . , } where ≤ is interpreted as the usual order on ω and Qa(i)↔
ξ(i) = a for all i < ω and a ∈ A. For any sentence φ of σA, let Lφ = {ξ ∈ Aω |
ξ̃ |= φ} be the ω-language defined by φ. As in the case in finite words, we will
consider formulas of first-order and monadic second-order logic. Monadic second-
order (resp., first-order) sentences of signature σA define exactly the regular
ω-languages (resp., the aperiodic regular ω-languages).

For O ⊆ {∪,∩,− , ·,2 ,∗ } regular O-expressions are variable-free terms of the
signature {∅, ε} ∪ {a | a ∈ A} ∪ O where ∅, ε and a for each a ∈ A are constant
symbols, ∪, ∩, and · are binary function symbols, and −, 2, and ∗ are unary
function symbols. Regular expressions are interpreted in the class P (A∗) of all
languages overA according to the usual definitions of language operations, where
we define L2 =def L · L. The constant symbols are interpreted respectively as ∅,
{ε}, and {a}, . . .. Thus, any regular O-expression defines a language over A. Reg-
ular O-expression where {∪, ·,∗ } ⊆ O ⊆ {∪,∩,− , ·,∗ } define exactly the regular
languages. Regular ω-languages coincide with the finite union of sets U ·V ω where
U, V are given by regular O-expressions, {∪, ·,∗ } ⊆ O ⊆ {∪,∩,− , ·,∗ }. The reg-
ular {∪,∩,− , ·}-expressions define exactly the regular aperiodic languages. Reg-
ular aperiodic ω-languages coincide with the finite union of sets U · V ω where
U, V are given by regular {∪,∩,− , ·}-expressions. More details on the material
mentioned above may be found e.g. in [Th90, Th97, Sta97, PP04].

Next we introduce names for the above-mentioned representations of regular
ω-languages. We will also formulate the decision problems to be studied in the
subsequent sections. For automata representations, B, M, R, P, and S stand
for Büchi automata, Muller automata, Rabin automata, Mostowski (parity) au-
tomata, and Strett automata, resp., and D and N stand for deterministic and
nondeterministic, resp. In this way, for example, NB is the name for represen-
tation by nondeterministic Büchi automata. For O ⊆ {∪,∩,− , · , 2,∗ }, the name
for the representation by regular O-expressions is simply O. The name for the
representation by monadic second-order formulas is MSO.

Let C be a class of ω-languages., and let D be one of the formalisms to rep-
resent regular ω-languages. We consider the

Problem: (C)D
Given: A D-representation H .
Question: Does H represent a set in C?

Sometimes one wants to consider such a problem not for all ω-languages but
only for such from a subclass B. For example, one could be interested to decide
aperiodicity only for open ω-languages. This could be less complicated than
deciding aperiodicity for all ω-languages. This leads to the following type of
problems.



Complexity of Aperiodicity for Topological Properties 537

Problem: (C|B)D

Given: A D-representation H which represents a set in B.
Question: Does H represent a set in C?

In particular, we consider the problems (Rα)D, (A)D, (Aα)D, (co-Aα)D,
(A|Rα)D, (A|co-Rα)D and the boolean combinations thereof. The following re-
lationships are obvious:

Proposition 1. Let D be any formalism for the representation of ω-regular lan-
guages, and let α < ωω. There holds
1. (A|Rα)D ≤p

m (A)D and (A|Rα)D ≤p
m (Aα)D.

2. (Aα)D = (A)D ∩ (Rα)D.

Because of the duality of the deterministic Rabin acceptance and the determin-
istic Streett acceptance we have

Proposition 2. If C is a class of ω-languages then (C)DS ≡p
m (co-C)DR.

All the introduced classes of ω-automata (besides deterministic Büchi automata)
are equivalent in the sense that they recognize the same ω-languages. Moreover,
the well known proofs of these equivalences are effective, i.e. from a given au-
tomaton of some type one can compute an equivalent automaton of any other
type. When one is interested in complexity considerations (as we are here), the
computational resources needed for finding the equivalent automaton and its
size become important. For the purposes of this paper, the computability in
(deterministic) polynomial time would be sufficient.

We say that a type D of ω-automata is polynomial time reducible to a type D′

of ω-automata (for short D ≤p D′) if there exists a polynomial time computable
function f such that, for every automaton M of type D, the result f(M) is an
automaton of type D′ which accepts the same ω-language as M. The following
relationship to decision problems is obvious:

Proposition 3. Let D and D′ be two types of ω-automata, and let P be a
problem on ω-languages. Then D ≤p D′ implies (P )D ≤p

m (P )D′ .

Unfortunately, some of the well known reductions between automata represen-
tations of regular ω-languages do not work in polynomial time. For some cases
one can even prove that this is not possible. In [Sa88] an overview on possi-
bility or impossibility of polynomial time reductions between different types of
ω-automata is given.

Theorem 3. [Sa88] The following figure represents some results on polynomial
time reductions between different types of ω-automata. A solid line means that
here exists a polynomial time reduction from the notion below to the notion
above. A dotted arc means that polynomial time reduction in this direction is
not proved and not disproved. Moreover, there are no further polynomial time
reductions between these types of ω-automata which do not already follow from
the solid lines and dotted lines.



538 V.L. Selivanov and K.W. Wagner

The following fact was established in [SW07]:

DB

NB = NR = NP

NS

NMDS DR

DP DM

Theorem 4. Let C be a Boolean combination of classes from {Rα | α < ωω} ∪
{co-Rα | α < ωω} where C =def R� C. Then (C)D ∈ PSPACE for D ∈
{DB,NB,DM,NM,DR,NR,DP,NP,DS}, i.e. the problem of deciding, given a
deterministic or nondeterministic Büchi (Muller, Rabin, Mostowski) automaton
or a deterministic Streett automaton M, whether Lω(M) ∈ C is in PSPACE.

Apparently, the following result was shown only recently.

Theorem 5. [DG08] The problem of deciding, given a nondeterministic Büchi
automaton M, whether the language Lω(M) is aperiodic is PSPACE-complete,
i.e., (A)NB is PSPACE-complete.

To our knowledge, this is the first complexity result on aperiodicity of regular
ω-languages. The analogon for languages of finite words was already known:

Theorem 6. [CH91] The problem of deciding, given a dfa M, whether the
language L(M) is aperiodic is PSPACE-complete.

As shown in [DG08], the same complexity estimation holds for the nfa’s.

3 Complexity for Automata Representations

We first consider upper bounds to our problems.

Lemma 1. For any D ∈ {DB,NB,DM,NM,DR,NR,DP,NP,DS}, the prob-
lem (A)D is in PSPACE, i.e., given a deterministic or nondeterministic Büchi
(Muller, Rabin, Mostowski) automaton or a deterministic Streett automatonM,
it is decidable in polynomial space whether it accepts an aperiodic ω-language.



Complexity of Aperiodicity for Topological Properties 539

Proof. From Theorem 5, Proposition 3, and Theorem 3 we obtain the result for
D ∈ {DB,NB,DM, NM,DR,NR,DP,NP}. The case D = DS then follows by
Proposition 2. �

From Lemma 1, Theorem 4, and Proposition 1 we also obtain

Corollary 1. (Aα)D, (A|Rα)D, (co-Aα)D, (A|co-Rα)D,∈ PSPACE for α < ωω

and D ∈ {DB,NB,DM, NM,DR,NR,DP,NP,DS}.
Now we consider lower bounds for our problems. Define the block encoding
(homomorphism) c : {0, 1}+ → {0, 1}∗ by c(0) =def 11000 and c(1) =def 11010.

Lemma 2. For every regular language L ⊆ {0, 1}+, the language L is aperiodic
if and only if the ω-language c(L)111{0, 1}ω is aperiodic. Moreover, given a
dfa M, one can compute in linear time a deterministic Muller (Büchi, Rabin,
Mostowski, Streett) automaton M′ over A such that Lω(M′) is an open set and
L(M) is aperiodic iff Lω(M′) is aperiodic.

Proof. Let L be aperiodic, then L = Lφ for a first-order sentence φ of signature
σ{0,1}. It is easy to find (see [Se02] for details, were a slightly different encoding
was used, but the argument applies also to our encoding here) a sentence φ′ of
signature σ{0,1} such that w |= φ iff c(w) |= φ′, for each w ∈ {0, 1}+. Moreover,
it is easy to find a sentence ψ of σ{0,1} such that c({0, 1}+) = Lψ. Obviously,
c(L) = c({0, 1}+) ∩ Lφ′ hence c(L) is aperiodic. By remarks on the regular
expressions in Section 2, the ω-language c(L)111{0, 1}ω is also aperiodic.

Finally, let L be non-aperiodic and let M = (Q,A, δ, s0, F ) be the minimal
dfa recognizing L. Then M is not aperiodic, hence there are states s1, . . . , sn
(for some n ≥ 2) and words x, z, u, v such that: δ(s0, x) = s1, δ(si, u) = si for all
i ∈ {1, . . . , n}, δ(si, v) = si+1 for all i ∈ {1, . . . , n−1}, δ(sn, v) = s1, δ(s1, y) ∈ F ,
and δ(s2, y) ∈ F . Then for any k ≥ 0 we have c(x)c(v)nkc(z)1ω ∈ c(L)111{0, 1}ω
and c(x)c(v)nk+1c(z)1ω ∈ c(L)111{0, 1}ω. It is well known (see e.g. Corollary 6.3
in [Th90]) that the last conditions imply that c(L)111{0, 1}ω is not aperiodic.

The second assertion is proved by a straightforward construction. �

We are ready to give the

Proof of Theorem 1. By Lemma 1 and Theorem 4, the classes Aα and co-Aα,
for each α ∈ ωω, are in PSPACE for any type of automata representations. Since
PSPACE is closed under the Boolean operations, the class C is also in PSPACE.
It remains to show that C is PSPACE-hard. By Theorem 6, it suffices to as-
sociate in polynomial time with any dfa M a deterministic ω-automaton M1

of any considered type such that L(M) is aperiodic iff Lω(M1) ∈ C. W.l.o.g.
we may assume that A1 ≤W C for some C ∈ C (otherwise, C = co-A1 by the
structure of (A;≤W ) and the assertion follows in the obvious way). Let M′ be
the automaton from the proof of Lemma 1. By remarks in Section 2 and The-
orem 3, there is a deterministic aperiodic automaton (of any type) M2 with
Lω(M2) = C. Let M1 be an automaton (of the corresponding type) satisfying



540 V.L. Selivanov and K.W. Wagner

Lω(M1) = 0Lω(M′)∪1Lω(M2). Then Lω(M1) ∈ C whenever L(M) is aperiodic
because Lω(M′) is open and hence Lω(M′) ≤W A1 by [Wag79]. By Lemma 1,
Lω(M1) is not aperiodic whenever L(M) is not aperiodic. Thus, the automaton
M1 provides the desired reduction. Since it is constructed in a very easy and
obvious way from the fixed automatonM2 and the easily computable automaton
M′, M1 is computable from M in polynomial time. �

The following assertion is an immediate corollary.

Theorem 7. Let 1 ≤ α < ωω and D ∈ {NB,DM,NM,DR,NR,DP,NP,DS}.
Then (A)D , (Aα)D, (co-Aα)D, (A|Rα)D, (A|co-Rα)D are PSPACE-hard for
D = NS and PSPACE-complete for all the other cases.

This completely solves the question of the complexity of aperiodicity for deter-
ministic and nondeterministic Büchi, Muller, Rabin and Mostowski automata
and for deterministic Streett automata. The nondeterministic Büchi case was
known before, and the upper bound for nondeterministic Streett automata re-
mains open.

4 Complexity for Logical Formula Representation

In this section we consider the complexity questions for the logical representation
of regular ω-languages, in particular we prove a generalization of Theorem 2.

For the upper bound of our result we need a result on the complexity of the
weak second order theory of one successor. Let σ1 be the signature which consists
of only one binary predicate symbol S. A natural σ1-structure is (N, S), i.e., the
set of natural numbers with the successor relation S. Let WS1S be the set of
monadic second-order σ1-sentences φ true in (N, S) when the predicate variables
are interpreted as finite subsets of N (in symbols, (N, S) |=w φ}).

For k ≥ 1 define the tower-of-exponents function exp by exp(0,m) =def m
and exp(k+ 1,m) =def 2exp(k,m). For sets A and B, we write A ≤p-lin

m B if there
exists a polynomial time computable function f such that x ∈ A ↔ f(x) ∈ B
and |f(x)| ≤ k · |x| for all x. We will use the following result:

Theorem 8 ([Me73]). WS1S is ≤p-lin
m -complete for DSPACE(exp(O(n), 1)).

We establish the lower complexity bound for our problems by reducing WS1S
to them.

Lemma 3. For any non-zero ordinal α < ωω, WS1S ≤p-lin
m (A|Rα)MSO.

Proof. Let us start with explaining how to transform a σ1-sentence into a “some-
how equivalent” σA-sentence, for a given alphabet A. Let φ be a σ1-sentence.
We replace in φ equivalently any entry of the successor relation S(x, y) with n
x < y ∧ ¬∃z(x < z < y), any entry ∃X · · · of the existential predicate quan-
tifier with ∃X(Fin(X) ∧ · · · ) and any entry ∀X · · · of the universal predicate
quantifier with ∀X(Fin(X) → · · · ) where Fin(X) is ∃x∀y(X(y) → y ≤ x). In
such a manner φ transforms in polynomial time into a σA-sentence φ′ such that



Complexity of Aperiodicity for Topological Properties 541

|φ′| ≤ k · |φ| for some universal constant k > 0. Observe that in φ′ no relation
symbol Qa occurs, and hence either no structure ξ fulfills φ′ or all structures ξ
fulfill φ′. More specific, (N, S) |=w φ implies Lφ′ = Aω and (N, S) |=w φ implies
Lφ′ = ∅.

Let ψ be a σA-sentence such that Lψ ∈ Rα�A. We conclude

φ ∈ WS1S =⇒ (N, S) |=w φ =⇒ Lφ′ = Aω =⇒ L¬φ′ = ∅ =⇒
L¬φ′∧ψ = ∅ ∈ Rα ∩ A and

φ ∈ WS1S =⇒ (N, S) |=w φ =⇒ Lφ′ = ∅ =⇒ L¬φ′ = Aω =⇒
L¬φ′∧ψ = Lψ ∈ Rα −A.

Hence, the mapping φ �→ ¬φ′∧ψ reduces WS1S to (A|Rα)MSO in polynomial
time and there holds |¬φ′ ∧ ψ| ≤ k · |φ| for some universal constant k > 0. �

Lemma 4. The sets (Rα)MSO and (A)MSO are in DSPACE(exp(O(n), 1)).

Proof. As is well known (see e.g. [Bü60, Me73]), it is possible to translate a
σA-sentence φ of length n into an deterministic Muller automaton M of length
exp(O(n), 1) and check aperiodicity and membership in Rα in polynomial space
and polynomial time, resp., relative to length exp(O(n), 1). �

From Lemma 3, Lemma 4, and Proposition 1 we get immediately

Theorem 9. For any non-zero ordinal α < ωω, the sets (A|Rα)MSO, (Aα)MSO,
and (A)MSO are ≤p-lin

m -complete for DSPACE(exp(O(n), 1)).

The proof of Theorem 2 is now an easy exercise.
The proof of Lemma 3 can be modified to show a dichotomic behavior of the

complexity of problems on regular ω-languages represented by logical formulas.
We say that a problem P of regular ω-languages is non-trivial if there exist
regular ω-languages in P and outside P . Theorem 9 is a particular case of the
next result (proof is given in the appendix).

Theorem 10. (Rice theorem for MSO representation)
If P is a non-trivial problem of regular ω-languages then (P )MSO is ≤p-lin

m -hard
for DSPACE(exp(O(n), 1)). If in addition (P )DM is in DSPACE(exp(k, n)) for
some k > 0 (i.e., if (P )DM is elementary recursive) then (P )MSO is even ≤p-lin

m -
complete for DSPACE(exp(O(n), 1)).

5 Complexity for Regular Expression Representations

For the main result of this section we need the following lemmas where c is the
coding from Lemma 2.

Lemma 5. Let L be a regular language and L′ be a regular ω-language.

1. If L = ∅ and L′ is not aperiodic then c(L)111L′ is not aperiodic.
2. For α < ωω, if L′ ∈ Rα then c(L)111L′ ∈ Rα, and if L′ ∈ co-Rα then

c(L)111L′ ∈ co-Rα



542 V.L. Selivanov and K.W. Wagner

Proof. 1) is checked just as its particular case in the proof of Lemma 2. 2) follows
from the well known properties of the classes Rα and co-Rα[Wag79]. �
Set EMPTY =def {∅}.
Lemma 6. (EMPTY)O ≤p-lin

m (A|Rα)O and (EMPTY)O ≤p-lin
m (A|co-Rα)O,

for 1 ≤ α < ωω and {∪, ·} ⊆ O ⊆ {∪,∩,− , · , 2,∗ }.
From the literature, lower and upper bounds for the emptyness problem for
various sets O ⊆ {∪,∩,− , · , 2,∗ } are known. We cite

Theorem 11. [Sto74] (EMPTY){∪,−,·} ∈ DSPACE(exp(logn, 1)).

The results above imply the following:

Theorem 12. Let {∪,− , ·} ⊆ O ⊆ {∪,∩,− , · , 2,∗ }.
1. (A)O, (Aα)O, (co-Aα)O, (A|Rα)O, (A|co-Rα)O ∈ DSPACE(exp(logn, 1)).
2. (A)O, (Aα)O, (co-Aα)O, (A|Rα)O, (A|co-Rα)O ∈ DSPACE(exp(n, 1)).

Proof. The lower bound follows from the previous theorem, Lemma 6, and Propo-
sition 1. For the upper bound converse the regular expressions of length n into a
deterministic Muller automaton of length exp(n, 1), and decide aperiodicity and
membership in Rα and co-Rα. �

Acknowledgement. The authors are grateful to Volker Diekert for the reference
[DG08] and to Kai Salomaa for useful hints.

References

[Bü60] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math.
Logic Grundl. Math. 6, 66–92 (1960)

[CH91] Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete.
Theoretical Computer Science 88, 99–116 (1991)

[DG08] Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel,
E., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts
in Logic and Games, pp. 261–306. Amsterdam University Press (2008)

[KPB95] Krishnan, S., Puri, A., Brayton, R.: Structural complexity of ω-automata.
LNCS, vol. 915, pp. 143–156. Springer, Berlin (1995)

[Me73] Meyer, A.: Weak monadic second order theory of successor is not elementary-
recursive. Project MAC TR 38 (1973)

[PP04] Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Mathematics,
vol. 141. Elsevier, Amsterdam (2004)

[Sa88] Safra, S.: On the complexity of ω-automata. In: IEEE FOCS, pp. 319–327
(1988)

[Se02] Selivanov, V.L.: Relating automata-theoretic hierarchies to complexity-
theoretic hierarchies. Theoretical Informatics and Applications 36, 29–42
(2002)

[Se07] Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp.
399–410. Springer, Heidelberg (2007)



Complexity of Aperiodicity for Topological Properties 543

[Sta97] Staiger, L.: ω-Languages. In: Handbook of Formal Languages, vol. 3, pp.
339–387. Springer, Berlin (1997)

[Sto74] Stockmeyer, L.: The complexity of decision problems in automata theory
and logic. Thesis, M.I.T. Project MAC TR-133 (1974)

[SW07] Selivanov, V.L., Wagner, K.W.: Complexity of topological properties of reg-
ular ω-languages. Fundamenta Informatica 20, 1–21 (2008)

[Th90] Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical
Computer Science, vol. B, pp. 133–191 (1990)

[Th97] Thomas, W.: Languages, automata and logic. In: Handbook of Formal Lan-
guages, vol. 3, pp. 389–455 (1997)

[Wag79] Wagner, K.: On ω-regular sets. Information and Control 43, 123–177 (1979)
[WY95] Wilke, T., Yoo, H.: Computing the Wadge degree, the Lipschitz degree, and

the Rabin index of a regular language of infinite words in polynomial time.
LNCS, vol. 915, pp. 288–302. Springer, Berlin (1995)



ω-Degree Spectra

Alexandra A. Soskova�

Faculty of Mathematics and Computer Science,
Sofia University

asoskova@fmi.uni-sofia.bg

Abstract. We present a notion of a degree spectrum of a structure with
respect to countably many sets, based on the notion of ω-enumeration
reducibility. We prove that some properties of the degree spectrum such
as the minimal pair theorem and the existence of quasi-minimal degree
are true for the ω-degree spectrum.

1 Introduction

Let A = (N;R1, . . . , Rs) be a structure, where N is the set of all natural numbers,
each Ri is a subset of N

ri and the equality = and the inequality �= are among
R1, . . . , Rs. An enumeration f of A is a total mapping from N onto N.

Given an enumeration f of A and a subset A of N
a let f−1(A) = {〈x1, . . . , xa〉

| (f(x1), . . . , f(xa)) ∈ A}. Denote by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).
Given a set X of natural numbers denote by de(X) the enumeration degree

of X and by dT(X) the Turing degree of X .
The notion of Turing degree spectrum of A is introduced by Richter [6]:

DST(A) = {dT(f−1(A)) | f is an injective enumeration of A}. Soskov [8] initi-
ated the study of the properties of the degree spectra as sets of enumeration
degrees. The enumeration degree spectrum of A (called shortly degree spectrum
of A) is the set: DS(A) = {de(f−1(A)) | f is an enumeration of A}.

The benefit of considering all enumerations of the structure instead of only
the injective ones is that every degree spectrum is upwards closed with respect to
total enumeration degrees [8]. Soskov considered the notion of co-spectrum CS(A)
of A as the set of all lower bounds of the elements of the degree spectrum of A
and proved several properties which show that the degree spectra behave with
respect to their co-spectra very much like the cones of the enumeration degrees
{x | x ≥ a} behave with respect to the ideals {x | x ≤ a}. Further properties
true of the degree spectra but not necessarily true of all upwards closed sets
are: the minimal pair theorem for the degree spectrum and the existence of
quasi-minimal degree for the degree spectrum.

In this paper we shall relativize Soskov’s approach to degree spectra by con-
sidering multi-component spectra, i.e. a degree spectrum with respect to a given
sequence of sets of natural numbers, considering the ω-enumeration reducibility

� This work was partially supported by Sofia University Science Fund.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 544–553, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



ω-Degree Spectra 545

introduced and studied in [10,11,12]. It is a uniform reducibility between se-
quences of sets of natural numbers. We shall prove that the so defined ω-degree
spectrum preserves almost all properties of the degree spectrum and generalizes
the notion of relative spectrum, i.e multi-component spectrum of a structure
with respect to finitely many structures, introduced in [13].

2 ω-Enumeration Degrees

We assume the reader is familiar with enumeration reducibility and refer to [3]
for further background. Denote by De the set of all enumeration degrees. Recall
that an enumeration degree a is total if a contains a total set, i.e. a set A such
that A ≡e A

+, where A+ = A⊕(N\A). If X is a total set then A ≤e X ⇐⇒ A is
c.e. in X . Cooper [2] introduced the jump operation “′” for enumeration degrees.
By A′ we denote the enumeration jump of the set A and de(A)′ = de(A′).

Denote by S the set of all sequences of sets of natural numbers. For each
element B = {Bn}n<ω of S call the jump class of B the set

JB = {dT(X) | (∀n)(Bn is c.e. in X(n) uniformly in n)} .
For every two sequences A and B let A ≤ω B (A is ω-enumeration reducible

to B) if JB ⊆ JA and let A ≡ω B if JA = JB. The relation ≡ω is an equivalence
relation on S. Let the ω-enumeration degree of B be dω(B) = {A | A ≡ω B}
and Dω = {dω(B) | B ∈ S}. If a = dω(A) and b = dω(B) then a ≤ω b if
A ≤ω B. Denote by 0ω = dω(∅ω), where ∅ω is the sequence with all members
equal to ∅. There is a natural embedding of the enumeration degrees into the
ω-enumeration degrees. Given a set A denote by A ↑ ω the sequence {An}n<ω,
where A0 = A and for all n > 0 An = ∅. For every A,B ⊆ N we have that
A ≤e B ⇐⇒ A ↑ ω ≤ω B ↑ ω. So the mapping κ(de(A)) = dω(A ↑ ω) gives an
isomorphic embedding of De to Dω. We shall identify the enumeration degree
de(A) with its representation dω(A ↑ ω) in Dω. So when a = de(A) and b ∈ Dω
then by writing a ≤ω b (b ≤ω a) we mean dω(A ↑ ω) ≤ω b (b ≤ω dω(A ↑ ω)).

Given a sequence of sets of natural numbers B = {Bn}n<ω we define the
respective jump sequence P(B) = {Pn(B)}n<ω by induction on n:

(1) P0(B) = B0;
(2) Pn+1(B) = (Pn(B))′ ⊕Bn+1 .

Note that if X ⊆ N, then Pn(X ↑ ω) ≡e X
(n) uniformly in n.

The following theorem of Soskov and Kovachev [10] gives an explicit charac-
terization of the uniform reducibility.

Theorem 1. Let A = {An}n<ω and B = {Bn}n<ω be elements of S. The fol-
lowing conditions are equivalent:

(1) A ≤ω B, i.e. for every total set X, if Bn ≤e X
(n) uniformly in n then

An ≤e X
(n) uniformly in n.

(2) An ≤e Pn(B) uniformly in n, i.e. there is a computable function g such
that An = Γg(n)(Pn(B)) for every n.



546 A.A. Soskova

It follows that if X ⊆ N then for every sequence A = {An}n<ω we have: An ≤e

X(n) uniformly in n if and only if A ≤ω {X(n)}n<ω if and only if A ≤ω X ↑ ω.
It is clear also that A ≡ω P(A).

With a slight modification of the proof of Theorem 1 we have the following:

Corollary 2. Let A0, . . . ,Ar, . . . be sequences of sets such that for every r,
Ar �≤ω B. There is a total set X such that B ≤ω {X(n)}n<ω and Ar �≤ω
{X(n)}n<ω for each r.

The jump operator on the ω-enumeration degrees is defined by Soskov [11].
For every A ∈ S the ω-enumeration jump of A is A′ = {Pn+1(A)}n<ω and
dω(A)′ = dω(A′). Furthermore A(k+1) = (A(k))′ and dω(A)(k+1) = dω(A(k+1)).
Then A(k) = {Pn+k(A)}n<ω for each k.

3 The ω-Degree Spectra of Structures

In this section we shall generalize the notion of degree spectrum of A by con-
sidering a multi-component spectrum. The first step in this direction was the
notion of relative spectrum of the structure A with respect to finitely many given
structures A1, . . . ,An studied in [13]. The relative spectrum RS(A,A1, . . . ,An)
of the structure A with respect to A1, . . . , An is the set

{de(f−1(A)) | f is an enumeration of A s. t. (∀k ≤ n)(f−1(Ak) ≤e f
−1(A)(k))}.

It turns out that all properties of the degree spectra obtained by Soskov [8]
remain true for the relative spectra.

We shall define here the notion of a spectrum of the structure A with respect
to a given infinite sequence of sets using the ω-enumeration reducibility.

Let B = {Bn}n<ω be a sequence of sets of natural numbers. An enumera-
tion f of A is called acceptable with respect to the sequence B if for every n,
f−1(Bn) ≤e f

−1(A)(n) uniformly in n. Denote by E(A,B) the class of all accept-
able enumerations of A with respect to the sequence B.

Definition 3. The ω-degree spectrum of the structure A with respect to the
sequence B is the set DS(A,B) = {de(f−1(A)) | f ∈ E(A,B)} .
The notion of the ω-degree spectrum is a generalization of the relative spectrum
since RS(A,A1, . . . ,An) = DS(A,B), where B = {Bk}k<ω, B0 = ∅, Bk is the
positive diagram of the structure Ak for 0 < k ≤ n and Bk = ∅ for all k > n.

Given an enumeration f of A denote by Pf = {Pfn}n<ω the respective jump
sequence of the sequence {f−1(A)⊕ f−1(B0), f−1(B1), . . . , f−1(Bn), . . .} where
Pfn = Pn({f−1(A)⊕ f−1(B0), f−1(B1), . . . , f−1(Bn), . . .}). Note that if f is an
acceptable enumeration of A with respect to B then Pf ≡ω {f−1(A)(n)}n<ω ≡ω
f−1(A) ↑ ω. So f ∈ E(A,B) if and only if Pf ≤ω f−1(A) ↑ ω.

First we shall see that the ω-degree spectrum of the structure A with respect
to B is upwards closed with respect to total enumeration degrees.

Lemma 4. Let f be an enumeration of A and F be a total set such that f−1(A)
≤e F and f−1(Bn) ≤e F

(n) uniformly in n. Then there exists an acceptable
enumeration g of A with respect to B such that g−1(A) ≡e F .



ω-Degree Spectra 547

Proof. The construction of g is the following. Let s �= t ∈ N.

g(x) �
⎧
⎨

⎩

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F ,
t if x = 2z + 1 and z �∈ F .

It is easy to see that F ⊕ f−1(A) ≡e g
−1(A) and hence F ≡e g

−1(A).
Moreover for every set B ⊆ N we have that g−1(B) ≤e F ⊕ f−1(B).

Then g−1(Bn) ≤e F ⊕ f−1(Bn) ≤e F ⊕ F (n) ≡e F
(n) ≡e g

−1(A)(n) uniformly
in n. And thus g is an acceptable enumeration of A with respect to B. ��
Using Theorem 1 and the previous lemma one can find an acceptable enumera-
tion f ∈ E(A,B) such that f−1(A) is a total set.

Another corollary of Lemma 4 is the following:

Proposition 5. The ω-degree spectrum is upwards closed with respect to total
e-degrees, i.e. if b is a total e-degree and for some a ∈ DS(A,B), b ≥e a then
b ∈ DS(A,B).

It is obvious that DS(A) ⊇ DS(A,B) for every structure A and every B ∈ S.
It is easy to find a structure A and a sequence of sets B so that DS(A) �=
DS(A,B). For example consider the structure A = {N, S,=, �=}, where S ⊆
N

2 is defined as S = {(n, n + 1) | n ∈ N}. It is clear that the structure A
admits an effective enumeration f , i.e. f−1(A) is c.e. Thus 0e ∈ DS(A). By
Proposition 5 all total enumeration degrees are elements of DS(A). Consider now
an arbitrary acceptable enumeration f of A with respect to B = {Bn}n<ω. Fix a
number x0 such that f(x0) = 0. Then k ∈ Bn ⇐⇒ (∃x1) . . . (∃xk)(f−1(S)(x0,
x1) & . . .& f−1(S)(xk−1, xk) & xk ∈ f−1(Bn)). Then Bn ≤e f

−1(A)⊕ f−1(Bn)
≤e f

−1(A)(n). Let B0 = ∅′ and let Bn = ∅ for each n ≥ 1. Then ∅′ ≤e B0 ≤e

f−1(A). Thus 0e �∈ DS(A,B).
Let k ∈ N. The kth ω-jump spectrum of A with respect to B is the set

DSk(A,B) = {a(k) | a ∈ DS(A,B)}.
Proposition 6. The kth ω-jump spectrum of A with respect to B is upwards
closed with respect to total e-degrees, i.e. if b is a total e-degree, b ≥e a(k) for
some a ∈ DS(A,B) then b ∈ DSk(A,B).

Proof. Let G be a total set, de(G) = b and let f ∈ E(A,B) such that f−1(A) ∈ a.
Then f−1(A)(k) ≤e G and Pfk ≤e G since Pfk ≤e f

−1(A)(k). By the jump inver-
sion theorem from [7] there exists a total set F such thatG ≡e F

(k), f−1(A) ≤e F
and f−1(Bi) ≤e F

(i) for i ≤ k. Moreover f−1(Bn+k) ≤e f
−1(A)(n+k) ≤e G

(n) ≡e

F (n+k) uniformly in n. By Lemma 4 there is an acceptable enumeration g of
A with respect to B so that g−1(A) ≡e F . Thus de(g−1(A)) ∈ DS(A,B) and
g−1(A)(k) ≡e G. Hence de(G) ∈ DSk(A,B). ��
For every D ⊆ De denote by co(D) = {b | b ∈ Dω & (∀a ∈ D)(b ≤ω a)}.
Definition 7. The ω-co-spectrum of A with respect to B is the set CS(A,B) =
co(DS(A,B)).



548 A.A. Soskova

For each A ∈ S it holds that dω(A) ∈ CS(A,B) if and only if A ≤ω Pf for every
acceptable enumeration f of A with respect to B. Actually the ω-co-spectrum
of A with respect to B is a countable ideal of ω-enumeration degrees.

The kth ω-co-spectrum of A with respect to B is the set CSk(A,B) =
co(DSk(A,B)). It is clear that dω(A) ∈ CSk(A,B) if and only ifA ≤ω {Pfn+k}n<ω
for every acceptable enumeration f of A with respect to B. As we shall see in
section 4. Corollary 22, the kth ω-co-spectrum of A with respect to B is the least
ideal containing all kth ω-enumeration jumps of the elements of CS(A,B).

In order to obtain a forcing normal form of the sequences with ω-enumeration
degrees in CS(A,B) we shall define the notions of a forcing relation τ �n Fe(x)
and a relation f |=n Fe(x).

Let f be an enumeration of A. For every n and e, x ∈ N, define the relations
f |=n Fe(x) and f |=n ¬Fe(x) by induction on n:

1. f |=0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & Dv ⊆ f−1(A)⊕ f−1(B0));
2. f |=n+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & f |=n Feu(xu)) ∨
(u = 〈1, eu, xu〉 & f |=n ¬Feu (xu)) ∨
(u = 〈2, xu〉 & xu ∈ f−1(Bn+1))));

3. f |=n ¬Fe(x) ⇐⇒ f �|=n Fe(x) .

Lemma 8. (a) Let A ⊆ N, n ∈ N. Then A ≤e Pfn if and only if
A = {x | f |=n Fe(x)} for some e ∈ N.

(b) Let A = {An}n<ω. Then A ≤ω Pf if and only if there exists a computable
function g such that An = {x | f |=n Fg(n)(x)} for every n.

The forcing conditions, called finite parts, are finite mappings τ of N to N. We
will denote the finite parts by letters δ, τ, ρ.

For each n and e, x ∈ N and for every finite part τ , define the forcing relations
τ �n Fe(x) and τ �n ¬Fe(x) following the definition of the relation “|=n”.

1. τ �0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & Dv ⊆ τ−1(A)⊕ τ−1(B0));
2. τ �n+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & τ �n Feu (xu)) ∨
(u = 〈1, eu, xu〉 & τ �n ¬Feu (xu)) ∨
(u = 〈2, xu〉 & xu ∈ τ−1(Bn+1))));

3. τ �n ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ ��n Fe(x)) .

An enumeration f of A is k-generic with respect to B if for every j < k and
e, x ∈ N it holds that (∃τ ⊆ f)(τ �j Fe(x) ∨ τ �j ¬Fe(x)).

Lemma 9. (1) If τ ⊆ ρ then τ �k (¬)Fe(x)⇒ ρ �k (¬)Fe(x).
(2) For every (k + 1)-generic enumeration f of A with respect to B
f |=k (¬)Fe(x) ⇐⇒ (∃τ ⊆ f)(τ �k (¬)Fe(x)).

Definition 10. Let A = {An}n<ω. The sequence A is forcing definable on A
with respect to B if there exist a finite part δ and a computable function g such
that for every n ∈ N[ x ∈ An ⇐⇒ (∃τ ⊇ δ)(τ �n Fg(n)(x)) ].



ω-Degree Spectra 549

Proposition 11. Let A = {An}n<ω be a sequence not forcing definable on A
with respect to B. Then there exists an enumeration f of A such that A �≤ω Pf .

Proof. The enumeration f is constructed on stages. On each stage q we find a
finite part δq so that δq ⊆ δq+1 and ultimately we define f =

⋃
q δq. We consider

three kinds of stages. On stages q = 3r we ensure that the mapping f is total and
surjective. On stages q = 3r+ 1 we ensure that f is k-generic for each k > 0 and
on stages q = 3r+ 2 we ensure that f satisfies the omitting condition: A �≤ω Pf .

Let g0, g1, . . . be an enumeration of all computable functions. For each n, e,
x ∈ N denote by Y n〈e,x〉 the set of all finite parts ρ such that ρ �n Fe(x).

Let δ0 = ∅. Suppose that we have already defined δq.

(a) Case q = 3r. Let x0 be the least natural number which does not belong
to dom(δq) and let t0 be the least natural number which does not belong to the
range of δq. Set δq+1(x0) � t0 and δq+1(x) � δq(x) for x �= x0.

(b) Case q = 3〈e, n, x〉+ 1. Check whether there exists a finite part ρ ∈ Y n〈e,x〉
that extends δq. If there is such a finite part then let δq+1 be the least extension
of δq that belongs to Y n〈e,x〉. Otherwise let δq+1 = δq.

(c) Case q = 3r + 2. Consider the function gr. For each n denote by

Cn = {x | (∃τ ⊇ δq)(τ �n Fgr(n)(x))} .
Clearly C = {Cn}n<ω is forcing definable on A with respect to B and hence
C �= A. Then Cn �= An for some n. Let 〈x, n〉 be the least pair such that

x ∈ Cn & x �∈ An ∨ x �∈ Cn & x ∈ An .

(i) Suppose that x ∈ Cn. Then there exists a finite part τ such that

δq ⊆ τ & τ �n Fgr(n)(x) . (1)

Let δq+1 be the least τ satisfying (1).
(ii) If x �∈ Cn then set δq+1(x) � δq(x). Note that in this case we have that

δq+1 �n ¬Fgr(n)(x).
Let f =

⋃
q δq. The enumeration f is total and surjective. Let k ∈ N. In order

to prove that f is (k + 1)-generic, suppose that j ≤ k and consider the stage
q = 3〈e, j, x〉+ 1. If there is a finite part ρ ⊇ δq such that ρ �j Fe(x) then from
the construction we have that δq+1 �j Fe(x). Otherwise δq+1 �j ¬Fe(x).

To prove that f satisfies the omitting condition suppose for a contradiction
that A ≤ω Pf . Then there exists a computable function gs such that for each
n we have that An = {x | f |=n Fgs(n)(x)}. Since the enumeration f is (n+ 1)-
generic, by Lemma 9 we have for each number x:

f |=n (¬)Fgs(n)(x) ⇐⇒ (∃τ ⊆ f)(τ �n (¬)Fgs(n)(x)). (2)

Consider the stage q = 3s + 2. From the construction there are numbers n
and x such that one of the following two cases holds:

(i) x �∈ An & δq+1 �n Fgs(n)(x). By (2) f |=n Fgs(n)(x) and hence x ∈ An.
A contradiction.



550 A.A. Soskova

(ii) x ∈ An and (∀ρ ⊇ δq)(ρ ��n Fgs(n)(x)). Then δq �n ¬Fgs(n)(x). So by (2),
f �|=n Fgs(n)(x) and hence x �∈ An. A contradiction. ��
Corollary 12. Let A0,A1, . . . ,Ai . . . be a sequence of elements of S such that
each Ai is not forcing definable on A with respect to B. Then there exists an
enumeration f of A such that Ai �≤ω Pf for each i.

The construction of the enumeration f is very similar to that in Proposition 11.
On stages of the form q = 3〈r, i〉+2 we consider the computable function gr and
ensure that Ai �= C, where the sequence C is defined by the same way.

Proposition 13. Let A = {An}n<ω be a sequence not forcing definable on A
with respect to B. Then there exists an enumeration g ∈ E(A,B) such that A �≤ω
Pg and the enumeration degree of g−1(A) is total.

Proof. By Proposition 11 there is an enumeration f of A such that A �≤ω Pf .
Then by Theorem 1 there exists a total set F such that Pf ≤ω {F (n)}n<ω and
A �≤ω {F (n)}n<ω. By Lemma 4 there exists an acceptable enumeration g of A
with respect to B such that g−1(A) ≡e F and hence g−1(A)(n) ≡e F

(n) uniformly
in n. It is clear that A �≤ω Pg. ��
Corollary 14. For every sequence A if dω(A) ∈ CS(A,B) then A is forcing
definable on A with respect to B.

Proof. If a sequence A is not forcing definable on A with respect to B then by
Proposition 13 there exists an acceptable enumeration g of A with respect to B
such that A �≤ω Pg. Hence dω(A) �∈ CS(A,B). ��
Definition 15. Let k ∈ N, A ∈ S and let A = {An}n<ω. The sequence A is
forcing k-definable on A with respect to B if there exist a finite part δ and a
computable function g such that for every n ∈ N [x ∈ An ⇐⇒ (∃τ ⊇ δ)(τ �n+k

Fg(n)(x))].

Corollary 16. For every sequence A if dω(A) ∈ CSk(A,B) then A is forcing
k-definable on A with respect to B.

We shall give an explicit form of all sequences which are forcing k-definable on
A with respect to B by means of recursive Σ+

k formulae. These formulae can be
considered as a modification of Ash’s formulae [1] appropriate for their use on
abstract structures presented by Soskov and Baleva [9].

Let L = {T1, . . . , Ts} be the first order language of the structure A. For each
n let Pn be a new unary predicate representing the set Bn.

(1) An elementary Σ+
0 formula with free variables among W1, . . ., Wr is an

existential formula of the form ∃Y1 . . .∃YmΦ(W1, . . . ,Wr, Y1, . . . , Ym), where Φ
is a finite conjunction of atomic formulae in L ∪ {P0};

(2) A Σ+
n formula is a c.e. disjunction of elementary Σ+

n formulae;
(3) An elementary Σ+

n+1 formula is a formula of the form ∃Y1 . . . ∃YmΦ(W1,
. . . ,Wr, Y1, . . . , Ym), where Φ is a finite conjunction of atoms of the form
Pn+1(Yj) or Pn+1(Wi) and Σ+

n formulae or negations of Σ+
n formulae in L ∪

{P0} ∪ . . . ∪ {Pn}.



ω-Degree Spectra 551

Definition 17. Let A={An}n<ω and k∈N. The sequence A is formally k-de-
finable on A with respect to B if there exists a recursive sequence {Φγ(n,x)}n,x<ω
of formulae such that for every n, Φγ(n,x) is a Σ+

n+k formula with free variables
among W1, . . . ,Wr and elements t1, . . . , tr of N such that for every x ∈ N, the
following equivalence holds:
x ∈ An ⇐⇒ (A,B) |= Φγ(n,x)(W1/t1, . . . ,Wr/tr).

This means that x ∈ An if and only if the formula Φγ(n,x) is true in A with
all sets Bn added as new predicates, under the variable assignment v such that
v(W1) = t1, . . . , v(Wn) = tn. With a uniform variant of the proof given in [9] we
obtain the following:

Theorem 18. If a sequence A is forcing k-definable on A with respect to B then
A is formally k-definable on A with respect to B.

Corollary 19. Let A ∈ S and let k ∈ N. Then the following are equivalent:

(1) dω(A) ∈ CSk(A,B);
(2) A is forcing k-definable on A with respect to B.
(3) A is formally k-definable on A with respect to B.

4 Properties of the ω-Degree Spectra

We prove that some properties of degree spectra from [8] remain true for ω-degree
spectra. The first property follows directly from Theorem 1 and Lemma 4.

Proposition 20. CS(A,B) = co({a | a ∈ DS(A,B) & a is total e-degree}).
The next property is an analogue of the minimal pair theorem for the degree
spectrum of a structure A by Soskov [8]: There exist f and g in DS(A) such that

a ≤e f(k) & a ≤e g(k) ⇒ a ∈ CSk(A) for every a ∈ De and each k ∈ N.

Theorem 21. For every structure A and every sequence B ∈ S there exist total
enumeration degrees f and g in DS(A,B) such that for every ω-enumeration
degree a and k ∈ N:

a ≤ω f(k) & a ≤ω g(k) ⇒ a ∈ CSk(A,B) . (3)

Proof. First we shall construct total enumeration degrees f and g in DS(A,B)
satisfying (3) for k = 0. Then we will show that f and g satisfy (3) for every k.

Let f be an acceptable enumeration of A with respect to B, such that f−1(A)
is a total set. Then Pf ≡ω {f−1(A)(n)}n<ω. Denote by F = f−1(A). It is clear
that de(F ) ∈ DS(A,B).

Denote by X0,X1, . . .Xr . . . all sequences ω-enumeration reducible to Pf .
Consider the sequence C0, C1, . . . , Cr . . . of these elements of X0,X1, . . .Xr . . .

which are not forcing definable on A with respect to B. By Proposition 12 there
is an enumeration h such that Cr �≤ω Ph for all r. Then by Corollary 2 there is
a total set G such that Ph ≤ω {G(n)}n<ω and Cr �≤ω {G(n)}n<ω for all r. By



552 A.A. Soskova

Lemma 4 there is an acceptable enumeration g of A with respect to B such that
g−1(A) ≡e G. Thus de(G) ∈ DS(A,B).

Suppose now that A is a sequence such that A ≤ω {F (n)}n<ω and A ≤ω
{G(n)}n<ω. Then A = Xr for some r. If we assume that A is not forcing definable
on A with respect to B then A = Cl for some l and hence A �≤ω {G(n)}n<ω,
which is a contradiction. Thus A is forcing definable on A with respect to B and
dω(A) ∈ CS(A,B) by Proposition 19. Then by setting f = de(F ) and g = de(G)
we obtain the desired minimal pair.

For each a ∈ De denote by I(a) = {b | b ∈ Dω & b ≤ω a} = co({a})
the principal ideal generated by a. We have that CS(A,B) = I(f) ∩ I(g), since
f,g ∈ DS(A,B). We shall prove now that I(f(k))∩ I(g(k)) = CSk(A,B) for every
k. Since f(k),g(k) ∈ DSk(A,B) it follows that CSk(A,B) ⊆ I(f(k)) ∩ I(g(k)).
Suppose that A = {An}n<ω, A ≤ω F (k) ↑ ω and A ≤ω G(k) ↑ ω. Denote by
C = {Cn}n<ω the sequence such that Cn = ∅ for n < k, and Cn+k = An for
each n. Clearly A ≤ω C(k) and C ≤ω {F (n)}n<ω, C ≤ω {G(n)}n<ω. So dω(C) ∈
CS(A,B). Consider an arbitrary acceptable enumeration h of A with respect to
B. Then C ≤ω {h−1(A)(n)}n<ω and thus C(k) ≤ω {h−1(A)(n)}(k)n<ω. It follows that
A ≤ω {h−1(A)(n)}(k)n<ω for every h ∈ E(A,B). Hence dω(A) ∈ CSk(A,B). ��
Corollary 22. CSk(A,B) is the least ideal containing all kth ω-jumps of the
elements of CS(A,B).

Proof. Ganchev [5] proved that if the enumeration degrees f and g form an exact
pair for a countable ideal I of ω-enumeration degrees, i.e. I = I(f)∩I(g) then for
every k the pair f(k), g(k) form an exact pair for the least ideal I(k) containing all
kth ω-jumps of the elements of I, i.e. I(k) = I(f(k))∩ I(g(k)). Let f and g be the
minimal pair from Theorem 21. Since I = CS(A,B) is a countable ideal, I ⊆ Dω
and CS(A,B) = I(f)∩ I(g) then I(k) = I(f(k))∩ I(g(k)) for each k. On the other
hand I(f(k)) ∩ I(g(k)) = CSk(A,B) for each k. Thus I(k) = CSk(A,B). ��
Soskov [8] showed that for any structure A, there is a quasi-minimal e-degree q
with respect to DS(A), i.e. q �∈ CS(A) and if a is a total e-degree and a ≥e q
then a ∈ DS(A) and if a is a total e-degree and a ≤e q then a ∈ CS(A). We can
give an analogue of this theorem.

Theorem 23. For every structure A and B ∈ S, there exists a set F ⊆ N such
that for q = dω(F ↑ ω) it holds:

(1) q �∈ CS(A,B);
(2) If a is a total e-degree and a ≥ω q then a ∈ DS(A,B);
(3) If a is a total e-degree and a ≤ω q then a ∈ CS(A,B).

Proof. Let A = (N;R1, . . . , Rs) and B = {Bn}n<ω. Consider the structure
A0 = (N;R1, . . . , Rs, B0).

Soskov [8] proved that there is a partial generic enumeration f of A0 such
that de(f−1(A0)) is quasi-minimal with respect to DS(A0). Moreover if i = λx.x
then f−1(A0) �≤e i

−1(A0). Ganchev [4] showed that there is a set F such that
f−1(A0) <e F , f−1(Bn) ≤e F

(n) uniformly in n and for any total set X , if



ω-Degree Spectra 553

X ≤e F then X ≤e f
−1(A0). We call the set F quasi-minimal over f−1(A0)

with respect to {f−1(Bn)}n<ω. The set F is constructed as a partial regular
enumeration of A0. Set q = dω(F ↑ ω). We will prove that q has the desired
properties.

Suppose for a contradiction that q ∈ CS(A,B). Then dω(f−1(A0) ↑ ω) ∈
CS(A,B) since f−1(A0) <e F . It follows that f−1(A0) ↑ ω is forcing definable on
A with respect to B. Then f−1(A0) ≤e i

−1(A)⊕B0 ≡e i
−1(A0). A contradiction.

If X is a total set and X ≤e F then X ≤e f
−1(A0) as F is quasi-minimal

over f−1(A0). Thus de(X) ∈ CS(A0) by the choice of f−1(A0). But DS(A,B) ⊆
DS(A0). So dω(X ↑ ω) ∈ CS(A,B).

If X is a total set and X ≥e F then X ≥e f
−1(A0). Since “=” is among

the predicates of A, dom(f) ≤e X and since X is a total set, dom(f) is c.e.
in X . Let ρ be a recursive in X enumeration of dom(f). Set h = λn.f(ρ(n)).
Thus h−1(A) ≤e X and h−1(Bn) ≤e X

(n) uniformly in n. By Lemma 4 there is
an acceptable enumeration g of A such that g−1(A) ≡e X . And hence de(X) ∈
DS(A,B). ��

Acknowledgments. The author would like to thank Hristo Ganchev and Ivan
N. Soskov for the helpful comments and Mariya Soskova for editorial suggestions.

References

1. Ash, C.J.: Generalizations of enumeration reducibility using recursive infinitary
propositional senetences. Ann. Pure Appl. Logic 58, 173–184 (1992)

2. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration
degrees of the Σ2 sets are dense. J. Symb. Logic 49, 503–513 (1984)

3. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
4. Ganchev, H.: A jump inversion theorem for the infinite enumeration jump. Ann.

Sofia Univ ( to appear, 2005)
5. Ganchev, H.: Exact Pair Theorem for the ω-Enumeration Degrees. In: Cooper,

S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 316–324. Springer,
Heidelberg (2007)

6. Richter, L.J.: Degrees of structures. J. Symb. Logic 46, 723–731 (1981)
7. Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math.

Logic 39, 417–437 (2000)
8. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Sofia Univ. 96,

45–68 (2004)
9. Soskov, I.N., Baleva, V.: Ash’s theorem for abstract structures. In: Chatzidakis,

Z., Koepke, P., Pohlers, W. (eds.) Proc. of Logic Colloquium 2002, Muenster,
Germany, 2002. Lect. Notes in Logic, vol. 27, pp. 327–341. ASL (2006)

10. Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Mathematical Struc-
tures in Comp. Sci. 16(5), 901–924 (2006)

11. Soskov, I.N.: The ω-enumeration degrees. J. Logic and Computation 17(6), 1193–
1214 (2007)

12. Soskov, I.N., Ganchev, H.: The jump operator on the ω-enumeration degrees. Ann.
Pure Appl. Logic (to appear)

13. Soskova, A.A.: Relativized degree spectra. J. Logic and Computation 17(6), 1215–
1233 (2007)



Cupping Classes of Σ0
2 Enumeration Degrees

Mariya Ivanova Soskova�

Department of Pure Mathematics
University of Leeds, Leeds LS2 9JT, U.K.

mariya@maths.leeds.ac.uk

Abstract. We prove that no subclass of the Σ0
2 enumeration degrees

containing the nonzero 3-c.e. enumeration degrees can be cupped to 0′
e

by a single incomplete Σ0
2 enumeration degree.

1 Introduction

In an upper semi-lattice with greatest element 〈A, ≤, ∨, 1〉 we say that an element
a is cuppable if there exists an element b �= 1 such that a ∨ b = 1. Posner and
Robinson showed that every nonzero degree in DT (≤ 0′) is cuppable. Cooper and
Yates [5] showed the existence of a nonzero non-cuppable c.e. degree in the semi-
lattice of the computably enumerable degrees. Meanwhile Cooper, Seetapun and
(independently) Li proved that there exists a single incomplete Δ0

2 Turing degree
that cups every nonzero c.e. degree.

In this paper we consider cupping properties of the local degree structure of
the enumeration degrees below 0′

e. Intuitively we say that a set A is enumeration
reducible to a set B, denoted as A ≤e B, if there is an effective procedure to
enumerate A given any enumeration of B. By identifying sets that are reducible
to each other we obtain a degree structure, the structure of the enumeration
degrees 〈De, ≤〉. It is an upper semi-lattice with jump operator and least element
0e, the collection of all computably enumerable sets. The semi-lattice of the
enumeration degrees can be considered as an extension of the semi-lattice of
the Turing degrees, as the second semi-lattice can be embedded in the first, via
an order theoretic embedding ι preserving the least upper bound and the jump
operator.

An important substructure of De is given by the Σ0
2 enumeration degrees.

Cooper [2] proved that the Σ0
2 enumeration degrees are the enumeration degrees

below 0′
e. There is a natural hierarchy of classes of enumeration degrees within

this substructure. The Π0
1 enumeration degrees, which are exactly the images of

the c.e. Turing degrees under ι, form the smallest class. Further classes can be
obtained by considering the n-c.e. degrees for every n ≤ ω. Cooper [3] proved that
the 2-c.e. enumeration degrees coincide with the Π0

1 enumeration degrees. Thus
the second class in our hierarchy consists of all 3-c.e. enumeration degrees. The

� Soskova is supported by the Marie Curie Early Training grant MATHLOGAPS
(MEST-CT-2004-504029).

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 554–566, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Cupping Classes of Σ0
2 Enumeration Degrees 555

last proper subclass of the Σ0
2 enumeration degrees in this hierarchy comprises

all Δ0
2 enumeration degrees.

In [6], Cooper, Sorbi and Yi proved that every nonzero Δ0
2 enumeration degree

can be cupped by a total incomplete Δ0
2 enumeration degree, in contrast to the

Σ0
2 enumeration degrees where non-cuppable degrees exist. Soskova and Wu [11]

examined the cupping properties of the Δ0
2 enumeration degrees further and

showed that every nonzero Δ0
2 enumeration degree can be cupped by a 1-generic

Δ0
2, hence partial and low, enumeration degree. Furthermore they showed that

every nonzero ω-c.e. enumeration degree can be cupped by a 3-c.e enumeration
degree. These results exhibit the flexibility that we have when searching for
cupping partners of enumeration degrees in each of the proper subclasses of the
Σ0

2 enumeration degrees and motivate the initial goal of this project: to find
a single degree from a larger class that cups all nonzero enumeration degrees
from a smaller class. One such example we obtain immediately by transferring
Cooper, Seetapun and Li’s result to the enumeration degrees via ι, namely that
there exists a single incomplete Δ0

2 enumeration degree which cups all nonzero
Π0

1 enumeration degrees. In this paper we prove that any other attempt at a
result of this kind is doomed to failure as for every incomplete Σ0

2 enumeration
degree a there exists a nonzero member of the second class, a nonzero 3-c.e.
enumeration degree b, such that b is not cupped by a to 0′

e.

Theorem 1. Let a be an incomplete Σ0
2 enumeration degree. There exists a

nonzero 3-c.e enumeration degree b such that a ∨ b �= 0′
e.

Notation and terminology below are based on that of [4] and [10].

2 Requirements and Strategies

We shall start by giving a formal definition of enumeration reducibility and the n-
c.e. degrees and then move on to establish the requirements and basic strategies
for the proof of the main theorem.

Definition 1. A set A is enumeration reducible (≤e) to a set B if there is a
c.e. set Φ such that:

n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧ Du ⊆ B),

where Du denotes the finite set with code u under the standard coding of finite
sets. We will refer to the c.e. set Φ as an enumeration operator and its elements
will be called axioms.

We say that an enumeration degree is n-c.e. (n < ω) if it contains an n-c.e. set:

Definition 2. A is n-c.e. if there is a computable function f such that for each
x, f(x, 0) = 0, |{s | f(x, s) �= f(x, s + 1)}| ≤ n and A(x) = lims f(x, s).

Let A be a representative of the given Σ0
2 enumeration degree. Let {As}s<ω be a

good Σ0
2 approximation to A. That every Σ0

2 set has a good Σ0
2 approximations



556 M.I. Soskova

is proved by Jockusch [7]. We use the definition given by Lachlan and Shore [8].
A good Σ0

2 approximation to A is a Σ0
2 approximation with infinitely many good

stages s at which As ⊆ A.
We shall construct two 3-c.e sets X and Y , so that ultimately the degree of one

of them will have the requested properties. Consider the following requirements:

• Let {Θi}i<ω and {Ψi}i<ω be effective enumerations of all enumeration oper-
ators. For every i we will have a pair of requirements:

P0
i : ΘA,X

i �= K and P1
i : ΨA,Y

i �= K.

• Let {We}e<ω be an enumeration of all c.e. sets. For every natural number e
we have a requirement:

Ne : We �= X ∧ We �= Y.

We shall construct the sets X and Y so that for all e the requirement Ne is
satisfied, thus both X and Y have nonzero e-degree, and if Pj

i is not satisfied
for some i then for all i′ the requirement P1−j

i′ is satisfied, thus the degree of
at least one of the sets A ⊕ X or A ⊕ Y is incomplete. The construction shall
be carried out on a tree of strategies. Each node of the tree shall be assigned
either an N -requirement or a P0- and a P1-requirement. At each stage we shall
construct a finite path in the tree of strategies visiting some of the nodes and
allowing them to act towards satisfying one of the assigned requirements. The
intention is that there will be an infinite leftmost path of nodes that is visited
at infinitely many stages, providing a successful outcome to all strategies on it.

Each P-node in the tree of strategies α is associated with a pair of require-
ments: P0

α and P1
α. It will attempt at proving that at least one of them is satisfied.

To do this the strategy constructs an e-operator Γα, threatening to prove that
A ≥e K. The outcomes of the strategy will be divided into two groups. There will
be infinitely many infinitary outcomes - two for each number n arranged from
left to right by the order of the natural numbers: 〈X, 0〉 <L 〈Y, 0〉 < 〈X, 1〉 . . .
Then there will be two finitary rightmost outcomes 〈X, w〉 <L 〈Y, w〉. Thus all
the outcomes of a P-node are arranged as follows:

〈X, 0〉 <L 〈Y, 0〉 <L . . . <L 〈X, n〉 <L 〈Y, n〉 . . . <L 〈X, w〉 <L 〈Y, w〉

For each outcome the first element of the pair indicates which requirement has
been satisfied. The next P-strategy below outcomes 〈X, −〉 shall be associated
with a new P0-requirement and the same P1-requirement. Similarly the next P-
strategy below outcomes 〈Y, −〉 will be associated with the same P0-requirement
and a different P1-requirement. Thus if Pj

i never gets satisfied for some i then
all P1−j

i′ must be.
The strategy α performs cycles of increasing length. On the k-th cycle it

examines all elements n = 0, 1, . . . , k in turn. The cycles do not necessarily
correspond to a stage, in fact α can take any number of stages to complete
a particular cycle. While it examines an element n the strategy can choose to



Cupping Classes of Σ0
2 Enumeration Degrees 557

end its actions for the particular stage by choosing an outcome or move on to
the next element in the cycle, possibly even starting a new cycle. Suppose α is
examining the element n. If the element n currently belongs to K then the only
possible outcomes that it can choose for this element are the infinitary 〈X, n〉
or 〈Y, n〉. If the element n is in both sets ΘA,X

α and ΨA,Y
α and has been there at

all stages since α last looked at n then it will enumerate an axiom for n in Γα

which comprises the A-parts of the two axioms for n in Θα and in Ψα that have
been valid the longest and move on to the next element. Otherwise α will select
the appropriate outcome corresponding to the set that has failed to provide a
valid axiom and end its actions for this stage. When α is active again, it will
start working with the next element of the cycle.

If the element n has left the approximation of K then for each axiom in Γα

for this element the strategy shall restore one of the axioms in either Θα or Ψα

by enumerating the corresponding X-part back in X or Y -part back in Y and
have the corresponding finitary outcome 〈X, w〉 or 〈Y, w〉. The strategy shall
then wait until it has observed a change in A that rectifies the operator Γα, i.e.
it will not move on to the next element in the cycle until (if ever) this happens
and it will keep having the same finitary outcome. Note that α will not only
consider stages at which it is active, instead every time it is visited it will check
if Γ A

α (n)[s] = 0 at any stage s since the last stage at which α was active.
As A is incomplete the strategy will eventually include in its cycles an element

n such that Γ A
α (n) �= K(n). If there is an element n such that n ∈ Γ A

α \K then
n ∈ Γ A

α [s] at all but finitely many stages s. Thus eventually Γ A
α (n) will not

be rectified by any change in A and α will have a finitary outcome proving the
successful diagonalization. Otherwise α will have inifinitely many cycles and each
element n will be examined infinitely many times. Consider the least n such that
n ∈ K\Γ A

α . By the properties of a good approximation we have that at infinitely
many stages s, in fact at all good stages, n /∈ Γ A

α [s]. Thus infinitely often α will
discover that at least one of the operators Θα or Ψα has failed to provide it with
an axiom that is permanently valid, i.e. infinitely often α will have proof that
ΘA,X

α (n) = 0 or ΨA,Y
α (n) = 0 and have outcome 〈X, n〉 or 〈Y, n〉 respectively.

An N -node β working on Wβ would like to prove that Wβ �= X and Wβ �=
Y . The obvious strategy for β would be to select a witness xβ and wait until
xβ ∈ Wβ . We assume that the sets X and Y start off as ω, then during the
construction the strategies extract or enumerate back elements in the sets. Thus
if xβ never enters Wβ the strategy will be successful and will have outcome w.
If the element does enter Wβ then the strategy will extract xβ from both sets X
and Y , have outcome d, where d <L w, and again will have proved a difference.
This strategy is unfortunately incomplete as we shall see in the next section.

3 Elaborating the N -Strategy to Avoid Conflicts

The naive N -strategy described in the previous section is in conflict with the
need of higher priority P-strategies to restore axioms by enumerating elements



558 M.I. Soskova

back in one of the sets X or Y . Therefore the strategy for an N -node β will have
to be more elaborate. This conflict justifies the introduction of nonuniformity.

The elaborated strategy will start off as the original strategy: select a witness
xβ as a fresh number and wait until xβ ∈ Wβ . If this never happens then
the requirement will be satisfied with outcome w. Otherwise extract xβ from
both sets X and Y . Suppose a higher priority strategy α requires that xβ be
enumerated back in X or Y . In this case β shall initialize all lower priority
strategies, choose a new witness yβ that has not been used in any axiom so far,
restrain X on xβ and let xβ be enumerated back in Y . From this point on any
axiom that appears in the construction shall necessarily have xβ /∈ X , thus xβ

and yβ cannot appear in the same axiom. The strategy β will wait again with
outcome w until yβ enters Wβ and then extract it from Y with outcome d .
Should a higher priority α require that yβ be enumerated back in one of the sets
then β will only give permission to enumerate back in X .

This will resolve the central conflict between strategies. Note that as the only
actions that the P-strategies ever take is enumerating certain elements back in
the sets X and Y , the P-strategies are not in conflict with each other.

Possible conflicts between N -strategies are resolved via initialization. When-
ever a higher priority N -strategy β decides to extract a number n from X or Y all
strategies below outcome w are initialized and all strategies below outcome d are
in initial state. Thus lower priority strategies will operate at further stages un-
der the assumption that n is extracted, the axioms used by P-strategies of lower
priority will not include this element and the witnesses used by N -strategies will
be chosen as big numbers that do not appear in any axiom seen so far, thus
cannot appear in an axiom that includes the element n.

4 Parameters and the Tree of Strategies

A P-strategy α will have a parameter Γα, the e-operator that it will construct
when visited. At initialization Γα is set to the empty set. The strategy will
also have parameters kα denoting the current cycle of the strategy and nα ≤ kα

denoting the current element of the cycle that α is working with. On initialization
the values of the parameters are set to kα = 0 and nα = 0. Furthermore for each
element n < ω the strategy α shall have one more parameter Dα(n), a list of all
pairs of X- and Y -parts of axioms from Θα and Ψα respectively, for which the
A-parts are used in axioms for n in Γα. Initially the values of all such lists will
be ∅. Finally it will have two parameters Axθ

α(n) and Axψ
α(n) denoting axioms

in Θα and Ψα respectively which will be candidates for the construction of a new
axiom in Γα, initially undefined.

An N -strategy β shall have parameters xβ , yβ, which will be undefined when
β is initialized. Furthermore on initialization β will give up any restraint it has
imposed so far.

Let OP denote the set of all possible outcomes of a P-strategy and ON =
{d, w}. Let O = OP ∪ ON be the collection of all possible outcomes and R the
collection of all requirements. The tree of strategies is a computable function T



Cupping Classes of Σ0
2 Enumeration Degrees 559

with domain a downwards closed subset of O<ω and range a subset of R2 ∪ R
with the following inductive definition:

1. T (∅) = 〈P0
0 , P1

0 〉.
2. Let α be in the domain of T and α be a 〈P0

i , P1
j 〉-node. Then α ô, where

o ∈ OP , is also in the domain of T and T (α ô) = N|α|/2.
3. Let β be an N -node in the domain of T . Then β = α ô, where α is a 〈P0

i , P1
j 〉-

node for some i and j. Then β ô′, where o′ ∈ ON , is in the domain of T . If
o = 〈X, n〉 for some n ∈ ω ∪ {w} then T (β ô′) = 〈P0

i+1, P1
j 〉. If o = 〈Y, n〉 for

some n ∈ ω ∪ {w} then T (β ô′) = 〈P0
i , P1

j+1〉.

5 Construction

We shall perform the construction in stages. At each stage s we shall approximate
the sets X and Y by constructing cofinite sets Xs and Ys. We shall also construct
a string δs of length s through the domain of T . We shall say that a node γ ⊂ δs

is visited at stage s, also that s is a γ-true stage. At true stages strategies will
be allowed to modify their parameters and choose an outcome. At the end of
stage s we shall initialize all nodes to the right of δs.

At stage 0 all nodes are initialized and X0 = Y0 = ω, δ0 = ∅.
Suppose we have constructed δt, Xt and Yt for t < s. The sets Xs and Ys

shall be obtained by allowing the strategies visited at stage s to modify the
approximations Xs−1, Ys−1 obtained at the previous stage. We construct δs(n)
with an inductive definition. Define δs(0) = ∅. Suppose that we have constructed
δs � n. If n = s, we end this stage and move on to s + 1. Otherwise we visit the
strategy δs � n and let it determine its outcome o. Then δs(n) = o. We have two
cases depending on the type of the node δs � n.

I. If δs � n = α is a P-node, we perform the following actions:
Let s− be the previous α-true stage if α has not been initialized since and
s− = s otherwise. The strategy α will inherit the values of its parameters
from stage s− and during its actions it can change their values several times.
Thus we will omit the subscript indicating the stage when we discuss α’s
parameters. If the current element nα does not need further actions we shall
move on to the next element. As this is a subroutine which is frequently
performed in the construction, we define it here once and for all, and we refer
to it with the phrase reset the parameters. Denote the current values of
nα by n and of kα by k. We reset the parameters by changing the values
of the parameters as follows: nα := n + 1 if n < k, otherwise n = k and we
set kα := k + 1, nα := 0. In both cases we initialize the strategies extending
α 〈̂X, w〉 and α 〈̂Y, w〉.
1. Let k = kα and n = nα. Let s−n be the previous stage when n was

examined, if α has not been initialized since, s−n = s otherwise.
2. If n ∈ K[s] and n ∈ Γ A

α [t] for all stages t with s−n < t ≤ s then reset the
parameters and go to step 1.

3. If n ∈ K[s], but n /∈ Γ A
α [t] at some stage t with s−n < t ≤ s then:



560 M.I. Soskova

a.X If Axθ
α(n) is not defined, then define it as the axiom that has been

valid longest including at all stages s−n < t ≤ s and move on to step
a.Y . If there is no such axiom then let the outcome be 〈X, n〉 and
reset the parameters.

b.X If Axθ
α(n) is defined but was not valid at some stage t with s−n < t ≤

s, then cancel its value (make it undefined) and let the outcome be
〈X, n〉, reset the parameters. Otherwise go to step a.Y .

a.Y If Axψ
α(n) is not defined, then define it as the axiom that has been

valid longest including at all stages s−n < t ≤ s and move on to step
c. If there is no such axiom then let the outcome be 〈Y, n〉 and reset
the parameters.

b.Y If Axθ
α(n) is defined but was not valid at some stage t with s−n < t ≤

s, then cancel its value (make it undefined) and let the outcome be
〈Y, n〉, reset the parameters. Otherwise go to step c.

c. If both Axθ
α(n) = 〈n, Aθ, Xθ〉 and Axψ

α(n) = 〈n, Aψ , Yψ〉 are defined
and have been valid at all stages t with s−n < t ≤ s then enumerate
in Γα the axiom 〈n, Aθ ∪ Aψ〉. Enumerate 〈Xθ, Yψ〉 in Dα(n). Reset
the parameters and go back to step 1.

4. If n /∈ K[s] and n /∈ Γ A
α [t] at some stage t: s−n < t ≤ s reset the

parameters and go back to step 1.
5. Suppose n /∈ K[s] but n ∈ Γ A

α [t] at all t such that s−n < t ≤ s. For every
pair 〈Xθ, Yψ〉 ∈ Dα(n) find the highest priority N -strategy β ⊃ α that
has permanently restrained an element x ∈ Xθ out of X or y ∈ Yψ out
of Y . If there is such a strategy β and it has a permanent restraint on X ,
enumerate Yψ in Y [s]; if it has a permanent restraint on Y , enumerate
Xθ back in X [s]. Otherwise if there is no such strategy enumerate Yψ

back in Y [s]. Choose the axiom 〈n, Aθ ∪ Aψ〉 in Γ A
α that has been valid

the longest. Let Xθ and Yψ be the corresponding X and Y parts of the
axioms 〈n, Aθ, Xθ〉 ∈ Θ and 〈n, Aψ , Yψ〉 ∈ Ψ .
a. If Xθ ⊆ X [s] then this will ensure that n ∈ ΘA,X

α [s]. Let the outcome
be 〈X, w〉. Note that we will not reset the parameters at this point,
thus the construction will keep going through this step while there
is no change in A.

b. If Xθ � X [s] then Yψ ⊆ Y [s] and this will ensure that n ∈ ΨA,Y
α [s].

Let the outcome be 〈Y, w〉.
II. If δs � n = β is an N -node, we perform the following actions:

Let s− be the previous β-true stage if β has not been initialized since, go to
the step indicated at stage s−. Otherwise s− = s and go to step 1.
1. Define xβ as a fresh number, one that has not appeared in the construc-

tion so far and is bigger than s. Go to the next step.
2. If xβ /∈ Wβ [s] then let the outcome be o = w, return to this step at the

next stage. Otherwise go to the next step.
3. Extract xβ from X [s] and Y [s]. Restrain permanently xβ out of X . Let

the outcome be o = d, go to the next step at the next stage.
4. If xβ ∈ Y [s] then define yβ as a fresh number, initialize all strategies of

lower priority than β and go to the next step. Otherwise o = d, return
to this step at the next stage.



Cupping Classes of Σ0
2 Enumeration Degrees 561

5. If yβ /∈ Wβ then let the outcome be o = w. Return to this step at the
next stage. Otherwise go to the next step.

6. If yβ is not yet restrained then restrain yβ permanently out of Y and
extract yβ from Y [s]. Let the outcome be o = d, return to this step at
the next stage.

This completes the construction.

6 Proof

The tree is infinitely branching and therefore there is a risk that there might not
be a path in the tree that is visited infinitely often. However we shall start the
proof by establishing some basic facts about the relationship between strategies.

For clarity we shall define one more notation. Let α be a P-strategy. To ev-
ery axiom Ax = 〈n, Aθ ∪ Aψ〉 ∈ Γα we shall associate a corresponding entry
〈n, Aθ, Xθ, Aψ, Yψ〉 so that 〈n, Aθ, Xθ〉 ∈ Θα and 〈n, Aψ, Yψ〉 ∈ Ψα are the corre-
sponding axioms used to construct Ax.

Lemma 1. Let β be an N -strategy, initialized for the last time at stage si. If
β has a witness xβ that is extracted by β at stage sx > si then xβ /∈ X [t] at
all t ≥ sx. If β has a witness yβ that is extracted from Y at stage sy > sx then
yβ /∈ Y [t] at all t ≥ sy.

Proof. There are only finitely many N -strategies of higher priority than β that
are ever visited in the construction as after stage si no strategy to the left of β is
visited. Every higher priority strategy β′ < β that is ever visited is not initialized
after stage si, as otherwise β would be initialized after stage si contrary to our
assumption. We can inductively assume that the statement is valid for every
higher priority strategy β′.

Suppose β chooses the witness xβ at stage s1 > si. We can furthermore prove
the following:

Claim. Any witness which is permanently extracted by a higher priority strategy
β′ is extracted before or at stage s1.

Indeed, suppose that β′ permanently extracts a new witness at stage s2 > s1.
Then at stage s2 the strategy β′ has outcome d. Thus if β >L β′ or β ⊇ β ′̂ w
then β would be initialized at stage s2 contrary to assumption. This leaves us
with the only possibility that β ⊇ β ′̂ d. Then at stage s1, as β was visited,
β′ was visited and had outcome d. As β′ is not initialized after stage s1 and
permanently extracts a new witness at stage s2 it must be the case that β′

permanently extracts a witness yβ′ from Y and xβ′ was already extracted before
or at stage s1. It follows that between stages s1 and s2, β′ has selected this
new witness yβ′ passing through II.4 of the construction and initializing all
lower priority strategies including β. This leads again to a contradiction with
the assumption that β is not initialized after stage s1 and hence the claim is
correct.



562 M.I. Soskova

Thus at stage s1 all witnesses of higher priority strategies that are ever per-
manently restrained out of either set X or Y are already permanently restrained
out of X or Y . At stage s1 the strategy β selects xβ as a fresh number, i.e. one
that has not appeared in the construction so far. And at stage sx the witness xβ

is permanently restrained out of X .
Now we will prove again inductively but this time on the stage t, that xβ /∈

X [t] at all stages t ≥ sx.
So suppose this is true for t < s3 and that at stage s3 > sx a P-strategy α is

visited and reaches point I.5 of the construction. Suppose α wants to enumerate
Xθ or Yψ back in X or Y respectively for the axiom 〈n, Aθ ∪ Aψ〉 in Γα with
corresponding entry 〈n, Aθ, Xθ, Aψ , Yψ〉. We have the following cases to consider:

1. Suppose α > β. If α >L βˆd then α is initialized at stage sx. If α ⊂ β d̂, then
α was initialized at stage si and was not accessible before stage sx. Thus
the axiom 〈n, Aθ ∪ Aψ〉 was enumerated in Γα at stage t with sx ≤ t < s3,
at which both 〈n, Aθ, Xθ〉 and 〈n, Aψ, Yψ〉 were valid i.e. Xθ ⊆ X [t] and
Yψ ⊆ Y [t]. By induction xβ /∈ X [t] hence xβ /∈ Xθ and thus α does not
enumerate xβ back in X .

2. Suppose α < β. If α <L β then β would be initialized at stage s3, hence
α ⊂ β. Suppose the axiom 〈n, Aθ ∪ Aψ〉 was enumerated in Γα at stage t. If
t ≤ s1 then by the choice of xβ as a fresh number at stage s1 we have that
xβ /∈ Xθ. If t > s1 then both 〈n, Aθ, Xθ〉 and 〈n, Aψ, Yψ〉 were valid at stage
t i.e. Xθ ⊆ X [t] and Yψ ⊆ Y [t]. By I.5 of the construction α will consider
all N -strategies that extend it and select the one with highest priority that
has permanently restrained an element out of either set X or Y .

Consider any β′ < β. By our Claim any witness xβ′ or yβ′ of β′ that is
ever permanently restrained out of X or Y is already restrained out at stage
s1 and by induction at all stages s ≥ s1 including at stage t. Thus Xθ does
not contain xβ′ and Yψ does not contain yβ′ . As this is true for an arbitrary
strategy β′ of higher priority than β that is ever visited, if xβ ∈ Xθ then β
will be the strategy selected by α and α will choose to enumerate Yψ back
in Y . Thus again α does not enumerate xβ back in X .

To prove the second part of the lemma suppose yβ is selected at stage s4 and
extracted at stage sy. Because s1 < s4 and all strategies of lower priority than
β are initialized at stage s4 the interactions between β and other strategies are
dealt with in the same way as in the case when we were considering xβ . The
only thing left for us to establish is that β does not come into conflict with
itself. So suppose that at stage s5 > sy a P-strategy α is visited and reaches
point I.5 of the construction. Suppose α wants to enumerate Xθ or Yψ back in
X or Y respectively for the axiom 〈n, Aθ ∪ Aψ〉 in Γα with corresponding entry
〈n, Aθ, Xθ, Aψ, Yψ〉. We will prove that if xβ ∈ Xθ then yβ /∈ Yψ. Let t be the
stage at which the axiom 〈n, Aθ ∪ Aψ〉 was enumerated in Γα. If t < s4 then
yβ /∈ Yψ by the choice of yβ at stage s4 as a fresh number. If t ≥ s4 > sx then we
have already proved that xβ /∈ X [t]. The axiom 〈n, Aθ, Xθ〉 was valid at stage t,
thus Xθ ⊆ X [t], and hence xβ /∈ Xθ.

This completes the induction step and the proof of the lemma. ��



Cupping Classes of Σ0
2 Enumeration Degrees 563

Lemma 2. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If α performs finitely many cycles then:

(1)There is a stage sn ≥ si after which the value of nα does not change.
(2)At all α-true stages t > sn, α has either outcome 〈X, w〉 or outcome 〈Y, w〉.
(3)There is a stage sd ≥ sn such that at all α-true stages t > sd, α has the

same outcome o .
(4)If o = 〈X, w〉 then ΘA,X

α �= K and if o = 〈Y, w〉 then ΨA,Y
α �= K.

Proof. It follows from the construction and the definition of the action reset the
parameters that if the value of nα changes infinitely often, then there will be
infinitely many cycles. Thus part (1) of the lemma is true. Let sn be the stage
after which the value of nα does not change. The only case when the value of
the parameter nα = n is not reset is when n /∈ K and n ∈ Γ A

α [t] at all stages t
since the last time n was examined at stage s−n , thus α will have only outcomes
〈X, w〉 or 〈Y, w〉 at all stages after sn and part (2) is true. It follows from part
I.5 of the construction and the fact that nα does not change any longer that at
all stage t > sn, n ∈ Γ A

α [t]. By the properties of a good approximation and under
these circumstances n ∈ Γ A

α . Then there will be an axiom 〈n, Aθ ∪ Aψ〉 ∈ Γα

which is valid at all but finitely many stages. Select the axiom which is valid
longest. This axiom has corresponding entry 〈n, Aθ, Xθ, Aψ, Yψ〉. The strategy
α will eventually be able to spot this precise axiom, after possibly finitely many
wrong guesses. So after a stage sd ≥ sn the strategy α will consider this axiom
to select its outcome.

At stage sn either Xθ ⊂ X [sn] or Yψ ⊂ Y [sn]. As we initialize all strategies
below outcomes 〈X, w〉 and 〈Y, w〉 whenever we reset the parameters, we can
be sure that N -strategies visited at stages t > sn of lower priority than α will
not extract any elements of Xθ ∪ Yψ from X or Y . Higher priority N -strategies
will not extract any elements at all, otherwise α would be initialized. Thus if
Xθ ⊆ X [sn] then for all stages t ≥ sn we have Xθ ⊆ X [t] and similarly if
Yψ ⊆ Y [sn] then for all stages t ≥ sn we have Yψ ⊆ Y [t].

Suppose Xθ ⊆ X [sn]. Then at stages t ≥ sd the strategy α will always have
outcome 〈X, w〉. The axiom 〈n, Aθ, Xθ〉 ∈ Θα will be valid at all stages t ≥ sd,
thus n ∈ ΘA,X , and n /∈ K.

If Xθ � X [sn] then there is a strategy β ⊃ α which is permanently restraining
some element x ∈ Xθ out of X at stage sn. Then β <L α 〈̂X, w〉 as strategies
extending α 〈̂X, w〉 or to the right of it are in initial state at stage sn and do
not have any restraints. This strategy β will not be initialized at stages t ≥ sn

according to part (2) of this lemma and the choice of sn > si. By Lemma 1
x /∈ Xt at all t ≥ sn.

Hence case I.5.b of the construction is valid at all t ≥ sd. Thus α will have
outcome 〈Y, w〉 at all stages t ≥ sd and n ∈ ΨA,Y . This proves parts (3) and (4)
of the lemma. ��

Lemma 3. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If v is an element such that Γ A

α (v) = K(v) then there is a stage sv after
which the outcomes 〈X, v〉 and 〈Y, v〉 are not accessible any longer.



564 M.I. Soskova

Proof. If α has finitely many cycles then by Lemma 2 there will be a stage sn

after which 〈X, v〉 and 〈Y, v〉 are not accessible. Suppose there are infinitely many
cycles.

If v /∈ K then there is a stage sv at which v exits K. Then after stage sv the
outcomes 〈X, v〉 and 〈Y, v〉 are not accessible.

If v ∈ Γ A
α then there is an axiom in Γα that is valid at all but finitely many

stages, say at all stages t ≥ s′v. If α is on its k-th cycle during stage s′v then
let sv be the beginning of the (k + 2)-nd cycle. Then after stage sv, whenever
α considers v, part I.2 of the construction holds and hence α will never have
outcome 〈X, v〉 or 〈Y, v〉. ��

Lemma 4. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If α performs infinitely many cycles, then there is leftmost outcome o
that α has at infinitely many stages and

(1) If o = 〈X, u〉 then ΘA,X
α (u) �= K(u).

(2) If o = 〈Y, u〉 then ΨA,Y
α (u) �= K(u).

Proof. The set A is not complete by assumption, hence Γ A
α �= K. Let u be the

least difference between the sets. By Lemma 3 for every v < u the outcomes
〈X, v〉 and 〈Y, v〉 are not visited at stages t > sv. Let s0 be a stage bigger than
max{sv|v < u}. As α has infinitely many cycles there will be infinitely many
stages t > s0 at which nα[t] = u. If u /∈ K and u ∈ Γ A

α then there is a stage
s1 > s such that at all stages t > s1 we have u ∈ Γ A

α [t] and u /∈ K[t] and when α
considers u at the first stage after s1, it will never move on to the next element,
and α would have finitely many cycles. Hence u ∈ K and u /∈ Γ A

α .
(1) If u /∈ ΘA,X

α then all axioms for u in Θα are invalid at infinitely many
stages. Let t be any stage greater than or equal to s0. We will prove that there
is a stage t′ ≥ t at which α has outcome 〈X, u〉. As u /∈ Γ A

α and {As}s<ω is a
good approximation to A there are infinitely many stages s at which u /∈ Γ A

α [s]
and hence part I.3 of the construction holds at infinitely many stages at which
we consider u. Let t1 ≥ t at which nα[t1] = u and part I.3 of the construction
is true. If Axθ

α(u) is not defined and we are not able to define it as there is
no appropriate axiom in Θα valid for long enough then α will have outcome
〈X, u〉 at stage t1, hence t′ = t1 proves the claim. Otherwise Axθ

α(u) is defined
at stage t1 and by assumption there are infinitely many stages t ≥ t1 at which it
is invalid. Let t2 > t1 be the next stage when Axθ

α(u) is invalid and let t′ ≥ t2 be
the first stage after t2 at which again nα[t′] = u and part I.3 of the construction
is true. By I.3.b.X of the construction α will have outcome 〈X, u〉 at stage t′.

(2) Now assume that u ∈ ΘA,X
α . Then there is an axiom 〈u, Aθ, Xθ〉 ∈ Θα

valid at all but finitely many stages. Select the axiom, say Ax, that is valid the
longest. Then Axθ

α(u) will have a permanent value Ax after a certain stage s1.
It follows that u /∈ ΨA,Y

α as otherwise we would be able to find an axiom in ΨA,Y
α

valid at all but finitely many stages, and construct an axiom in Γα valid at all
but finitely many stages. Now a similar argument as the one used in part (1) of
this lemma proves that α will have outcome 〈Y, u〉 at infinitely many stages. ��



Cupping Classes of Σ0
2 Enumeration Degrees 565

As an immediate corollary from Lemmas 2, 3 and 4 we obtain the existence of
the true path:

Corollary 1. There exists an infinite path through the tree of strategies with the
following properties:

(1) ∀n∃∞s[f � n ⊆ δs]
(2) ∀n∃sl(n)∀t > sl(n)[δt ≮L f � n]
(3) ∀n∃si(n)∀t > si(n)[f � n is not initialized at stage t].

Corollary 2. X and Y are not c.e.

Proof. For every requirement Ne there is an Ne-strategy β along the true path,
visited infinitely often and not initialized at any stage t > si. Let xβ and yβ be
the final values of β’s witnesses. If βˆw ⊂ f then there is an element u ∈ {xβ , yβ}
that never enters We. The way each Ne-strategy chooses its witnesses ensures
that only β can extract u form either of the sets X or Y . The construction and
the definition of the true path ensure that β does not extract u from X and Y
at any stage. Hence u ∈ X ∩ Y and u /∈ We.

If β d̂ ⊂ f then xβ ∈ We and there is a β-true stage sx at which β extracts
xβ from X and Y . By Lemma 1 xβ /∈ X [t] at all stages t ≥ sx. If at any stage
t ≥ sx we have that xβ ∈ Y [t] then β selects yβ at its next true stage. As the true
outcome is d, yβ ∈ We[t′] at some stage t′ ≥ t. Then at the next β-true stage
sy ≥ t′ the strategy β will permanently restrain yβ out of Y and by Lemma 1,
we have that yβ /∈ Y . ��

Corollary 3. A ⊕ X �≡e K or A ⊕ Y �≡e K.

Proof. Consider the P-nodes on the true path. From the definition of the tree it
follows that either for every P0

e -requirement there is a node on the tree α which
is associated with P0

e or there is a fixed requirement P0
e associated with all but

finitely many nodes. In the latter case there is a node on the true path for every
P1

e -requirement.
Suppose there is a node on the tree for each P0

e -requirement. We can show
that A ⊕ X �≡e K. Assume for a contradiction ΘA,X

e = K and let α ⊂ f be
the last node associated with P0

e . Then α has true outcome 〈X, u〉 for some
u ∈ ω ∪ {w}. It follows from Lemma 2 and Lemma 4 that ΘA,X

e �= K.
The case when there is a node for every P1

e -requirement yields by a similar
argument that A ⊕ Y �≡e K. ��

Lemma 5. The sets X and Y are 3-c.e.

Proof. We can easily obtain a 3-c.e. approximation of each of the sets X and Y
from the one constructed. Define X̂s = Xs � s and Ŷs = Ys � s.

It follows from the construction that elements extracted from X and Y are
necessarily witnesses of N -strategies. Suppose therefore that n is the witness xβ

for an N -strategy β. Then n appears in the defined approximations {X̂s}s<ω

and {Ŷs}s<ω at stage n + 1. If β never extracts xβ then we are done - as no
other strategy can extract it. If β extracts xβ then it does so only once at stage



566 M.I. Soskova

sx when it goes through II.3 and moves on to II.4 at the next stage. In order
for β to return to step II.3 of the construction it will have to be initialized and
will select new witnesses. Thus after its extraction at stage sx from both X̂sx

and Ŷsx , the number xβ can only be enumerated back in either set and hence
|{s |X̂s−1(xβ) �= X̂s(xβ)}| ≤ 3 and |{s |Ŷs−1(xβ) �= Ŷs(xβ)}| ≤ 3.

If n is the witness yβ then it will never be extracted from X . If it is ever
extracted from Y it is extracted only once by β at the first stage it reaches step
II.6. After that yβ is already restrained by β and whenever β executes step II.6
it will ignore the first sentence of the instruction and just have outcome o = d.
Thus again |{s |Ŷs−1(yβ) �= Ŷs(yβ)}| ≤ 3. ��

Acknowledgements. Thanks are due to Prof. Guohua Wu and Prof. Yang Yue
for suggesting this problem to me. I am grateful also to my anonymous reviewers
for pointing out weaknesses of a previous version of this article and providing
helpful suggestions.

References

1. Cooper, S.B.: Partial degrees and the density problem. J. Symb. Log. 47, 854–859
(1982)

2. Cooper, S.B.: Partial Degrees and the density problem. part 2: the enumeration
degrees of the Σ2 sets are dense. J. Symb. Log. 49, 503–513 (1984)

3. Cooper, S.B.: Enumeration reducibility, nondeterminitsic computations and rela-
tive computability of partial functions. In: Recursion Theory Week, Oberwolfach
1989. Lecture Notes in Mathematics, vol. 1432, pp. 57–110 (1990)

4. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC Mathematics, Boca
Raton (2004)

5. Cooper, S.B.: On a theorem of C.E.M. Yates, handwritten notes (1973)
6. Cooper, S.B., Sorbi, A., Yi, X.: Cupping and noncupping in the enumeration de-

grees of Σ2
0 sets. Ann. Pure Appl. Logic 82, 317–342 (1996)

7. Jockusch Jr., C.G.: Semirecursive sets and positive reducibility.
Trans.Amer.Math.Soc. 131, 420–436 (1968)

8. Lachlan, A.H., Shore, R.A.: The n-rea enumeration degrees are dense. Arch. Math.
Logic 31, 277–285 (1992)

9. Posner, D., Robinson, R.: Degrees joining to 0′. J. Symbolic Logic 46, 714–722
(1981)

10. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Heidelberg (1987)
11. Soskova, M., Wu, G.: Cupping Δ0

2 enumeration degrees to 0′. In: Cooper, S.B.,
Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 727–738. Springer,
Heidelberg (2007)



Principal Typings for Explicit Substitutions

Calculi

Daniel Lima Ventura1,�, Mauricio Ayala-Rincón1,��,
and Fairouz Kamareddine2

1 Grupo de Teoria da Computação, Dep. de Matemática Universidade de Braśılia,
Braśılia D.F., Brasil

2 School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh,
Scotland UK

{ventura,ayala}@mat.unb.br, fairouz@macs.hw.ac.uk

Abstract. Having principal typings (for short PT) is an important
property of type systems. In simply typed systems, this property guaran-
tees the possibility of a complete and terminating type inference mecha-
nism. It is well-known that the simply typed λ-calculus has this property
but recently J.B. Wells has introduced a system-independent definition
of PT, which allows to prove that some type systems, e.g. the Hind-
ley/Milner type system, do not satisfy PT. Explicit substitutions ad-
dress a major computational drawback of the λ-calculus and allow the
explicit treatment of the substitution operation to formally correspond
to its implementation. Several extensions of the λ-calculus with explicit
substitution have been given but some of which do not preserve basic
properties such as the preservation of strong normalization. We consider
two systems of explicit substitutions (λse and λσ) and show that they
can be accommodated with an adequate notion of PT. Specifically, our
results are as follows:

• We introduce PT notions for the simply typed versions of the λse-
and the λσ-calculi and prove that they agree with Wells’ notion of PT.

• We show that these versions satisfy PT by revisiting previously in-
troduced type inference algorithms.

Keywords: lambda-calculus, explicit substitution, principal typings.

1 Introduction

The development of well-behaved calculi of explicit substitutions is of great in-
terest in order to bridge the formal study of the λ-calculus and its real imple-
mentations. Since β contraction depends on the definition of the substitution
operations, which is informally given in the theory of λ-calculus, they are in fact
made explicit, but obscurely developed (that is, in an empirical manner), when
most computational environments based on the λ-calculus are implemented. A
� Corresponding author, supported by a PhD scholarship of the CNPq.

�� Partially supported by the CNPq.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 567–578, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



568 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

remarkable exception is λProlog, for which its explicit substitutions calculus, the
suspension calculus, has been extracted and formally studied [NaWi98].

In the study of making substitutions explicit, several alternatives rose out
and all of them are directed to guarantee essential properties such as simulating
beta-reduction, confluence, noetherianity (of the associated substitution calcu-
lus), subject reduction, having principal typings (for short PT), preservation of
strong normalization etc. This is a non trivial task; for instance, the λσ-calculus
[ACCL91], which is one of the first proposed calculi of explicit substitutions, was
reported to break the latter property some years after its introduction [Mel95].
This implies that infinite derivations starting from well-typed λ-terms are pos-
sible in this calculus, raising serious questions for any mechanism supposed to
simulate the λ-calculus explicitly. In this paper, the focus is on the PT prop-
erty, which means that for any typable term M , there exists a type judgment
A � M : τ , representing all possible typings 〈A′, τ ′〉 for M . For a discussion
about the difference between principal type and principal typing see [Jim96]. In
the simply typed λ-calculus this corresponds to the existence of more represen-
tative typings. PT guarantees compositional type inference and plays a crucial
role in helping one to find a complete/terminating type inference algorithm.

In section 2 we present the type-free λ-calculus in de Bruijn notation, the
λse-calculus [KR97] and the λσ-calculus [ACCL91]. In section 3 we present the
relevant backgrounds for the type assignment systems we consider and then we
present simply typed systems for each calculus we study. Then, we discuss the
general notion of principal typings defined in [We2002] and present notions of
principal typings for the λ-calculus in de Bruijn notation, the λσ- and the λse-
calculi and prove that they are adequate. In section 4 we conclude and present
future work. Detailed proofs and examples are included in an extended version
of this work available at www.mat.unb/∼ayala/publications.html.

2 The Type Free Calculi

2.1 The λ-Calculus in de Bruijn Notation

Definition 1 (Set ΛdB). The syntax of λ-calculus in de Bruijn notation, the
λdB-calculus, is defined inductively as

Terms M ::= n | (M M) | λ.M where n ∈ N
∗= N�{0}

Terms like ((((M1 M2) M3) . . . ) Mn) are written as usual (M1 M2 . . . Mn). Let
M be a λ-term. If, in the tree representation of M , there are exactly n abstractors
in the minimal path from the root position until the position of some subterm
M1, then M1 is said to be n-deep in M . In other words, M1 is in between n
abstractors.

Definition 2. We say that i occurs as free index in a term M if i + n is
n-deep in M .

The β-contraction definition for ΛdB needs a mechanism which detects and up-
dates free indices. Below, we give an operator similar to the one in [ARKa2001a].



Principal Typings for Explicit Substitutions Calculi 569

Definition 3. Let M ∈ ΛdB and i ∈ N. The i-lift of M , denoted as M+i, is
defined inductively as

1 . (M1 M2)+i = (M+i
1 M+i

2 ) 3 . n+i =
{

n + 1 , if n > i
n , if n ≤ i.

2 . (λ.M1)+i = λ.M
+(i+1)
1

The lift of a term M is its 0-lift, denoted as M+. Intuitively, the lift of M
corresponds to an increment by 1 of all free indices occurring in M . For instance,
(λ.( 1 3 ))+ = λ.( 1 4 ). Using the i-lift, we are able to present the definition of
the substitution used by β-contractions, as done in [ARKa2001a].

Definition 4. Let m, n ∈ N
∗. The β-substitution for free occurrences of n in

M ∈ ΛdB by term N , denoted as {n/N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

⎧
⎨

⎩

m − 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}λ.M1 = λ.{n + 1 /N+}M1

Observe that in item 2 of Def. 4, the lift operator is used to avoid captures of
free indices in N . We present the β-contraction as defined in [ARKa2001a].

Definition 5. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .

Notice that item 3 in Definition 4, for n = 1, is the mechanism which does
the substitution and updates the free indices in M as consequence of the lead
abstractor elimination.

2.2 The λse-Calculus

The λse-calculus is a proper extension of the λdB-calculus. Two operators σ
and ϕ are introduced for substitution and updating, respectively, to control the
atomization of the substitution operation by arithmetic constraints.

Definition 6 (Set Λs of λse-terms).
The syntax of the λse-calculus, where n, i, j ∈ N

∗ and k ∈ N is given by

Terms M ::= n | (M M) | λ.M | MσiM | ϕj
kM

The term MσiN represents the term {i /N}M ; i.e., the substitution of the free
occurrences of i in M by N , updating free variables in M (and in N). The term
ϕj

kM represents j −1 applications of the k-lift to the term M ; i.e., M+k(j−1)
.

Table 1 contains the rewriting rules of the λse-calculus together with the rule
(Eta), as given in [ARKa2001a]. The bottom seven rules on table 1 are those
which extend the λs-calculus to λse ([KR97]) with the rule (Eta) ([ARKa2001a]).
They ensure confluence of the λse-calculus on open terms and the application
to the higher order unification problem. Hence, those rules are not the focus of
this paper.

=se denotes the equality for the associated substitution calculus, denoted as
se, induced by all the rules except (σ-generation) and (Eta).



570 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

Table 1. The rewriting system of the λse-calculus with the Eta rule

(λ.M N) −→ M σ1N (σ-generation)
(λ.M)σiN −→ λ.(Mσi+1N) (σ-λ-transition)
(M1 M2)σiN −→ ((M1σ

iN) (M2σ
iN)) (σ-app-trans.)

n σiN −→
⎧
⎨

⎩

n − 1 if n > i
ϕi

0N if n = i
n if n < i

(σ-destruction)

ϕi
k(λ.M) −→ λ.(ϕi

k+1M) (ϕ-λ-trans.)
ϕi

k(M1 M2) −→ ((ϕi
kM1) (ϕi

kM2)) (ϕ-app-trans.)

ϕi
k n −→

{
n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(M1σ
iM2)σjN −→ (M1σ

j+1N)σi(M2σ
j−i+1N) if i ≤ j (σ-σ-trans.)

(ϕi
kM)σjN −→ ϕi−1

k M if k < j < k + i (σ-ϕ-trans. 1)
(ϕi

kM)σjN −→ ϕi
k(Mσj−i+1N) if k + i ≤ j (σ-ϕ-trans. 2)

ϕi
k(MσjN) −→ (ϕi

k+1M)σj(ϕi
k+1−jN) if j ≤ k + 1 (ϕ-σ-trans.)

ϕi
k(ϕj

l M) −→ ϕj
l (ϕi

k+1−jM) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕi
k(ϕj

l M) −→ ϕj+i−1
l M if l ≤ k < l + j (ϕ-ϕ-trans. 2)

λ.(M 1 ) −→ N if M=seϕ2
0 N (Eta)

2.3 The λσ-Calculus

The λσ-calculus is given by a first-order rewriting system, which makes substi-
tutions explicit by extending the language with two sorts of objects: terms and
substitutions which are called λσ-expressions.

Definition 7 (Set Λσ of λσ-expressions). The λσ-expressions consist of:

Terms M ::=1 | (M M) | λ.M | M [S]
Substitutions S ::= id | ↑ | M.S | S ◦ S

Substitutions can intuitively be thought of as lists of the form N/i indicating
that the index i should be changed to the term N . The expression id repre-
sents a substitution of the form {1 /1 , 2 /2 , . . . } whereas ↑ is the substitution
{ i + 1 / i |i∈N

∗}. The expression S ◦ S represents the composition of substitu-
tions. Moreover, 1 [↑n], where n ∈ N

∗, codifies the de Bruijn index n + 1 and
i [S] represents the value of i through the substitution S, which can be seen as
a function S(i). The substitution M.S has the form {M/1 , S(i)/i + 1 } and is
called the cons of M in S. M [N.id] starts the simulation of the β-reduction
of (λ.M N) in λσ. Thus, in addition to the substitution of the free occurrences
of the index 1 by the corresponding term, free occurrences of indices should be
decremented because of the elimination of the abstractor. Table 2 includes the
rewriting system of the λσ-calculus, as presented in [DoHaKi2000].

This system without (Eta) is equivalent to that of [ACCL91]. The associated
substitution calculus, denoted by σ, is the one induced by all the rules except
(Beta) and (Eta), and its equality is denoted as =σ.



Principal Typings for Explicit Substitutions Calculi 571

Table 2. The rewriting system for the λσ-calculus with the Eta rule

(λ.M N) −→ M [N.id] (Beta) (λ.M)[S] −→ λ.(M [1.(S◦↑)]) (Abs)
(M N)[S] −→ (M [S] N [S]) (App) ↑◦ (M.S) −→ S (ShiftCons)
M [id] −→ M (Id) (S1 ◦ S2) ◦ S3 −→ S1 ◦ (S2 ◦ S3) (AssEnv)
1[S].(↑◦S) −→ S (Scons) (M.S) ◦ T −→ M [T ].(S ◦ T ) (MapEnv)
(M [S])[T ] −→ M [S ◦ T ] (Clos) 1.↑ −→ id (V arShift)
id ◦ S −→ S (IdL) 1[M.S] −→ M (V arCons)
S ◦ id −→ S (IdR) λ.(M 1 ) −→ N if M=σN [↑] (Eta)

3 The Type Systems

Definition 8. The syntax of the simple types and contexts is given by:

Types τ ::= α | τ → τ Contexts A ::= nil | τ.A
where α ranges over type variables.

A type assignment system S is a set of rules, allowing some terms of a
given system to be associated with a type. A context gives the necessary in-
formation used by S rules to associate a type to a term. In the simply typed
λ-calculus [Hi97], the typable terms are strongly normalizing. The ordered pair
〈A, τ〉, of a context and a type, is called a typing in S. For a term M , A�M :τ
denotes that M has type τ in context A, and 〈A, τ〉 is called a typing of M . If
Θ=〈A, τ〉 is a typing in S then S � M :Θ denotes that Θ is a typing of M in S.

The contexts for λ-terms in de Bruijn notation are sequences of types. If A is
some context and n ∈ N then A<n denotes the first n − 1 types of A. Similarly
we define A>n, A≤n and A≥n. Note that, for A>n and A≥n the final nil element
is included. For n=0, A≤0.A=A<0.A=A. The length of A is defined as |nil|=0
and, if A is not nil, |A|=1+|A>1|. The addition of some type τ at the end of a
context A is defined as A.τ=A≤m.τ.nil, where |A|=m.

Given a term M , an interesting question is whether it is typable in S or not.
Note that, we are using a Curry-style/implicit typing, where in λ.M we did
not specify the type of the bound variable ( 1 ). Such terms have many types,
depending on the context. Another important question is whether given a term,
its so-called most general typing can be found. An answer to this question,
which represents any other answer, is called principal typing. Principal typing
(which is context independent) is not to be confused with a principal type (which
is context dependent). Let Θ be a typing in S and TermsS(Θ)={M |S � M :Θ}.
J.B. Wells introduced in [We2002] a system-independent definition of PT and
proved that it generalizes previous system-specific definitions.

Definition 9 ([We2002]). A typing Θ in system S is principal for some term
M if S � M : Θ and for any Θ′ such that S � M : Θ′ we have that Θ ≤S Θ′,
where Θ1 ≤S Θ2 ⇐⇒ TermsS(Θ1) ⊆ TermsS(Θ2).

In simply typed systems the principal typing notion is tied to type substitu-
tion and weakening. Weakening allows one to add unnecessary information



572 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

to contexts. Type substitution maps type variables to types. Given a type
substitution s, the extension for functional types is straightforward as s(σ→τ)=
s(σ)→s(τ) and the extension for sequential contexts as s(nil)=nil and s(τ.A)=
s(τ).s(A). The extension for typings is given by s(Θ)=〈s(A), s(τ)〉.

3.1 Principal Typings for the Simply Typed λ-Calculus in de Bruijn
Notation TAλdB

Definition 10. (The System TAλdB) The TAλdB typing rules are given by:

(Var) τ.A � 1 : τ (Varn)
A � n : τ

σ.A � n + 1 : τ

(Lambda)
σ.A � M : τ

A � λ.M : σ → τ
(App)

A � M : σ → τ A � N : σ

A � (M N) : τ

This system is similar to TAλ ([Hi97]). The rule (Varn) allows the construction
of contexts as sequences.

Lemma 1. Let M be a λdB-term. If A � M : τ , then A.σ � M : τ . Hence, the
rule A � M :τ

A.σ � M :τ
(λdB-weak) holds in the system TAλdB.

Lemma 1 above is proved via the statement of a more general property of TAλdB,
which justifies why the weakening for this type system has to be done only adding
types at the end of contexts.

Using (λdB-weak) and type substitution, we follow the definition of [We2002]
for Hindley’s Principal Typing to define principal typing for the λdB-calculus.

Definition 11. A principal typing in TAλdB of a term M is the typing Θ =
〈A, τ〉 such that

1. TAλdB � M : Θ
2. If TAλdB � M : Θ′ for any typing Θ′ = 〈A′, τ ′〉, then there exists some

substitution s such that s(A) = A′
≤|A|.nil and s(τ) = τ ′.

Observe that, given a principal typing 〈A, τ〉 of M , the context A is the shortest
context where M can be typable. In contrast to the λ-calculus with names,
where the context from a principal typing of M is the smallest set because it
declares types for exactly the free variables of M , the context from a principal
typing in λdB may have some type declaration for variables not occurring in the
term, to maintain the ordered structure of contexts. For example, a PT for 2 is
〈τ1.τ2.nil, τ2〉.

As is the case for the simply typed λ-calculus with names, the best way to
assure that Definition 11 is the correct translation of the PT concept, is to verify
that Definition 11 corresponds to Definition 9.

Theorem 1. A typing Θ is principal in TAλdB according to Definition 11 iff Θ
is principal in TAλdB according to Definition 9.



Principal Typings for Explicit Substitutions Calculi 573

The proof is similar to the one in [We2002]. The ‘sufficient’ condition uses a
substitution lemma as in [Hi97] 3A2.1(ii) and the weakening from Lemma 1.
The ‘necessary’ condition is constructive by contraposition building a counter
example: given a term M with PT Θ one supposes a typing Θ′ that is not PT
of M according to definition 11. From M and the relation between Θ and Θ′

given by definition 11, one builds a new term N for which Θ′ is a typing, but
Θ is not. The main difference between the proof in [We2002] and this one is the
recursive function used to give N a structure exploring some specific Θ′ feature,
which has to be split, according to the order in which the term is bound during
the recursive construction of the counter example.

We now present a type inference algorithm for λdB-terms, similarly to the
one in [AyMu2000] for λse, to verify whether TAλdB has PT according to Defi-
nition 11. Given any term M , decorate each subterm with a new type variable
as subscript and a new context variable as superscript, obtaining a new term
denoted by M ′. For example, for term λ.( 2 1 ) we have the decorated term
(λ.( 2 A1

τ1 1 A2
τ2 )A3

τ3 )A4
τ4 . Then, rules from Table 3 are applied to pairs of the form

〈〈R, E〉〉, where R is a set of decorated terms and E a set of equations on type
and context variables.

Table 3. Rules for Type Inference in System TAλdB

(Var) 〈〈R ∪ {1A
τ }, E〉〉 →〈〈R, E ∪ {A = τ.A′}〉〉,where A′ is a fresh

context variable;
(Varn) 〈〈R ∪ {nA

τ }, E〉〉 →〈〈R, E ∪ {A = τ ′
1. · · · .τ ′

n−1.τ.A′}〉〉,where A′

and τ ′
1, . . . , τ

′
n−1 are fresh context and type

variables;
(Lambda) 〈〈R ∪ {(λ.MA1

τ1 )A2
τ2 }, E〉〉 →〈〈R, E ∪ {τ2 = τ∗ → τ1, A1 = τ∗.A2}〉〉, where

τ∗ is a fresh type variable;
(App) 〈〈R ∪ {(MA1

τ1 NA2
τ2 )A3

τ3 }, E〉〉→〈〈R, E ∪ {A1 = A2, A2 = A3, τ1 = τ2 → τ3}〉〉

The inference rules in Table 3 are given according to the typing rules of
TAλdB. Type inference for M starts with 〈〈R0, ∅〉〉, where R0 is the set of all M ′

subterms. The rules from Table 3 are applied until one reaches 〈〈∅, Ef 〉〉, where
Ef is a set of first-order equations over context and type variables.
Example 1. Let M = λ.( 2 1 ). Then M ′ = (λ.( 2 A1

τ1 1 A2
τ2 )A3

τ3 )A4
τ4 and R0 = { 2 A1

τ1 ,
1 A2

τ2 , ( 2 A1
τ1 1 A2

τ2 )A3
τ3 , (λ.( 2 A1

τ1 1 A2
τ2 )A3

τ3 )A4
τ4 }. Using the rules in Table 3 we have the

following reduction:

〈〈R0, ∅〉〉 →Varn

〈〈R1 = R0 � { 2 A1
τ1 }, E1 = {A1 = τ ′

1.τ1.A
′
1}〉〉 →Var

〈〈R2 = R1 � { 1 A2
τ2 }, E2 = E1 ∪ {A2 = τ2.A

′
2}〉〉 →App

〈〈R3 = R2 � {( 2 A1
τ1 1 A2

τ2 )A3
τ3 }, E3 = E2 ∪ {A1 = A2, A2 = A3, τ1 = τ2→τ3}〉〉 →Lambda

〈〈∅ = R3 � {(λ.( 2 A1
τ1 1 A2

τ2 )A3
τ3 )A4

τ4 }, E4 = E3 ∪ {τ4 = τ∗
1 →τ3, A3 = τ∗

1 .A4}〉〉
Thus, E4 = Ef . Solving the trivial equation over context variables, i.e. A1 =

A2 = A3, and using variables of smaller subscripts, one gets {τ1 = τ2→τ3, τ4 =



574 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

τ∗
1 →τ3, A1 = τ ′

1.τ1.A
′
1, A1 = τ2.A

′
2, A1 = τ∗

1 .A4}. Thus, simplifying one gets {τ1 =

τ2→τ3, τ4 = τ∗
1 →τ3, τ

′
1.τ1.A

′
1 = τ2.A

′
2 = τ∗

1 .A4}. From these equations one gets the
most general unifier (mgu for short) τ4 = τ2→τ3 and A4 = (τ2→τ3).A′

1, for the
variables of interest. Since the context must be the shortest one, A′

1 = nil and
〈(τ2→τ3).nil, τ2→τ3〉 is a principal typing of M .

From Definition 11 and by the uniqueness of the solutions of the type inference
algorithm, one deduces that TAλdB satisfies PT. The next theorem says that
every typable term has a principal typing.

Theorem 2 (Principal Typings for TAλdB). TAλdB satisfies the property
of having principal typings.

3.2 Principal Typings for TAλse , the Simply Typed λse

The typed version of λse presented is in Curry style, which we have veri-
fied to have the same properties as the version in Church style presented in
[ARKa2001a]. In particular, the properties in question being: weak normalisa-
tion (WN), confluence (CR) and subject reduction (SR). Thus, the syntax of
λse-terms and the rules are the same as the untyped version.

Since the syntax of λse remains close to the λdB-calculus, to have a type
assignment system for the λse-calculus we only need to add typing rules to
TAλdB for the two new kinds of terms.

Definition 12 (The System TAλse). TAλse is given by (Var), (Varn), (App),
(Lambda) from Definiton 10 and the following new rules.

(Sigma)
A≥i � N : ρ A<i.ρ.A≥i � M : τ

A � MσiN : τ
(Phi)

A≤k.A≥k+i � M : τ

A � ϕi
kM : τ

where in (Sigma) |A| ≥ i − 1 and in (Phi) |A| ≥ k + i − 1.

Weakening for λse is done in the same way as for λdB, adding types at the end
of a context, giving the following lemma.

Lemma 2 (Weakening for λse). The rule (λse-weak) holds in System TAλse ,

where A � M : τ

A.σ � M : τ
(λse-weak).

Consequently, the definition of principal typings in λse is the same as that for
TAλdB. For the sake of completeness we repeat it here.

Definition 13 (Principal Typings in TAλse). A principal typing of a term
M in TAλse is a typing Θ = 〈A, τ〉 such that

1. TAλse � M : Θ
2. If TAλse � M : Θ′ for any typing Θ′ = 〈A′, τ ′〉, then there exists a substitu-

tion s such that s(A) = A′
≤|A|.nil and s(τ) = τ ′.

Theorem 3. A typing Θ is principal in TAλse according to Definition 13 iff Θ
is principal in TAλse according to Definition 9.



Principal Typings for Explicit Substitutions Calculi 575

Table 4. Type inference rules for the λse-Calculus

(Sigma) 〈〈R ∪ {(MA1
τ1 σiNA2

τ2 )A3
τ3 }, E〉〉 →

〈〈R, E ∪ {τ1=τ3, A1=τ ′
1. · · · .τ ′

i−1.τ2.A2, A3=τ ′
1. · · · .τ ′

i−1.A2}〉〉,
where τ ′

1, . . . , τ
′
i−1 are new type variables and the sequence is

empty if i = 1;

(Phi) 〈〈R ∪ {(ϕi
kMA1

τ1 )A2
τ2 }, E〉〉 →

〈〈R, E ∪ {τ1 = τ2, A2 = τ ′
1. · · · .τ ′

k+i−1.A
′, A1 = τ ′

1. · · · .τ ′
k.A′}〉〉,

where A′ and τ ′
1, . . . , τ

′
k+i−1 are new variables of context and

type. If k + i − 1 = 0 or k = 0, then the sequences τ ′
1, . . . , τ

′
k+i−1

and τ ′
1, . . . , τ

′
k, respectively, are empty.

The proof of Theorem 3 is a straightforward extension of that of Theorem 1.
We now present a type inference algorithm for the λse-calculus, similarly to

that of [AyMu2000]. The algorithm is composed of the rules from Table 3 and
the new rules in Table 4.

Similarly to the previous algorithm, the rules of Table 4 were developed ac-
cording to the rules of Definition 12. The decorated term associated with M ,
denoted by M ′, has a syntax close to that of decorated λdB-terms: any subterm
is decorated with its type and its context variables. The rules are applied to
pairs 〈〈R, E〉〉, starting from the pair 〈〈R0, ∅〉〉, as was done to TAλdB.

Example 2. For M = λ.((1 σ22 ) (ϕ2
0 2 )), one obtains the corresponding R0 from

M ′ = (λ.((1A1
τ1

σ22A2
τ2

)A3
τ3

(ϕ2
0 2A4

τ4
)A5
τ5

)A6
τ6

)A7
τ7

. Then, applying the rules in Table 3
and 4 to the pair 〈〈R0, ∅〉〉, obtaining the pair 〈〈∅, Ef 〉〉, and simplifying Ef , in a
similar fashion to example 1, one obtains the system of equations which lead to
the mgu τ7 = (τ2 → τ6) → τ6 and A7 = τ ′

1.τ2.A
′
2 for the variables of interest.

Theorem 4 (Principal Typings for TAλse). TAλse satisfies the property of
having principal typings.

3.3 Principal Typings for TAλσ, the Simply Typed λσ

The typing rules of the λσ-calculus provide types for objects of sort term as
well as for objects of sort substitution. An object of sort substitution, due to its
semantics, can be viewed as a list of terms. Consequently, its type is a context.
S � A denotes that the object of sort substitution S has type A.

Definition 14 (The System TAλσ). TAλσ is given by the following typing
rules.

(var) τ.A � 1 : τ (lambda)
σ.A � M : τ

A � λ.M : σ → τ

(app)
A � M : σ → τ A � N : σ

A � (M N) : τ
(clos)

A � S � A′ A′ � M : τ

A � M [S] : τ
(id) A � id � A (shift) τ.A �↑ �A

(cons)
A � M : τ A � S � A′

A � M.S � τ.A′ (comp)
A � S � A′′ A′′ � S′ � A′

A � S′ ◦ S � A′



576 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

Observe that the name of the typing rules begin with lower-case letters, while
the rewriting rules with upper-case letters. As for λse, the typed version of the
λσ-calculus is presented in Curry style. We have verified that the Curry style
version has WN, CR and SR as the Church style version of [DoHaKi2000].

The notion of typing for TAλσ has to be adapted because the λσ-expression
of sort substitution is decorated with contexts variables as types and as contexts.
Thus, one may say that Θ=〈A, T〉 is a typing of a λσ-expression in TAλσ, where
T can be either a type or a context. If the analysed expression belongs to the
λ-calculus, the notion of typing corresponds to that of TAλdB.

Lemma 3 (Weakening for λσ). Let M be a λσ-term and S a λσ-substitution.
If A � M : τ , then A.σ � M : τ , for any type σ. Similarly, if A � S � A′, then
A.σ � S � A′.σ. Hence, the rules (λσ-tweak) and (λσ-sweak) hold in System
TAλσ, where

A � M : τ

A.σ � M : τ
(λσ-tweak)

A � S � A′

A.σ � S � A′.σ
(λσ-sweak)

Lemma 3 and type substitutions allow us present a definition for PT in TAλσ.

Definition 15 (Principal Typings in TAλσ). A principal typing of an
expression M in TAλσ is a typing Θ = 〈A, T〉 such that

1. TAλσ � M : Θ
2. If TAλσ � M : Θ′ for any typing Θ′ = 〈A′, T′〉, then there exists a substitu-

tion s such that s(A) = A′
≤|A|.nil and if T is a type, s(T) = T

′, otherwise
we have that s(T) = T

′
≤|T|.nil.

We might verify if this PT definition has a correspondence with Wells’ system-
independent definition [We2002].

Theorem 5. A typing Θ is principal in TAλσ according to Definition 15 iff Θ
is principal in TAλσ according to Definition 9.

Despite the fact that the notion of typing is extended to include the sort substi-
tution, the techniques used to prove Theorem 5 are the same applied to prove
Theorems 1 and 3.

We now present an algorithm for type inference, to verify if TAλσ has PT
according to Definition 15. Thus, given an expression M , we will work with the
decorated expression M ′ but the type for substitutions is a context as well. We
use the same syntax for decorated expressions as in [Bo95].

The inference rules presented in Table 5 are given according to the typing rules
of the system TAλσ presented in Definition 14. Similarly to the previous algo-
rithm, the rules are applied to pairs 〈〈R, E〉〉, where R is a set of subexpressions
of M ′ and E a set of equations over type and context variables.

Example 3. For M = (2 .id) ◦ ↑ one has M ′ = (((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

◦ ↑A9
A10

)A11
A12

.
Then R0 = {(1A1

τ1
[↑A2

A3
])A4

τ2 , ((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

, (((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

◦ ↑A9
A10

)A11
A12

,

1A1
τ1

, ↑A2
A3

, idA5
A6

, ↑A9
A10

}. Applying the rules from Table 5 to the pair 〈〈R0, ∅〉〉 until
the pair 〈〈∅, Ef 〉〉 is reached, and simplifying Ef as in example 1, one obtains the



Principal Typings for Explicit Substitutions Calculi 577

Table 5. Type inference rules for the λσ-calculus

(Var) 〈〈R ∪ {1A
τ }, E〉〉 →〈〈R,E ∪ {A = τ.A′}〉〉,where A′ is a fresh

context variable;
(Lambda) 〈〈R ∪ {(λ.MA1

τ1 )A2
τ2 }, E〉〉 →〈〈R,E ∪ {τ2 = τ∗ → τ1, A1 = τ∗.A2}〉〉, where

τ∗ is a fresh type variable;
(App) 〈〈R ∪ {(MA1

τ1 NA2
τ2 )A3

τ3 }, E〉〉 →〈〈R,E ∪ {A1 = A2, A2 = A3, τ1 = τ2 → τ3}〉〉
(Clos) 〈〈R ∪ {(MA1

τ1 [SA2
A3

])A4
τ2 }, E〉〉 →〈〈R,E ∪ {A1 = A3, A2 = A4, τ1 = τ2}〉〉

(Id) 〈〈R ∪ {idA1
A2

}, E〉〉 →〈〈R,E ∪ {A1 = A2}〉〉
(Shift) 〈〈R ∪ {↑A1

A2
}, E〉〉 →〈〈R,E ∪ {A1 = τ ′.A2}〉〉,where τ ′ is a fresh

type variable;

(Cons) 〈〈R ∪ {(MA1
τ1 .SA2

A3
)A4
A5

}, E〉〉 →〈〈R,E ∪ {A1 = A2, A2 = A4, A5 = τ1.A3}〉〉
(Comp) 〈〈R ∪ {(SA1

A2
◦ T A3

A4
)A5
A6

}, E〉〉→〈〈R,E ∪ {A1 = A4, A2 = A6, A3 = A5}〉〉

set of equations {τ1 = τ2, A11 = A12 = τ2.A2, A2 = τ ′
1.A1, A1 = τ1.A

′
1}. From this

equational system one obtains the mgu A11=A12=τ1.τ
′
1.τ1.A

′
1, for the variables

of interest. Thus, 〈τ1.τ
′
1.τ1.nil, τ1.τ

′
1.τ1.nil〉 is a principal typing of M .

Theorem 6 (Principal Typings for TAλσ). TAλσ satisfies the property of
having principal typings.

4 Conclusions and Future Work

We considered for λse and λσ particular notions of principal typings and gave
respective definitions which we proved to agree with the system-independent
notion of Wells in [We2002]. The adaptation of this general notion of principal
typings for the λσ requires special attention, since this calculus enlarges the lan-
guage of the λ-calculus by introducing a new sort of substitution objects, whose
types are contexts. Thus, the provided PT notion has to deal with the principal-
ity of substitution objects as well. Then, the property of having principal typings
is straightforwardly proved by revisiting type inference algorithms for the λse

and the λσ, previously presented in [AyMu2000] and [Bo95], respectively. The
result is based on the correctness, completeness and uniqueness of solutions given
by adequate first-order unification algorithms (e.g. see the unification algorithm
given in [Hi97]).

The investigation of this property for more elaborated typing systems of ex-
plicit substitutions is an interesting work to be done.

References

[ACCL91] Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitu-
tions. J. of Functional Programming 1(4), 375–416 (1991)

[ARMoKa2005] Ayala-Rincón, M., de Moura, F., Kamareddine, F.: Comparing and
Implementing Calculi of Explicit Substitutions with Eta-Reduction.
Annals of Pure and Applied Logic 134, 5–41 (2005)



578 D.L. Ventura, M. Ayala-Rincón, and F. Kamareddine

[ARKa2001a] Ayala-Rincón, M., Kamareddine, F.: Unification via the λse-Style of
Explicit Substitution. The Logical Journal of the Interest Group in
Pure and Applied Logics 9(4), 489–523 (2001)

[AyMu2000] Ayala-Rincón, M., Muñoz, C.: Explicit Substitutions and All That.
Revista Colombiana de Computación 1(1), 47–71 (2000)

[Bo95] Borovanský, P.: Implementation of Higher-Order Unification Based
on Calculus of Explicit Substitutions. In: Bartošek, M., Staudek, J.,
Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012, pp. 363–368.
Springer, Heidelberg (1995)

[deBru72] de Bruijn, N.G.: Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem. Indagationes Mathematicae 34, 381–
392 (1972)

[DoHaKi2000] Dowek, G., Hardin, T., Kirchner, C.: Higher-order Unification via
Explicit Substitutions. Information and Computation 157(1/2), 183–
235 (2000)

[Hi97] Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theo-
retical Computer Science, vol. 42. Cambridge University Press, Cam-
bridge (1997)

[Jim96] Jim, T.: What are principal typings and what are they good for?
In: Proc. of POPL 1995: Symp. on Principles of Programming Lan-
guages, pp. 42–53. ACM, New York (1996)

[KR97] Kamareddine, F., Ŕıos, A.: Extending a λ-calculus with Explicit Sub-
stitution which Preserves Strong Normalisation into a Confluent Cal-
culus on Open Terms. J. of Func. Programming 7, 395–420 (1997)

[Mel95] Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not
terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995.
LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)

[NaWi98] Nadathur, G., Wilson, D.S.: A Notation for Lambda Terms A Gener-
alization of Environments. Theoretical Computer Science 198, 49–98
(1998)

[We2002] Wells, J.: The essence of principal typings. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 913–925. Springer, Heidel-
berg (2002)



How We Think of Computing Today�

Jǐŕı Wiedermann1 and Jan van Leeuwen2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz
2 Department of Information and Computing Sciences, Utrecht University,

Padualaan 14, 3584 CH Utrecht, The Netherlands
j.vanleeuwen@cs.uu.nl

Abstract. Classical models of computation no longer fully correspond
to the current notions of computing in modern systems. Even in the
sciences, many natural systems are now viewed as systems that com-
pute. Can one devise models of computation that capture the notion of
computing as seen today and that could play the same role as Turing
machines did for the classical case? We propose two models inspired from
key mechanisms of current systems in both artificial and natural environ-
ments: evolving automata and interactive Turing machines with advice.
The two models represent relevant adjustments in our apprehension of
computing: the shift to potentially non-terminating interactive compu-
tations, the shift towards systems whose hardware and/or software can
change over time, and the shift to computing systems that evolve in an
unpredictable, non-uniform way. The two models are shown to be equiv-
alent and both are provably computationally more powerful than the
models covered by the old computing paradigm. The models also moti-
vate the extension of classical complexity theory by non-uniform classes,
using the computational resources that are natural to these models. Of
course, the additional computational power of the models cannot in gen-
eral be meaningfully exploited in concrete goal-oriented computations.

Keywords: Turing machines, evolving automata, interactive computa-
tion, non-uniform complexity.

1 Introduction

Can the Internet be simulated, at least in principle, by a Turing machine? Can
the living cell, the brain, and any other natural information processing system
be simulated likewise? The answer is not at all clear and depends very much
on one’s viewpoint. While the Turing machine paradigm is well suited for mod-
eling stepwise computational processes, it may be less suited for modeling the
behaviour of the computational systems as we know them today. What model
� This research was partially supported by project BRICKS in the Netherlands, and

by Institutional Research Plan AV0Z10300504 and grants No. 1ET100300419 and
1ET100300517 within the Czech National Research Program ‘Information Society’.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 579–593, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



580 J. Wiedermann and J. van Leeuwen

of computation could replace the classical Turing machine and serve as the new
paradigm?

The shift from Turing machines to a new computational model should cor-
respond to the shift in thinking about computing in the systems of today. It is
no longer the case that only isolated computers compute. We have no problem
admitting that sensor nets, embedded control systems in all kinds of interact-
ing devices and robots, ‘always operating’ information services, and in fact the
Internet, as a whole, perform computations, albeit in some non-standard way.
Moreover, it is no longer the case that only artificial gadgets compute. Biolo-
gists frequently speak of living cells or entire organisms as complex information
processing systems, as do psychologists in the case of the human mind and so-
ciologists in the case of animal or human societies. Some physicists even believe
that the entire Universe can be viewed in this way [3]. Can there be a single
model of computation covering all these cases, like the Turing machine did for
early computing, or are we deemed to have many different models, tailored to
each case at hand?

In this expository paper we describe a number of computational paradigms
that have emerged in recent years and that lead to ingredients for new models of
computation. We give the background for these paradigms and of some models
that have been based on them. We show that some of these models are indeed,
at least in principle, more powerful than classical computing in the sense that
they are provably computationally more powerful models than those fitting the
old paradigm. The models also enable extensions of classical complexity theory
(cf. [18,19]), showing that our modern notions of computing can lead naturally
into the domain of non-uniform complexity.

2 From Isolated to Interactive Computation

New technologies, from the telegraph to the World Wide Web, have ex-
panded our abilities to communicate widely, flexibly, and efficiently. This
urge to communicate will continue to drive the expanding technology with
the advent of widespread two-way video, wireless connectivity, and high-
bandwidth audio, video, 3-D imaging, and more yet to be imagined.
T. Winograd ([23], 1997).

The way we think of computing is closely related to what we consider to be a
computation.

2.1 Classical Computing

Historically, when arithmetic was invented in the early days of mankind, com-
puting seemed an ability by which only people are endowed. Later, when abaci
and mechanical calculators appeared, it was taken for granted that ‘computing
devices’ are artifacts designed by people. Consequently, computing was perceived
as an activity intrinsic to people or to devices invented by people for that pur-
pose. Computing was seen as an ‘invented’ process, in contrast to the ‘natural’



How We Think of Computing Today 581

processes which were driven by natural laws and which worked ‘by itself’. Com-
puting was something artificial or non-natural: it had to be planned ahead,
streamlined, powered and monitored. Computing devices had a rigorous, regular
and highly organized structure and therefore, had to be engineered with great
ingeniousness. Mainframe-, midi- and minicomputers and the many types of PCs
confirm this view of computing. In theory, their functioning is suitably modeled
by the Turing machine paradigm or by easily simulated models like the random
access machine.

Ever since Turing’s formulation of the model [12] in 1936, classical Turing
machines have dominated the thinking of computing. However, the paradigm of
Turing machines does not only suggest that any process which deserves to be
called algorithmic can be modeled by a Turing machine. There is more to it:
the paradigm also assumes a certain computational scenario which determines
how the machine is used. In classical Turing machines, this scenario requires
that a finite amount of input data is present prior to the start of a computation;
during the computation no new data can be added. The result is to be extracted
after a finite number of steps and only after, and when, the computation has
terminated. This allows one to view a computation as a process that maps finite
input data to finite output data and hence to view a computer as a device
realizing standard mathematical functions, calculating their value given an input
value. Computability theory has been based on this view.

2.2 ‘Always On’ Computing

A different view of computing systems arose when the first automated control
systems emerged. Here the computer was not used to compute function values.
Instead it was used to monitor, to serve, or to process potentially infinite streams
of data. Normally, as in the first computer operating systems and modern ‘al-
ways on’ systems, infinite input streams are presented as un-ending streams of
finite chunks of data. Each chunk is processed according to the Turing machine
paradigm. Aside from mathematical reasons, it inspired computability theory
to study infinite computations, by using Turing machines (or restricted variants
like finite automata) under the generalized scenario of infinite input strings and
infinite output strings. The results were seen as a natural generalization of the
finitary case, not as a revision of the Turing machine paradigm. After all, the
machine model had remained the same, merely the computational scenario had
changed. There is now a refined theory of ω-automata [10], with many applica-
tions in e.g. process theory. In relativistic computing, infinite computations are
seen from yet a different angle [4,21].

2.3 Interactive Computing

From computations over infinite streams of data it is only a small step to interac-
tive computations, where a machine interacts continuously with its environment.
The computational view of interaction was propagated by Wegner [20]. In inter-
active computing we have continuous on-line entry of input data and delivery of



582 J. Wiedermann and J. van Leeuwen

output data. Interactive machines do not have input and output tapes but input
and output ports. Interactive computing principally differs from computing over
infinite streams in two ways. First, in interactive computing we only consider
potentially infinite streams, i.e., streams that are always finite but can be pro-
longed without limit, with unpredictable next inputs at any time. We include
port symbols denoting ‘no input’ and ‘no output’, as valid inputs or outputs in
streams, respectively. Second, a finite delay condition [17] may be required dur-
ing computation, asserting that after any non-empty input symbol a non-empty
output symbol must be produced sometime. Any infinite input string that can
be fed to the interactive machine properly in this way, is called a ‘valid’ input.

The previous conditions mean e.g. that internal and external phases of com-
puting alternate, depending on whether an interactive device needs to do some
finite computation before outputting a non-empty response symbol (or taking in
a new non-empty input) or not. Unlike the scenario of classical machines perform-
ing infinite computations over infinite streams [10], interactive machines cannot
answer questions requiring the processing of infinite streams ‘in the limit’ (such
as ‘is there a finite number of 1’s in the given infinite stream?’). The interac-
tive use of standard stand-alone PCs corresponds well to this view of interactive
machines. The corresponding change in the Turing machine model leads to so-
called interactive Turing machines (ITMs) introduced in [16]. The processing of
infinite streams of symbols by ITMs leads to so-called ‘interactively realizable
translations’ on valid (infinite) input strings, see [18] for formal details.

From the viewpoint of computability theory, interactive computing e.g. with
ITMs does not lead to super-Turing computing power. Interactive computing
merely extends our view of classically computable functions over finite domains
to computable functions (translations) defined over infinite domains. Interactive
computers simply compute something different from non-interactive ones be-
cause they follow a different scenario. Remembering the respective inputs over
time, a finite computation of an interactive machine can always be replayed a
posteriori by a non-interactive machine giving the same outputs as the interac-
tive machine [17].

3 From Interactive to Evolving Computation

Every physical system registers information, and just by evolving in time,
by doing its thing, it changes that information, transforms that informa-
tion, or, if you like, processes that information.
S. Lloyd ([3], 2002).

Data interaction with computers differs from classical computing, as reflected in
the change of computational scenario. Historically it allowed the use of comput-
ers in many more applications than before and thus it extends our apprehension
of computing even though, from a computability point, interactive Turing ma-
chines cannot compute more, i.e. other mappings than non-interactive machines.
A change in computational power can only come from a change of view on the



How We Think of Computing Today 583

functioning of an isolated PC itself. In particular, does it make sense to change
a computing device, or to let it change, during its computation?

Obviously, this feature could be especially useful in the case of interactive
computing which potentially prolongs indefinitely: programs may be upgraded
over time, and so can the hardware. For instance, the user could add more
internal memory, upgrade the disk (while maintaining the original data), or
exchange the processor for a newer one. One could couple it to several other
computers, or connect it to a network like the Internet. Can changes like this
be accommodated within the Turing machine paradigm? What happens, from a
computational viewpoint?

This brings us back to a question posed in the beginning: can the Internet
be simulated by a Turing machine? This is a difficult question, since it asks for
comparing a piece of high-level computing and communication technology that
exists in the real world with a highly simplified model of computation that exists
in the abstract world. Therefore we will answer the question in two steps. In the
first step, we propose an abstract model capturing the important features of the
Internet (and as we will see later, those of many other computational gadgets
in the sciences). In the second step, we compare this model with the classical
Turing machine.

3.1 Modeling the Internet

What could an appropriate abstract model of the Internet be that has the same
abstract simplicity as a Turing machine? The Internet has one important feature
that we want to capture: its structure evolves over time. New sites are added
to or deleted from the network all the time, possibly even connecting to it by
means of wireless technologies. A ‘site’ can be anything: a workstation connected
to the net via a cable, a notebook in an airplane, or a mobile phone. In order
to capture all this variety in a simple model one must choose a fairly abstract
viewpoint.

Consider the evolution of the Internet over time from its very beginning till
now. Concentrate on the moments when it underwent some ‘hardware changes’ as
mentioned above: a computer joined or left the network, or a computer on the net
was upgraded. (We ignore cabling issues.) Between these moments of change, the
structure of the Internet can be seen as stable. In these periods, one can view the
entire Internet as a huge finite automaton, with finitely many input and output
ports corresponding to all data entry and exit points (like keyboards, cameras,
monitors, terminals, printers, and so on). In this automaton, the contents of
the Internet is modeled by the (huge number of) states. Transitions between
states correspond to operations taking place over the Internet, like changes in
its contents by new inputs.

The automaton works in a ‘parallel’ interactive mode, receiving inputs through
all its inputs ports and producing outputs over all its output ports. Of course,
this abstraction neglects many other issues, like variable message transfer times.
Allowing this simplification we go even farther: we merge all input streams into
a single input stream while remembering the identity of the individual elements



584 J. Wiedermann and J. van Leeuwen

(i.e., we can always say which element belongs to which individual stream) and
do the same with the outputs. What we get is an equivalent finite automaton
with a single input and a single output port which, in principle, computes the
same transformation of input to output as the Internet did in a period in which
it had a stable structure. Note that in the same way we can model any single
computer over its lifetime with consecutive upgrades. In-between two consecutive
periods, the structure of the net, and hence of the modeling finite automaton, is
said to evolve.

3.2 Evolving Automata

In order to model the evolution of a computational system like the Internet over
time, we consider the (ordered) sequence of finite automata corresponding to the
successive stable periods. The notion of sequence has been used in computational
complexity theory before in different contexts e.g. to capture the computational
power of non-uniform families of circuits (cf. [1]). In a sequence of automata, the
i-th automaton corresponds to the Internet contents and computations during
the i-th stable period of the Internet. In the course of this time, only the i-th
automaton receives input and produces output.

We have arrived at the following computational model called the evolving
automaton, introduced in [16], [19]. (In [18] the model is called a ‘lineage’ of
automata but we give a simplified formulation for expository reasons.)

Definition 1. For i = 1, 2, . . ., let Ai be a finite automaton with a single input
and a single output port, let its alphabet be Σi, let Si be the set of states of Ai,
and let ∅ �= Qi ⊆ Si, be a set of ‘preserving’ states in Ai. Let TA = t1, t2, . . .,
with ti ∈ N, t1 = 1 and ti < ti+1 be the sequence of switching times. The infinite
sequence of finite automata A = A1, A2, . . . is called an evolving automaton with
schedule TA, or just an evolving automaton if TA is understood, if Qi � Qi+1,
for i = 1, 2, . . . and the switching in processing from one automaton to the next
takes place at the times given by TA.

In the model, the condition Qi � Qi+1 captures the persistence of the relevant
data over time (cf. [6]). In the language of finite automata the condition en-
sures that some information available to Ai and represented in the states in Qi,
is available also to Ai+1 after the ‘change moment’. We require here that the
transferred information can only grow, but this can easily be avoided by slightly
modifying the definition, see [18]. The schedule TA of an evolving automaton A
determines the ‘switching times’ ti ∈ TA when the input stream to Ai must be
redirected to Ai+1, in a state in Qi.

An evolving automaton A clearly is an infinite object, given by an explicit
enumeration of its elements. However, at each time the computation is performed
by only one element of A, which is a finite object. In general, there need not
exist an algorithm for computing Ai given the previous elements in the sequence,
the input and the schedule. A similar remark holds for the switching schedule;
in general, its elements are non-computable from knowing A and the input se-
quence. Evolving automata are non-uniform systems just like families of circuits:



How We Think of Computing Today 585

their development over time cannot be described by an algorithm. The Internet
is a case in point: the decision to upgrade a computer or connect it to the Inter-
net, depends entirely on the person owning the computer and has nothing to do
with the computability.

3.3 Complexity of Evolving Automata

Given an evolving automaton A = A1, A2, . . ., it is natural to consider the num-
ber of states of the individual automata Ai as a measure for the complexity
of A. Define the size complexity of an evolving automaton A as the function g
such that for every i, g(i) is the number of states of Ai. Given this complex-
ity measure, one can now try to categorize the translations realized by evolving
automata A with any possible time schedule TA.

Definition 2. A translation φ of infinite streams to infinite streams is said to
be of complexity g if there is an evolving automaton of complexity g that realizes
φ. For any function g : N → N, let SIZE(g) be the class of all translations φ
that can be realized by an evolving automaton of complexity g.

By the non-uniformity of the model, the classes SIZE(g) will in general contain
an abundance of non-computable translations, even though all of them will be
‘non-uniformly realizable’ by evolving automata within ‘growth bound’ g. A
precise characterization of the translations that are non-uniformly realizable by
evolving automata was given in [18,19]. The complexity measure is a realistic
one, as indicated by the following result from [18,19].

Theorem 1. Let g, h : N → N be positive non-decreasing functions such that
g(i) ≤ h(i) for all i and g(i) < h(i) for at least one i. Then SIZE(g) is properly
contained in SIZE(h).

In fact, in [18,19] it is shown that SIZE(g) and SIZE(h) differ whenever g and
h do. Thus evolving automata have a fitting complexity theory, directly derived
from the nature of the model.

3.4 Modeling the Internet 2

Finally, if one would want to build an evolving automaton simulating the existing
Internet, then we could construct such an automaton only a posteriori, after
watching the Internet’s evolution and taking snapshots of it at the times of its
changes, plus a recording of all input streams. The snapshots would then be used
for constructing the sequence of automata which, on the recorded input streams,
would produce the same translation as the Internet did. Of course, we are not
seriously proposing to do it, it is only a Gedankenexperiment, serving as proof
of principle.

Conversely, can some network simulate an evolving automaton A = A1, A2, . . .
with switching schedule TA = t1, t2, . . .? Of course it can. To show it, we begin
with a computer simulating A1. At time t1 we replace it by (or upgrade it to) a
computer simulating A2 and continue processing the inputs till time t2, etc.



586 J. Wiedermann and J. van Leeuwen

4 Two New Models of Computation

Evolving automata and Turing machines are both defined using the same formal
language. This allows us to compare the computational power of both models.

Proposition 1. Every classical Turing machine, or even an ITM, T can be
simulated by an evolving automaton.

Proof. (Sketch) Observe the computation of T on an input stream σ and note the
times ti when any of the Turing machine’s heads moves past the ‘next’ rightmost
symbol on its tape. These times define the switching schedule. Between times
ti and ti+1, the computation of T can be modeled by a finite automaton Ai.
This leads to a sequence of automata A and a schedule TA computing the same
translation as T . �

The proposition establishes that computationally, evolving automata are at least
as powerful as (interactive) Turing machines. Observe that, in order to simulate
T , the construction of A and that of the switching schedule depended, in a com-
putable way, solely on T and on the input σ. Thus, A and TA were computable
from knowing T and σ. Note that in general, the definition of an evolving au-
tomaton does not require the latter to be the case. Thus, there seems to be some
‘room’ in the computational performance of evolving automata. Could they even
simulate devices that are computationally more powerful than those modeled by
ITMs?

As we shall see below, this is indeed the case: evolving automata are provably
more powerful than Turing machines. Does it mean that the Turing machine is
out of the game when looking for a new paradigm that captures the ideas of
contemporary computing? Not entirely.

4.1 Computing with Advice

Rather than attempting a reverse simulation of evolving automata, let us try to
simulate a yet more powerful model of a Turing machine by evolving automata:
the so-called interactive Turing machine with advice (ITM/A). The model ex-
tends the well-known and well-studied model of (ordinary) Turing machines with
advice in computational complexity theory (cf. [8]).

Definition 3. An interactive Turing machine with advice (ITM/A) is an in-
teractive Turing machine as described before, enhanced by an advice function
f : N → Σ∗. Advice allows the insertion of external information f(t) into the
course of a computation at suitable times.

A standard Turing machine with advice, with input of size n, is allowed to ‘ask’
for the value of its advice function only for that particular value of n. Similarly,
an ITM/A can call its advice at time t only for values t1 ≤ t. To realize such



How We Think of Computing Today 587

a call an ITM/A is equipped with a separate advice tape and among its states
it has a distinguished advice state. By writing t1 on the advice tape and by
entering the advice state at time t ≥ t1 the value of f(t1) will appear on the
advice tape (in a single step). By this action the original contents of the advice
tape is completely rewritten. Note that the value of f(t1) does not depend on
the input read before or after time t: the advice called at time t with argument
t1 ≤ t is the same for all input streams. This makes advice different from oracles
also considered in the computability theory: oracle values can depend on the
current input (cf. [13]).

The mechanism of advise functions is very powerful and can provide an
ITM/A with any non-computable ‘assistance’. For theoretical and practical rea-
sons it is useful to restrict the size of advice growth in ITM/As to polynomial
functions. With advice functions that grow exponentially one could encode ar-
bitrary oracles in advice.

Proposition 2. Evolving automata can simulate interactive Turing machines
with advice and vice versa.

Proof. (Sketch) First we sketch how an evolving automaton, A, can simulate
an ITM/A O. Follow the given simulation of an ITM without advice, but now
also consider the actions of O with its advice: include the times of calling O’s
advice in the schedule of switching times as well. At each switching moment,
the respective automaton will also encode the corresponding advice in its states.
Note that now the members of A cannot be computed solely from knowing σ
and O as before. This time, we also have to know the advice at each calling
time. Note that the automaton sizes in A grow proportionally with the space
complexity and the advice size of the O in the simulated time segment.

The reverse simulation by means of an ITM/A is easy. An ITM/A O is sup-
plied with the description of A’s members and the times of TA ‘on demand’, via
its advice tape. The computation of O on input σ starts by calling the advice.
O gets the description of A1 followed by the value of t1. All O has to do is to
simulate A1 on the next t1 input symbols. Then O calls its advice again, ob-
taining description of A2 and the value of t2, and O simulates A2 for the next
t2−t1 steps. Then the process of calling advice repeats again, etc. Now the space
complexity of O grows as fast as the automata size in A. �

As a corollary we obtain that the Internet, modeled by an evolving automaton,
can be simulated by an interactive Turing machine with advice. By this, we have
finished the second step of our plan: we have identified a model which is an
extension of Turing machines and whose computational power matches exactly
that of a highly simplified model of the (unrestricted) Internet.

4.2 Complexity of ITM/As

As for evolving automata we consider the question whether ITM/As admit an
‘own’ complexity theory.



588 J. Wiedermann and J. van Leeuwen

Proposition 3. ITM/As are more powerful than ITMs (without advice).

Proof. (Sketch) We begin by exhibiting a translation κ that can be realized by
an ITM/A, but not by any ITM without an advice. The computation will ask for
solving the halting problem (known to be undecidable) for all classical Turing
machines.

As input stream, we consider a computable enumeration of all Turing ma-
chines. Given this enumeration, κ should output with each valid machine de-
scription a 1 if and only if this machine accepts its own description, and 0
otherwise. We construct an ITM/A I that does this. In-between producing 0s
or 1s, I will output only empty symbols.

I enumerates all TMs in the same order as they occur in the input stream.
Then I can recognize whether a segment of the input stream is indeed a valid
encoding of a TM. On segments that are not encodings of a TM, I produces 0.
On a segment w that is an encoding of length n of some TM, I calls its advice
with value n (note that the advice is called for a value which does not depend
on the particular input read thus far). The advice gives the encoding 〈M〉 of
a TM whose running time is the longest from among the running time of all
TMs of size n that terminate on their own description. Running this machine on
input 〈M〉 in parallel with the simulation of the w, I has an upper bound on the
running time on w within which the machine must halt on its own description
when it does. In this way I can correctly answer the halting problem for w in
finite time, and proceed with the next segment of the input.

Now we sketch that no ITM without advice can solve the halting problem.
Suppose there was an ITM H computing κ. Obviously, due to the properties
of interactive machines, H should produce the answer to any particular halting
problem in finite time. Thus, if we were interested in solving only a particular
halting problem it would be enough to run a classical TM simulating H until it
produces, in finite time, the solution of our decision problem. This contradicts
the undecidability of the halting problem by classical TMs. �

Given an ITM/A with advice function f , it is natural to consider the size of the
advice f(t) for each individual value of t as a measure for the ‘complexity’ of
the ITM/A (in addition to the usual measures of time and space for the Turing
machine part). Define the advice complexity of an ITM/A with advice function
f as the function α : N → N such that for every t, α(t) = |f(t)| (the length
of the string f(t)). Given this measure one can try to distinguish between the
computational power of different ITM/As. For example, Verbaan [18] proved the
following interesting result, extending a similar result known for ordinary Turing
machines with advice.

Theorem 2. Consider ITM/As over input and advice alphabets with a fixed
size bound b. Let α and β be integer-valued functions such that α = o(β) and
β(t) ≤ bt

log b for all t. Then there is a translation φ of infinite streams to infinite
streams that can be realized by an ITM/A of advice complexity β, but not by any
ITM/A of advice complexity α′, for any function α′ with α′(t) ≤ α(t) for all but
finitely many t.



How We Think of Computing Today 589

In fact, as soon as α is strictly ‘below’ β for all but finitely many values of
t, ITM/As of advice complexity β are more powerful than ITM/As of advice
complexity α [18].

The computational equivalence between evolving automata and ITM/As also
opens the question whether their complexity theories can be linked. An example
of a result in this direction is the following.

Theorem 3. Let φ be a translation of infinite streams to infinite streams. Let φ
be realizable by an evolving automaton of size complexity g. Then φ can be realized
by an ITM/A of advice complexity O(g log g) and space complexity O(log g).

It follows e.g. that evolving automata of polynomially bounded size complexity
can be simulated by an ITM/A of polynomially bounded advice complexity and
logarithmic space. The converse result can be shown as well [18].

5 Extending the Turing Machine Paradigm

[· · · ] a comprehensive theory of computation must reflect in a stylized
way aspects of the underlying physical world.
T. Toffoli ([11], 1982).

In our search for a new computational model, we have presented three important
insights:

(i) we have devised a model of evolving automata capturing interactive and
non-uniformly evolving computing,

(ii) we have shown the computational equivalence of evolving automata and
interactive Turing machines with advice and, last but not least,

(iii) we have shown that these two models are computationally more power-
ful than interactive Turing machines (without advice) which only capture
interaction.

This leads to the new computational paradigm that we have in mind:

Extended Turing Machine paradigm: A computational process is
any process whose evolution over time can be captured by evolving au-
tomata or, equivalently, by interactive Turing machines with advice.

The new paradigm represents a new understanding of computing, motivated by
developments like the Internet and even by the computational views of living
systems. It innovates the classical view of computing in three ways: a shift from
finite computations to potentially infinite interactive ones, a shift from rigid
computing systems towards systems whose architecture and functionality evolve
over time and, last but not least, an understanding that in general the latter
process of evolution happens in an unpredictable, non-uniform, non-computable
way.

In our view, both models mentioned in the extended paradigm, the ITM/A
and evolving automata, have their use. Together they illustrate the dual view of



590 J. Wiedermann and J. van Leeuwen

a non-computable evolution. The metaphor of an ITM/A corresponds better to
our intuition and experience in which computers are perceived as well engineered
devices with a fixed architecture driven solely by input data, now with their
‘evolution’ driven by data as well (namely by those from the advice). In this
way, an TM/A models non-uniform software evolution. On the other hand, the
metaphor of an evolving automaton models a hardware evolution. This makes
this model more suitable for modeling systems where a non-uniform hardware
evolution is readily visible (as was the case of the Internet). Of course, both
models are only different sides of the same coin.

5.1 Non-computability Issues in the Extended Paradigm

The new paradigm indirectly asserts that the ‘new computing’ is computationally
more powerful than classical computing, since the models of computing serving
in the new paradigm are provably computationally more powerful than those in
the old paradigm. Does it mean that the new paradigm encompasses some form
of super-Turing computing capability, and if so, can the extra power be used for
‘solving’ undecidable problems?

Of course the answer to both questions is negative, as seen from the proof
of Proposition 3. In order to solve the halting problem, the constructed ITM/A
had to be provided with non-computable information. In general, an ITM/A
can solve classically undecidable problems if and only if its advice contains the
respective non-computable information. In the proof we were not interested in
how this information could be obtained, we just made use of the fact that such
information in principle exists. Thus, there is nothing miraculous in our result:
if a device has non-computable information at its disposal, it can solve non-
computable tasks. This has been known since Turing’s times (cf. [13], [2]).

In ‘real’ computational environments (such as in the Internet), the non-comput-
ability manifests itself, e.g., as the non-predictability of their evolution or in the
unpredictable variance in message transfer times among the systems part. We do
not know of any computational exploitation of these phenomena (except, perhaps,
as a source of random numbers). In fact, in most of our computing activities we
strive for being shielded from these phenomena. Hence, the hyper-Turing power
implied by the extended paradigm is needed for the purposes of theoretical mod-
eling, but, unfortunately, cannot be purposefully harnessed for any goal-oriented
computational purposes.

5.2 The Scope of the Extended Paradigm

What remains is to see whether the other systems, man-made or natural, men-
tioned in the introduction as examples of systems ‘that process information and
compute’ are covered by the extended paradigm. No doubt that, once we agree
that the models in the paradigm capture the Internet, then they also capture all
variations of this theme: wireless ad hoc networks, sensor nets, etcetera. Gen-
eralizing, one can say that to the extent to which finite automata mirror the
data-processing capability of some entity (such as that of a biological cell or of



How We Think of Computing Today 591

a biological neuron), the extended paradigm also mirrors the data-processing
capabilities and computations of ensembles (such as organisms or brains) and
communities of such entities (such as swarms of ants or bees, or also communi-
ties of humans). Cf. [22] for a more in-depth, complexity-oriented study of such
an approach.

The case of physical systems in general, and especially of the Universe itself,
is interesting. Apparently, there are ‘no external inputs’ to the Universe. A cur-
rent state of the universe completely determines its next state (albeit not in the
deterministic way, as in the case of deterministic finite automata). Or, to quote
Toffoli [11]: In a sense, nature has been continually computing the ‘next state’ of
the universe for billions of years; all we have to do - and actually, all we can do
- is ‘hitch a ride’ on this huge ongoing computation. What we ‘observe’ is the
potentially infinite sequence of instances of the Universe. Could this be modeled
by a kind of a gigantic, ‘natural’ evolving automaton (perhaps a quantum au-
tomaton?) whose evolution is governed by the laws of the Nature? According to
Lloyd [3], the Universe computes its own evolution. This seems to be close to
the spirit of our paradigm.

6 Conclusions

The contemporary perception of computing sees it as any act of information pro-
cessing and transfer, occurring in both the local and global behavior of systems.
In this view, computation encompasses communication, interaction, reaction,
receiving, sending, storing, retrieving and transformation of information. The
Extended Turing Machine paradigm captures it in an abstract manner.

The extended paradigm keeps the central position of Turing machines in our
apprehension of computing, continuing in this way the tribute to A.M. Turing.
In fact, the new paradigm also makes use of the language of classical Turing
machines, upgraded this time, by the notions of interaction and advice. The
new paradigm also encompasses non-uniform computing, which seems to be far
more ubiquitous and less artificial than believed before. The complementary
view of interactive Turing machines as that of evolving automata stresses the
dual sides of both software and hardware evolution. In addition to the known
cases of computing artifacts, the extended paradigm also covers the information
processing occurring in the Nature. For informal use, there is no need to formally
revise the good old Turing machine paradigm. What is needed is to be more
liberal in understanding different variants of Turing machines and their scenarios.
This was also concluded in a debate on Lance Fortnow’s weblog: [5].

Call me a rationalist then as I continue to hold the belief that no matter
how complicated the computational model, we can still use the simple
Turing machine to capture its power.
L. Fortnow ([5], 2006).

There is some advantage in having the paradigms of science formulated in
not very precise terms. Namely, in such a case, their rejection requires a real



592 J. Wiedermann and J. van Leeuwen

revolution to happen in the field. Otherwise, let our paradigms evolve along
with the evolution of the notions they deal with. But it is good to know that
when it comes to the details, we are able to make our paradigms more precise.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. 2nd edn. Springer,
Berlin (1995)

2. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: Life
and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2004)

3. Edge, The Computational Universe: Seth Lloyd [10.24.02] (October 24, 2002),
http://www.edge.org/3rd culture/lloyd2/lloyd2 index.html

4. Etesi, G., Németi, I.: Turing computability and Malament-Hogarth space-
times. International Journal of Theoretical Physics 41(2), 342–370 (2002),
http://arxiv.org/abs/gr-qc/0104023

5. Fortnow, L.: Principles of problem solving: A TCS Response, weblog Computa-
tional Complexity, Friday (July 14, 2006), http://weblog.fortnow.com/2006/07/
principles-of-problem-solving-tcs.html

6. Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.: Turing machines, tran-
sition systems, and interaction. Information and Computation 194(2), 101–128
(2004)

7. Goldin, D.Q., Smolka, S., Wegner, P. (eds.): Interactive Computing: The New
Paradigm. Springer, Berlin (2006)

8. Karp, R.M., Lipton, R.: Turing machines that take advice, L’Enseignement
Mathématique, IIe Série, Tome XXVIII, pp. 191–209 (1982)

9. Lloyd, S.: The Computational Universe. Originally published on Edge, (October
24, 2002), http://www.edge.org/3rd culture/lloyd2/lloyd2 p2.html

10. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Formal Models and Semantics, vol.B, ch. 4, pp.
133–192. Elsevier Science Publishers, Amsterdam (1990)

11. Toffoli, T.: Physics and computation. Int. Journal of Theor. Physics 21, 165–175
(1982)

12. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. Series 2 42, 230–265 (1936)

13. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. Series
2 45, 161–228 (1939)

14. van Leeuwen, J., Wiedermann, J.: The Turing machine paradigm in contemporary
computing. In: Enquist, B., Schmidt, W. (eds.) Mathematics Unlimited - 2001 and
Beyond, pp. 1139–1155. Springer, Berlin (2001)

15. van Leeuwen, J., Wiedermann, J.: A computational model of interaction in embed-
ded systems, Technical Report UU-CS-2001-02, Dept.of Information and Comput-
ing Sciences, Utrecht University (2001)

16. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: Evolving interactive
systems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001: Theory and Practice
of Informatics. LNCS, vol. 2234, pp. 90–109. Springer, Heidelberg (2001)

17. van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. In:
Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computing: The New
Paradigm, ch. 6, pp. 119–142. Springer, Berlin (2006)

http://www.edge.org/3rd_culture/lloyd2/lloyd2_index.html
http://arxiv.org/abs/gr-qc/0104023
http://weblog.fortnow.com/2006/07/principles-of-problem-solving-tcs.html
http://weblog.fortnow.com/2006/07/principles-of-problem-solving-tcs.html
http://www.edge.org/3rd_culture/lloyd2/lloyd2_p2.html


How We Think of Computing Today 593

18. Verbaan, P.R.A.: The Computational Complexity of Evolving Systems,
Ph.D.Thesis, Dept.of Information and Computing Sciences, Utrecht University
(2006)

19. Verbaan, P.R.A., van Leeuwen, J., Wiedermann, J.: Complexity of evolving inter-
active systems. In: Karhumäki, J., et al. (eds.) Theory Is Forever. LNCS, vol. 3113,
pp. 268–281. Springer, Berlin (2004)

20. Wegner, P.: Why interaction is more powerful than algorithms. C. ACM 40, 315–
351 (1997)

21. Wiedermann, J., van Leeuwen, J.: Relativistic computers and non-uniform com-
plexity theory. In: Calude, C., et al. (eds.) UMC 2002. LNCS, vol. 2509, pp. 287–
299. Springer, Heidelberg (2002)

22. Wiedermann, J., van Leeuwen, J.: The emergent computational potential of evolv-
ing artificial living systems. AI Communications 15(4), 205–215 (2002)

23. Winograd, T.: From computing machinery to interaction design. In: Denning,
P., Metcalfe, R. (eds.) Beyond Calculation: The Next Fifty Years of Comput-
ing, pp. 149–162. Springer, Berlin (1997), http://hci.stanford.edu/~winograd/
acm97.html

http://hci.stanford.edu/~winograd/acm97.html
http://hci.stanford.edu/~winograd/acm97.html


Author Index

Anders, Janet 94
Andersson, Daniel 1
Arratia, Argimiro 11
Ayala-Rincón, Mauricio 567

Baaz, Matthias 22
Babenyshev, Sergey 32
Barra, Mathias 42
Beggs, E.J. 52
Ben-Amram, Amir M. 67
Bréard, Andrea 77
Brough, Michael 84
Browne, Dan 94
Bullynck, Maarten 158

Cabessa, Jérémie 100
Cavaliere, Matteo 110
Christandl, Matthias 120
Ciobanu, Gabriel 326
Cornaros, Charalampos 129
Csima, Barbara F. 139
Csuhaj-Varjú, Erzsébet 149

Daley, Mark 152
Daskalakis, Constantinos 154
De Mol, Liesbeth 158
De Smet, Michiel 168
Di Crescenzo, Giovanni 175
Duparc, Jacques 100, 186

Facchini, Alessandro 186
Fouché, Willem L. 196

Gimbert, Hugo 206
Glaßer, Christian 210
Gonen, Rica 221
Gu, Xiaoyang 231

Hainry, Emmanuel 241
Hansen, Kristoffer Arnsfelt 1
Hernest, Mircea-Dan 251
Horn, Florian 206
Høyrup, Jens 261

Istrate, Gabriel 273

Jones, Neil D. 67
Jurdziński, Marcin 283

Kahsai, Temesghen 294
Kamareddine, Fairouz 567
Khoussainov, Bakhadyr 84, 139
Koepke, Peter 306
Kolokolova, Antonina 316
Krishna, Shankara Narayanan 326, 407
Kristiansen, Lars 67, 336

Lathrop, James I. 349
Letouzey, Pierre 359
Lipmaa, Helger 175
Liu, Jiamou 139
Liu, Jiang 370
Loeb, Iris 379
Longley, John 389
Lutz, Jack H. 231, 349

Makowsky, J.A. 403
Manasa, Lakshmi 407
Marathe, Madhav V. 273
Martin, Barnaby 417
Martin, Keye 428
Matthes, Ralph 431
Metcalfe, George 22
Miculan, Marino 294
Miller, Russell 306, 447
Miltersen, Peter Bro 1
Mulcahey, Dustin 447

Nagaraj, Kumar 407
Nelson, Peter 84
Nemoto, Takako 457
Normann, Dag 467

Oliva, Paulo 251
Ollinger, Nicolas 476

Panangaden, Prakash 428
Patitz, Matthew J. 349
Paulson, Lawrence C. 486
Podzorov, Sergei 491

Ravi, S.S. 273
Reitwießner, Christian 210



596 Author Index

Riba, Colin 498
Richter, Peter C. 511
Rybakov, Vladimir 32

Sablik, Mathieu 523
Savani, Rahul 283
Selivanov, Victor L. 210, 533
Sørensen, Troels Bjerre 1
Soskova, Alexandra A. 544
Soskova, Mariya Ivanova 554
Stewart, Iain A. 11
Summers, Scott M. 349

Theyssier, Guillaume 523

Tucker, J.V. 52

van Leeuwen, Jan 579

Ventura, Daniel Lima 567

Wagner, Klaus W. 533

Weiermann, Andreas 168

Wiedermann, Jǐŕı 579

Wu, Guohua 370


	Title Page
	Preface
	Table of Contents
	Deterministic Graphical Games Revisited
	Introduction
	Simple Stochastic Games
	Deterministic Graphical Games
	Our Results

	Preliminaries
	Solving Deterministic Graphical Games
	Strongly
	Weakly


	Program Schemes with Deep Pushdown Storage
	Introduction
	Basic Definitions
	Our Results
	Restricted Program Schemes
	Capturing NP
	Beyond NP
	Capturing PSPACE
	Beyond PSPACE

	Conclusions

	Herbrand Theorems and Skolemization for Prenex Fuzzy Logics
	Introduction
	Fuzzy Logics
	Herbrand Theorems
	Approximate Herbrand Theorems
	Skolemization

	Decidability of Hybrid Logic with Local Common Knowledge Based on Linear Temporal Logic LTL
	Introduction
	Preliminaries, Definitions, Notation 
	Decidability Algorithm for LTL$_ACK$
	Conclusion, Future Work

	Pure Iteration and Periodicity
	Introduction and Notation
	Background and Motivation
	The Hierarchy $IT$
	A Note on Presburger Arithmetic and $IT$

	Discussion and Directions for Further Research

	Programming Experimental Procedures for Newtonian Kinematic Machines
	Introduction
	Experimental Procedures and Languages
	Experimental Procedures and Pseudocode
	A Simple Language $EP(T)$ for Experimental Procedures
	Behaviour of Procedures
	Examples
	Routines

	Restrictions and Extensions of the Language for Experimental Procedures
	Physical Extensions
	Mathematical Extensions

	Experimental Computation with Rational Numbers
	Concluding Remarks

	Linear, Polynomial or Exponential? Complexity Inference in Polynomial Time
	Introduction
	Problem Definition
	A Calculus to Certify Polynomial Bounds
	Data Flow Relations

	Certifying Linear Bounds
	Analysing Running Time
	Concluding Remarks

	A Summation Algorithm from 11th Century China
	Shen Gua’s Text
	Shen Gua’s Algorithm
	Conclusion

	Sequential Automatic Algebras
	General Properties, Separating Examples and Classification Results
	Linear Order Algebras
	Sequential Automatic Unary Algebras

	The Role of Classical Computation in Measurement-Based Quantum Computation
	Introduction
	One-Way Model of Quantum Computation
	CNOT Computers
	Discussion

	The Algebraic Counterpart of the Wagner Hierarchy
	Introduction
	Preliminaries
	$\omega$-Languages
	$\omega$-Semigroups

	The Wadge and the Wagner Hierarchies
	The $\mathbb{SG}$-Hierarchy
	The $\mathbb{FSG}$ and the Wagner Hierarchies
	Conclusion

	Computing by Observing: A Brief Survey
	Introduction
	Computing by Observing
	An Example of Observer: Automata with Singular Output
	G/O Systems
	Always Writing G/O Systems
	Initial G/O Systems
	Free G/O Systems

	Computing by Only Observing
	Restrictions on the Observed System
	Final Remarks

	A Quantum Information-Theoretic Proof of the Relation between Horn’s Problem and the Littlewood-Richardson Coefficients
	Introduction and Results
	Preliminaries
	Spectrum Estimation
	Littlewood-Richardson Coefficients

	Proofs
	From Hermitian Operators to Density Operators
	Proof of Theorem 5
	Proof of Theorem 6


	Pell Equations and Weak Regularity Principles
	Introduction
	Limit Schemata and Weak Regularity
	Dirichlet's Approximation Lemma in $IE_1$
	Bounded WR vs. $exp$

	Computable Categoricity of Graphs with Finite Components
	Introduction
	Computable Categoricity and the Size Function
	A Sufficient Condition for Not Computably Categorical
	Infinite Chains of Embedded Components

	P Automata: Membrane Systems as Acceptors
	On the Processing Power of Protozoa
	Computing Equilibria in Large Games We Play
	A Week-End Off: The First Extensive Number-Theoretical Computation on the ENIAC
	Introduction
	How a Number-Theorist Got Involved with Computers
	The Structure of the ENIAC

	Lehmer's ENIAC `Program'
	The Mathematical Problem
	Description of the Main Steps of the Computation
	Outline of the Set-Up of the Computation on the ENIAC

	Discussion

	Phase Transitions for Weakly Increasing Sequences
	Introduction
	Classifying Phase Transitions for Weakly Increasing Sequences
	The Erdös-Szekeres Theorem and the Dilworth Decomposition Theorem

	Succinct NP Proofs from an Extractability Assumption
	Introduction
	Definitions and Tools
	An Extractability Assumption
	Our EA Assumption

	A Low-Communication 1-Round Argument for $NP$

	Describing the Wadge Hierarchy for the Alternation Free Fragment of μ-Calculus (I)�
	Introduction
	The Propositional Modal $\mu$-Calculus
	Syntax and Semantics
	The Alternation Free Fragment

	Evaluation Game for the $\mu$-Calculus
	The Wadge Hierarchy
	Main Result
	Conclusion

	Subrecursive Complexity of Identifying the Ramsey Structure of Posets
	Introduction
	Preliminaries
	Layered Posets
	The First Amalgamation
	The Second Amalgamation

	Solving Simple Stochastic Games
	Introduction
	References

	The Shrinking Property for NP and coNP
	Introduction
	Preliminaries
	Disjoint NP-Pairs
	Function Classes

	Connections to Reasonable Assumptions
	Oracle Separations
	Conclusions and Open Questions

	On the Hardness of Truthful Online Auctions with Multidimensional Constraints
	Introduction and Related Work
	Previous Work
	Our Results

	Model and Definitions
	First Impossibility: With Private Time Parameters
	Second Impossibility: Relaxing Private Time Parameters
	Conclusions

	Effective Dimensions and Relative Frequencies
	Introduction
	Classical Fractal Dimensions
	Shannon Information Theory
	Effective Fractal Dimensions
	Classical Dimensions of Saturated Sets
	Our Results

	Preliminaries
	The Four Dimensions
	Relative Frequencies of Digits
	Saturated Sets and Maximum Entropy Principle
	Conclusion

	Reachability in Linear Dynamical Systems
	Introduction
	Prerequisites
	Linear Continuous-Time Dynamical Systems
	Polynomials
	Matrices

	Undecidability for Polynomial Dynamical Systems
	Decidability for Linear Dynamical Systems
	To Put the Matrix in Jordan Form
	If the Matrix Is in Jordan Form


	Hybrid Functional Interpretations
	Introduction
	Multi-modal Linear Logic $LL^{\omega}_h$
	Kreisel and Gödel Modalities

	A Hybrid Functional Interpretation
	Simple Applications to Program Extraction
	Example 1
	Example 2
	Example 3
	Example 4

	Comparison to Light Dialectica
	The Light Hybrid Interpretation

	Future Work: Extension and Automation
	Automated Decoration of Modalities

	Conclusion

	The Algorithm Concept – Tool for Historiographic Interpretation or Red Herring?
	A Parallel but Preceding Issue
	Seeing Historical Texts through Algorithms
	Algorithmic Analysis
	The Participants’ Point of View
	References

	Adversarial Scheduling Analysis of Game-Theoretic Models of Norm Diffusion
	Introduction
	Preliminaries
	Schedulers
	Peyton Young's Model of Norm Diffusion
	Stochastic Stability

	Results
	Main Result: Diffusion of Norms by Contagion
	The Inertia of Diffusion of Norms with Contagion

	Conclusions and Acknowledgments

	A Simple P-Matrix Linear Complementarity Problem for Discounted Games
	Introduction
	Discounted Games
	A P-Matrix LCP for Discounted Games
	An LCP for Discounted Games
	The P-Matrix Property
	Understanding $q$ and M

	Algorithms
	Unique Sink Orientations of Cubes
	Strategy Improvement and the Strategy Valuation USO
	Murty's Least-Index Method

	Further Research

	Implementing Spi Calculus Using Nominal Techniques
	Introduction
	Spi Calculus
	Isabelle/Nominal
	Encoding Spi Calculus in Isabelle/Nominal
	Implementation of Syntax and Semantics
	Implementation of Hedged Bisimulation 
	Example: ``Perfect Encryption''

	Conclusions and Future Work

	An Enhanced Theory of Infinite Time Register Machines
	Introduction
	Infinite Time Register Machines
	Computing $\Pi^1_1$-Sets
	ITRMs, ITTMs, and Halting Problems

	Many Facets of Complexity in Logic
	Introduction
	The Computational Complexity Setting
	Finite Model Theory and Descriptive Complexity
	Logics between First-Order and Existential Second-Order

	Bounded Arithmetic
	The Language and Translation from the Finite Model Theory Setting
	Systems of Bounded Arithmetic

	Defining Functions in the Bounded Arithmetic Setting
	When Do Systems Based on Formulas Describing a Complexity Class Capture the Same Class?
	Conclusions

	On the Computational Power of Enhanced Mobile Membranes
	Introduction
	Systems with Enhanced Mobile Membranes
	Computational Power
	Conclusion

	Recursion in Higher Types and Resource Bounded Turing Machines
	Introduction
	A Brief Discussion

	Computability and Complexity in Self-assembly
	Introduction
	Preliminaries
	Pseudoseeds and Multiseeds
	Self-assembly of Computably Enumerable Sets
	Overview of Construction
	The Ray Module
	The Planter Module
	The Computation Module
	Sketch of Correctness Proof

	A Decidable Set That Does Not Self-assemble
	Conclusion

	Extraction in Coq: An Overview
	Introduction
	Extraction in Practice : Div
	A Division That Fulfills the Structural Constraint
	A Division with an Explicit Counter
	A Division by General Recursion, Historical Approach
	A Division by General Recursion with the Russell Framework
	A Division by General Recursion with the Function Framework

	Examples Beyond ML Type System
	Functions of Variable Arity
	Existential Structures

	Key Features of Extraction
	Some Significant Coq Developments Using Extraction
	Conclusion and Future Works

	Joining to High Degrees
	Introduction
	Requirements and Strategies
	An $N$ Strategy
	A $P$ Strategy


	Factoring Out Intuitionistic Theorems: Continuity Principles and the Uniform Continuity Theorem
	Introduction
	The Continuity and Compactness Principles
	Equivalents of UCT $\wedge$ CPL$^{cp}$
	Equivalents of UCT $\wedge$ CONT$^{cp}$

	Interpreting Localized Computational Effects Using Operators of Higher Type
	Introduction
	The General Framework
	Fresh Name Generation
	Models
	Further Work and Conclusions

	Uniform Algebraic Reducibilities between Parameterized Numeric Graph Invariants
	Graph Polynomials and Partition Functions
	Complexity and Reducibilities
	The Difficult Point Conjecture

	Updatable Timed Automata with Additive and Diagonal Constraints
	Introduction
	Prerequisites
	Timed Automata
	Region Automata

	Diagonal Constraints
	Additive Constraints
	Location Invariants

	First-Order Model Checking Problems Parameterized by the Model
	Introduction
	Preliminaries
	Class I : $\{\neg\exists\forall\wedge\vee\}$-FO
	Class II: Low Complexity Fragments
	Class III: CSP and Its Dual
	Class IV
	Class V: QCSP and Its Dual
	Class VI: $\{ \exists\forall\wedge\vee\}$-FO
	Boolean Digraphs

	Conclusions

	Domain Theory and the Causal Structure of Space-Time
	Recursion on Nested Datatypes in Dependent Type Theory
	Introduction
	Motivating Examples
	Bushes
	Untyped Lambda Calculus with Explicit Flattening

	Logic for Natural Mendler-Style Recursion of Rank 2 
	LNMIt
	$LNMRec$

	Access to Map Terms within $MIt$?
	Conclusion

	Perfect Local Computabilityand Computable Simulations
	Introduction
	Local Computability Definitions
	Computable Simulations
	Category Theory

	Complete Determinacy and Subsystems of Second Order Arithmetic
	Introduction
	Preliminaries
	Subsystems of Second Order Arithmetic
	Finer Hierarchy of Formulas
	Games in Second Order Arithmetic

	$WKL_0$ and Complete Determinacy
	$ACA_0$ and Complete Determinacy
	$\Pi^1_1-CA_0$ and Complete Determinacy
	Stronger Complete Determinacy Statements

	Internal Density Theorems for Hierarchies of Continuous Functionals
	Introduction
	The Core
	Limit Spaces
	The Classical Continuous Functionals
	The Hierarchy over the Reals

	Moving on

	Two-by-Two Substitution Systems and the Undecidability of the Domino Problem
	Two-by-Two Substitution Systems
	Tilings
	An Aperiodic Tile Set of 104 Tiles
	Enforcing Any Substitution

	The Relative Consistency of the Axiom of Choice — Mechanized Using Isabelle/ZF
	Upper Semilattices in Many-One Degrees
	Distributive Upper Semilattices
	Many-One Reducibility and Degrees
	Arithmetical Presentations of Upper Semilattices
	Principal Ideals in Many-One Degrees
	Universal Lachlan Semilattice and Ideals in $L_m$

	Union of Reducibility Candidates for Orthogonal Constructor Rewriting
	Introduction
	Simply Typed $\lambda$-Calculus with Constructor Rewriting
	Reducibility Families
	Neutral Terms and Reducibility Candidates
	A General Formulation
	Application to Constructor Rewriting

	Stability by Union
	Reducibility Candidates
	Application to Orthogonal Constructor Rewriting


	The Quantum Complexity of Markov Chain Monte Carlo
	Introduction
	Classical Markov Chains
	Quantum Walk Constructions
	Sampling Via Quantum Walks
	Decoherent Quantum Walks
	Outlook

	Topological Dynamics of 2D Cellular Automata
	Introduction
	Definitions
	Non Sensitive CA without Any Equicontinuous Point
	Undecidability of Topological Classification Revisited
	Open Problems

	Complexity of Aperiodicity for Topological Properties of Regular ω-Languages�
	Introduction
	Preliminaries
	Complexity for Automata Representations
	Complexity for Logical Formula Representation
	Complexity for Regular Expression Representations

	ω-Degree Spectra�
	 Introduction
	$\omega$-Enumeration Degrees
	The $\omega$-Degree Spectra of Structures
	Properties of the $\omega$-Degree Spectra

	Cupping Classes of $Σ^0_2$ Enumeration Degrees�
	Introduction
	Requirements and Strategies
	Elaborating the N-Strategy to Avoid Conflicts
	 Parameters and the Tree of Strategies
	Construction
	Proof

	Principal Typings for Explicit Substitutions Calculi
	Introduction
	The Type Free Calculi
	The λ-Calculus in de Bruijn Notation�
	The $λs_e$-Calculus�
	The $λσ$-Calculus�

	The Type Systems
	Principal Typings for the Simply Typed λ-Calculus in de BruijnNotation $TA_{λdB}$�
	Principal Typings for $TA_{λse}$ , the Simply Typed $λs_e$�
	Principal Typings for $TA_{λσ}$, the Simply Typed $λσ$�

	Conclusions and Future Work
	References

	How We Think of Computing Today
	Introduction
	From Isolated to Interactive Computation
	Classical Computing
	`Always On' Computing
	Interactive Computing

	From Interactive to Evolving Computation
	Modeling the Internet
	Evolving Automata
	Complexity of Evolving Automata
	Modeling the Internet 2

	Two New Models of Computation
	Computing with Advice
	Complexity of ITM/As

	Extending the Turing Machine Paradigm
	Non-computability Issues in the Extended Paradigm
	The Scope of the Extended Paradigm

	Conclusions

	Author Index



